
The RSA Cryptosystem

Dan Boneh
Stanford University

Page 2

The RSA cryptosystem

Ø First published:
• Scientific American, Aug. 1977.

(after some censorship entanglements)

Ø Currently the “work horse” of Internet security:
• Most Public Key Infrastructure (PKI) products.
• SSL/TLS: Certificates and key-exchange.
• Secure e-mail: PGP, Outlook, …

Page 3

The RSA trapdoor permutation

Ø Parameters: N=pq. N ≈1024 bits. p,q ≈512 bits.
e – encryption exponent. gcd(e, ϕ(N)) = 1 .

Ø Permutation: RSA(M) = Me (mod N) where M∈ZN

Ø Trapdoor: d – decryption exponent.
Where e⋅d = 1 (mod ϕ(N))

Ø Inversion: RSA(M)d = M (mod N)

Ø “Assumption”:
no efficient alg. can invert RSA without trapdoor.

Page 4

Textbook RSA is insecure

Ø Textbook RSA encryption:
• public key: (N,e) Encrypt: C = Me (mod N)
• private key: d Decrypt: Cd = M (mod N)

(M ∈ ZN)

Ø Completely insecure cryptosystem:
• Does not satisfy basic definitions of security.
• Many attacks exist.

Ø The RSA trapdoor permutation is not a cryptosystem !

Page 5

A simple attack on textbook RSA

Ø Session-key K is 64 bits. View K ∈ {0,…,264}
Eavesdropper sees: C = Ke (mod N) .

Ø Suppose K = K1⋅K2 where K1, K2 < 234 . (prob. ≈20%)
Then: C/K1

e = K2
e (mod N)

Ø Build table: C/1e, C/2e, C/3e, …, C/234e . time: 234

For K2 = 0,…, 234 test if K2
e is in table. time: 234⋅34

Ø Attack time: ≈240 << 264

Web
Browser

Web
Server

CLIENT HELLO

SERVER HELLO (e,N) d
C=RSA(K)

Random
session-
key K

Page 6

Common RSA encryption

Ø Never use textbook RSA.
Ø RSA in practice:

Ø Main question:
• How should the preprocessing be done?
• Can we argue about security of resulting system?

msg
Preprocessing

ciphertext

RSA

Page 7

PKCS1 V1.5

Ø PKCS1 mode 2: (encryption)

Ø Resulting value is RSA encrypted.

Ø Widely deployed in web servers and browsers.
Ø No security analysis !!

02 random pad FF msg

1024 bits

16 bits

Page 8

Attack on PKCS1

Ø Bleichenbacher 98. Chosen-ciphertext attack.

Ø PKCS1 used in SSL:

⇒ attacker can test if 16 MSBs of plaintext = ’02’.

Ø Attack: to decrypt a given ciphertext C do:
• Pick random r ∈ ZN. Compute C’ = re⋅C = (rM)e.
• Send C’ to web server and use response.

AttackerWeb
Server

dIs this
PKCS1?

ciphertextC=

C

Yes: continue
No: error02

Page 9

Chosen ciphertext security (CCS)

Ø No efficient attacker can win the following game:
(with non-negligible advantage)

AttackerChallenger

M0, M1

b’∈{0,1}

Attacker wins if b=b’

C=E(Mb) b∈R{0,1}
Challenge

Decryption
oracle

≠C

Page 10

Chosen-ciphertext secure RSA

Ø Are there CCS cryptosystems based on RSA?
• RSA-PKCS1 is not CCS !

Ø Answer: Yes! Dolev-Dwork-Naor (DDN). 1991.
• Problem: inefficient.

Ø Open problem: efficient CCS system based on RSA.

Ø What to do? Cheat!
• Build RSA system that is CCS in imaginary world.
• “Assume” our-world = imaginary-world.

Page 11

PKCS1 V2.0 - OAEP

Ø New preprocessing function: OAEP (BR94).

Ø Thm: ∀ trap-door permutation F ⇒ F-OAEP is CCS
when H,G are “random oracles”.

Ø In practice: use SHA-1 or MD5 for H and G.

H+

G +

Plaintext to encrypt with RSA

rand.M 01 00..0

Check pad
on decryption.
Reject CT if invalid.

∈{0,1}n-1

Page 12

An incorrect proof

Ø Shoup 2000: The OAEP thm cannot be correct !!
Ø Counter ex: f(x) – xor malleable trapdoor permutation

f(x), ∆ ⇒ f(x⊕∆)
Define: h(x,y) = [x, f(y)] (also trapdoor perm)

Ø Attack on h-OAEP:
Attacker

Challenger

M0, M1

C = h(OAEP(Mb)) = [x,f(y)] Rand ∆ = r||01000

y’ = y⊕G(x)⊕G(x⊕∆)

C’ = [x⊕∆, f(y’)]
Decrypt C’ (≠C)

Mb ⊕∆ Mb

Page 13

Consequences

Ø OAEP is standardized due to an incorrect thm.

