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The RSA cryptosystem

Ø First published: 
• Scientific American, Aug. 1977.

(after some censorship entanglements)

Ø Currently the “work horse” of Internet security:
• Most Public Key Infrastructure (PKI) products.
• SSL/TLS:  Certificates and key-exchange.
• Secure e-mail: PGP, Outlook, …
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The RSA trapdoor permutation

Ø Parameters: N=pq.    N ≈1024 bits.    p,q ≈512 bits.
e – encryption exponent.    gcd(e, ϕ(N) ) = 1 .

Ø Permutation: RSA(M) = Me (mod N)     where  M∈ZN

Ø Trapdoor: d – decryption exponent.
Where    e⋅d = 1   (mod ϕ(N) )

Ø Inversion: RSA(M)d =  M (mod N)

Ø “Assumption”:    
no efficient alg. can invert RSA without trapdoor.
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Textbook RSA is insecure

Ø Textbook RSA encryption:
• public key:   (N,e) Encrypt:   C = Me (mod N)
• private key:  d Decrypt:   Cd = M (mod N)

(M ∈ ZN )

Ø Completely insecure cryptosystem:
• Does not satisfy basic definitions of security.
• Many attacks exist.

Ø The RSA trapdoor permutation is not a cryptosystem !
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A simple attack on textbook RSA

Ø Session-key  K is 64 bits.     View   K ∈ {0,…,264}
Eavesdropper sees:    C = Ke (mod N) .

Ø Suppose   K = K1⋅K2 where   K1, K2 < 234 .   (prob. ≈20%)
Then:    C/K1

e = K2
e (mod N)

Ø Build table:   C/1e, C/2e, C/3e, …, C/234e .   time:  234

For  K2 = 0,…, 234 test if  K2
e is in table.   time: 234⋅34

Ø Attack time:   ≈240  << 264

Web
Browser

Web
Server

CLIENT HELLO

SERVER HELLO (e,N) d
C=RSA(K)

Random
session-
key K



Page 6

Common RSA encryption

Ø Never use textbook RSA.
Ø RSA in practice:

Ø Main question:
• How should the preprocessing be done?
• Can we argue about security of resulting system?

msg
Preprocessing

ciphertext

RSA
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PKCS1 V1.5

Ø PKCS1 mode 2: (encryption)

Ø Resulting value is RSA encrypted.

Ø Widely deployed in web servers and browsers.
Ø No security analysis !!

02 random pad FF msg

1024 bits

16 bits
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Attack on PKCS1

Ø Bleichenbacher 98.  Chosen-ciphertext attack.

Ø PKCS1 used in SSL:

⇒ attacker can test if 16 MSBs of plaintext = ’02’.

Ø Attack:  to decrypt a given ciphertext C do:
• Pick random  r ∈ ZN.   Compute  C’ = re⋅C   = (rM)e.
• Send  C’ to web server and use response.

AttackerWeb
Server

dIs this
PKCS1?

ciphertextC=

C

Yes: continue
No: error02
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Chosen ciphertext security (CCS)

Ø No efficient attacker can win the following game:
(with non-negligible advantage)

AttackerChallenger

M0, M1

b’∈{0,1}

Attacker wins if    b=b’

C=E(Mb)     b∈R{0,1}
Challenge

Decryption 
oracle

≠C
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Chosen-ciphertext secure RSA

Ø Are there CCS cryptosystems based on RSA?
• RSA-PKCS1  is not CCS !

Ø Answer:  Yes! Dolev-Dwork-Naor (DDN).   1991.
• Problem:  inefficient.

Ø Open problem:  efficient CCS system based on RSA.

Ø What to do?    Cheat!
• Build RSA system that is CCS in imaginary world.
• “Assume”   our-world = imaginary-world.
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PKCS1 V2.0 - OAEP

Ø New preprocessing function:  OAEP   (BR94).

Ø Thm: ∀ trap-door permutation F   ⇒ F-OAEP is CCS 
when  H,G  are “random oracles”.

Ø In practice:  use SHA-1 or MD5 for H and G.

H+

G +

Plaintext to encrypt with RSA

rand.M 01 00..0

Check pad
on decryption.
Reject CT if invalid.

∈{0,1}n-1
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An incorrect proof

Ø Shoup 2000:   The OAEP thm cannot be correct !!
Ø Counter ex: f(x) – xor malleable trapdoor permutation

f(x),  ∆ ⇒ f(x⊕∆)
Define:   h(x,y) = [ x, f(y) ] (also trapdoor perm)

Ø Attack on  h-OAEP:
Attacker

Challenger

M0, M1

C = h(OAEP(Mb)) = [x,f(y)] Rand  ∆ = r||01000

y’ = y⊕G(x)⊕G(x⊕∆)

C’ = [ x⊕∆, f(y’) ]
Decrypt  C’  (≠C)

Mb ⊕∆ Mb
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Consequences

Ø OAEP is standardized due to an incorrect thm.

