
CS255: Cryptography and Computer Security Winter 2003

Assignment #2
Due: Wednesday, February 19th, 2003.

Problem 1 Merkle hash trees.
Merkle suggested a parallelizable method for constructing hash functions out of com-
pression functions. Let f be a compression function that takes two 512 bit blocks
and outputs one 512 bit block. To hash a message M one uses the following tree
construction:

Block 1 Block 2 Block 3 Block 4 Block 15Message Block 16

msg-len

Hash

f f f

ff

f

f

Prove that if one can find a collision for the resulting hash function then one can find
collisions for the compression function.

Problem 2 In this problem we explore the different ways of constructing a MAC out of
a non-keyed hash function. Let h : {0, 1}∗ → {0, 1}b be a hash function constructed
by iterating a collision resistant compression function using the Merkle-Damg̊ard con-
struction.

1. Show that defining MACk(M) = h(k ‖ M) results in an insecure MAC. That
is, show that given a valid msg/MAC pair (M,H) one can efficiently construct
another valid msg/MAC pair (M ′, H ′) without knowing the key k.

2. Consider the MAC defined by MACk(M) = h(M ‖ k). Show that in expected
time O(2b/2) it is possible to construct two messages M and M ′ such that given
MACk(M) it is possible to construct MACk(M

′) without knowing the key k.

1

Problem 3 Suppose Alice and Bob share a secret key k. A simple proposal for a MAC
algorithm is as follows: given a message M do: (1) compute 128 different parity bits
of M (i.e. compute the parity of 128 different subsets of the bits of M), and (2) AES
encrypt the resulting 128-bit checksum using k. Naively, one could argue that this
MAC is existentially unforgeable: without knowing k an attacker cannot create a valid
message-MAC pair. Show that this proposal is flawed. Note that the algorithm for
computing the 128-bit checksums is public, i.e. the only secret unknown to the attacker
is the key k.
Hint: show that an attacker can carry out an existential forgery given one valid mes-
sage/MAC pair (where the message is a kilobyte long).

Problem 4 Let x1, . . . , xn be randomly sampled integers in the range [1, B]. The birthday
paradox says that when n = b1.2

√
Bc the probability that there is a collision (i.e.

exists i 6= j such that xi = xj) is a constant (greater than 1/2).

a. How many samples x1, . . . , xn do we need until the probability that we get k colli-
sions is some non-zero constant? Justify your answer.
Hint: define the indicator random variable Ij,k to be 1 if xj = xk and zero other-
wise. Then the expected number of collisions is

∑n
j,k=1 E[Ij,k].

b. How many samples x1, . . . , xn do we need until the probability that we get a 3-
way collision (i.e. exist distinct i, j, k such that xi = xj = xk) is some non-zero
constant? Justify your answer.

Problem 5 In this problem, we see why it is a really bad idea to choose a prime p = 2k + 1
for discrete-log based protocols: the discrete logarithm can be efficiently computed for
such p. Let g be a generator of Z

∗

p.

a. Show how one can compute the least significant bit of the discrete log. That is,
given y = gx (with x unknown), show how to determine whether x is even or odd
by computing y(p−1)/2 mod p.

b. If x is even, show how to compute the 2nd least significant bit of x.
Hint: consider y(p−1)/4 mod p.

c. Generalize part (b) and show how to compute all of x.

d. Briefly explain why your algorithm does not work for a random prime p.

2