Ø Fortunately: Fujisaki-Okamoto-Pointcheval-Stern
• RSA-OAEP is Chosen Ciphertext Secure !!

– Proof uses special properties of RSA.

⇒ No immediate need to change standards.

• Security proof less efficient than original “proof”.

u Main proof idea [FOPS]:
• For Shoup’s attack: given challenge C = RSA(x || y)

attacker must “know” x
• RSA(x || y) ⇒ x then RSA is not one-way.

Page 14

OAEP Replacements

ØOAEP+: (Shoup’01)

∀ trap-door permutation F
F-OAEP+ is CCS when
H,G,W are “random oracles”.

ØSAEP+: (B’01)

RSA trap-door perm ⇒
RSA-SAEP+ is CCS when
H,W are “random oracle”.

R

H+

G +

M W(M,R)

R

H+

M W(M,R)

Page 15

Subtleties in implementing OAEP

OAEP-decrypt(C) {

error = 0;

if (RSA-1(C) > 2n-1)
{ error =1; goto exit; }

if (pad(OAEP-1(RSA-1(C))) != “01000”)
{ error = 1; goto exit; }}

Ø Problem: timing information leaks type of error.
⇒ Attacker can decrypt any ciphertext C.

Ø Lesson: Don’t implement RSA-OAEP yourself …

Part II:
Is RSA a One-Way Permutation?

Page 17

Is RSA a one-way permutation?

Ø To invert the RSA one-way function (without d) attacker
must compute:

M from C = Me (mod N).

Ø How hard is computing e’th roots modulo N ??

Ø Best known algorithm:
• Step 1: factor N. (hard)
• Step 2: Find e’th roots modulo p and q. (easy)

Page 18

Shortcuts?

Ø Must one factor N in order to compute e’th roots?
Exists shortcut for breaking RSA without factoring?

Ø To prove no shortcut exists show a reduction:
• Efficient algorithm for e’th roots mod N

⇒ efficient algorithm for factoring N.
• Oldest problem in public key cryptography.

Ø Evidence no reduction exists: (BV’98)

• “Algebraic” reduction ⇒ factoring is easy.
• Unlike Diffie-Hellman (Maurer’94).

Page 19

Improving RSA’s performance

Ø To speed up RSA decryption use
small private key d. Cd = M (mod N)

• Wiener87: if d < N0.25 then RSA is insecure.
• BD’98: if d < N0.292 then RSA is insecure

(open: d < N0.5)

• Insecure: priv. key d can be found from (N,e).

• Small d should never be used.

Page 20

Wiener’s attack

Ø Recall: e⋅d = 1 (mod ϕ(N))
⇒ ∃ k∈Z : e⋅d = k⋅ϕ(N) + 1

⇒

ϕ(N) = N-p-q+1 ⇒ |N- ϕ(N)| ≤ p+q ≤ 3√N

d ≤ N0.25/3 ⇒

Continued fraction expansion of e/N gives k/d.

e⋅d = 1 (mod k) ⇒ gcd(d,k)=1

e
ϕ(N)

k
d - ≤ 1

dϕ(N)

e
N

k
d - ≤ 1

2d2

Page 21

RSA With Low public exponent

Ø To speed up RSA encryption (and sig. verify)
use a small e. C = Me (mod N)

Ø Minimal value: e=3 (gcd(e, ϕ(N)) = 1)

Ø Recommended value: e=65537=216+1

Encryption: 17 mod. multiplies.

Ø Several weak attacks. Non known on RSA-OAEP.

Ø Asymmetry of RSA: fast enc. / slow dec.
• ElGamal: approx. same time for both.

Page 22

Implementation attacks

Ø Attack the implementation of RSA.

Ø Timing attack: (Kocher 97)
The time it takes to compute Cd (mod N)
can expose d.

Ø Power attack: (Kocher 99)
The power consumption of a smartcard while
it is computing Cd (mod N) can expose d.

Ø Faults attack: (BDL 97)
A computer error during Cd (mod N)
can expose d.
OpenSSL defense: check output. 5% slowdown.

Page 23

Key lengths

Ø Security of public key system should be
comparable to security of block cipher.

NIST:
Cipher key-size Modulus size
≤ 64 bits 512 bits.

80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits

Ø High security ⇒ very large moduli.
Not necessary with Elliptic Curve Cryptography.