Ø Fortunately:     Fujisaki-Okamoto-Pointcheval-Stern
• RSA-OAEP is Chosen Ciphertext Secure !!

– Proof uses special properties of RSA. 

⇒ No immediate need to change standards.

• Security proof less efficient than original “proof”.

u Main proof idea  [FOPS]:
• For Shoup’s attack: given challenge  C = RSA(x || y) 

attacker must “know”   x
• RSA(x || y)  ⇒ x     then     RSA is not one-way.
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OAEP Replacements

ØOAEP+:   (Shoup’01)

∀ trap-door permutation F 
F-OAEP+ is CCS when  
H,G,W  are “random oracles”.

ØSAEP+:  (B’01)

RSA trap-door perm ⇒
RSA-SAEP+ is CCS when 
H,W  are “random oracle”.

R

H+

G +

M W(M,R)

R

H+

M W(M,R)
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Subtleties in implementing OAEP

OAEP-decrypt(C)  {

error = 0;

if  ( RSA-1(C) > 2n-1 )
{ error =1;  goto exit; }

if  ( pad(OAEP-1(RSA-1(C))) != “01000” )
{ error = 1;  goto exit; }}

Ø Problem: timing information leaks type of error.
⇒ Attacker can decrypt any ciphertext C.

Ø Lesson:  Don’t implement RSA-OAEP yourself …



Part II:
Is RSA a One-Way Permutation?
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Is RSA a one-way permutation?

Ø To invert the RSA one-way function (without d) attacker 
must compute:

M    from     C = Me (mod N).

Ø How hard is computing  e’th roots modulo N ??

Ø Best known algorithm:   
• Step 1:  factor  N.     (hard)
• Step 2:  Find  e’th roots modulo  p  and  q.     (easy)
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Shortcuts?

Ø Must one factor N in order to compute e’th roots?
Exists shortcut for breaking RSA without factoring?

Ø To prove no shortcut exists show a reduction:
• Efficient algorithm for e’th roots mod N

⇒ efficient algorithm for factoring  N.
• Oldest problem in public key cryptography.

Ø Evidence no reduction exists: (BV’98)

• “Algebraic” reduction  ⇒ factoring is easy.
• Unlike Diffie-Hellman (Maurer’94).
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Improving RSA’s performance

Ø To speed up RSA decryption use 
small private key  d. Cd = M  (mod N)

• Wiener87: if   d < N0.25 then RSA is insecure.
• BD’98: if   d < N0.292 then RSA is insecure

(open:  d < N0.5 )

• Insecure: priv. key  d  can be found from  (N,e).

• Small   d   should never be used.
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Wiener’s attack

Ø Recall: e⋅d = 1  (mod ϕ(N) )
⇒ ∃ k∈Z :     e⋅d = k⋅ϕ(N) + 1 

⇒

ϕ(N) = N-p-q+1    ⇒ |N- ϕ(N)| ≤ p+q ≤ 3√N

d ≤ N0.25/3    ⇒

Continued fraction expansion of  e/N  gives  k/d.

e⋅d = 1 (mod k)   ⇒ gcd(d,k)=1

e
ϕ(N) 

k
d - ≤ 1

dϕ(N) 

e
N 

k
d - ≤ 1

2d2
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RSA With Low public exponent

Ø To speed up RSA encryption (and sig. verify) 
use a small   e. C = Me (mod N)

Ø Minimal value:   e=3 ( gcd(e, ϕ(N) ) = 1)

Ø Recommended value:   e=65537=216+1

Encryption:  17 mod. multiplies.

Ø Several weak attacks.   Non known on RSA-OAEP.

Ø Asymmetry of RSA:   fast enc. / slow dec.
• ElGamal:   approx. same time for both.
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Implementation attacks

Ø Attack the implementation of RSA.

Ø Timing attack:  (Kocher 97)
The time it takes to compute   Cd (mod N)
can expose   d.

Ø Power attack:  (Kocher 99)
The power consumption of a smartcard while 
it is computing  Cd (mod N)   can expose  d.

Ø Faults attack:  (BDL 97)
A computer error during   Cd (mod N)  
can expose   d.   
OpenSSL defense:  check output. 5% slowdown.
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Key lengths

Ø Security of public key system should be 
comparable to security of block cipher.

NIST:
Cipher key-size Modulus size
≤ 64 bits 512 bits.

80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits 

Ø High security  ⇒ very large moduli.
Not necessary with Elliptic Curve Cryptography.


