Very basic number theory fact sheet

Part I: Arithmetic modulo primes

Basic stuff

- 1. We are dealing with primes p on the order of 300 digits long, (1024 bits).
- 2. For a prime p let $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$. Elements of \mathbb{Z}_p can be added modulo p and multiplied modulo p.
- 3. Fermat's theorem: for any $g \neq 0 \mod p$ we have: $g^{p-1} = 1 \mod p$. Example: $3^4 \mod 5 = 81 \mod 5 = 1$
- 4. The *inverse* of $x \in \mathbb{Z}_p$ is an element a satisfying $a \cdot x = 1 \mod p$. The inverse of x modulo p is denoted by x^{-1} . Example: 1. $3^{-1} \mod 5 = 2$ since $2 \cdot 3 = 1 \mod 5$.
- 2. $2^{-1} \mod p = \frac{p+1}{2}$. 5. All elements $x \in \mathbb{Z}_p$ except for x = 0 are invertible.
- 5. All elements $x \in \mathbb{Z}_p$ except for x = 0 are invertible Simple inversion algorithm: $x^{-1} = x^{p-2} \mod p$. Indeed, $x^{p-2} \cdot x = x^{p-1} = 1 \mod p$.
- 6. Denote by \mathbb{Z}_p^* the set of invertible elements in \mathbb{Z}_p . Hence, $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$.
- 7. We now have algorithm for solving linear equations: $a \cdot x = b \mod p$. Solution: $x = b \cdot a^{-1} = b \cdot a^{p-2} \mod p$. What about an algorithm for solving quadratic equations?

Structure of \mathbb{Z}_p^*

- 1. \mathbb{Z}_p^* is a cyclic group. In other words, there exists $g \in \mathbb{Z}_p^*$ such that $\mathbb{Z}_p^* = \{1, g, g^2, g^3, \dots, g^{p-2}\}$. Such a g is called a generator of \mathbb{Z}_p^* . Example: in \mathbb{Z}_7^* : $\langle 3 \rangle = \{1, 3, 3^2, 3^3, 3^4, 3^5, 3^6\} = \{1, 3, 2, 6, 4, 5\}$ (mod 7) = \mathbb{Z}_7^* .
- 2. Not every element of \mathbb{Z}_p^* is a generator. Example: in \mathbb{Z}_7^* we have $\langle 2 \rangle = \{1, 2, 4\} \neq \mathbb{Z}_7^*$.
- 3. The order of $g \in \mathbb{Z}_p^*$ is the smallest positive integer a such that $g^a = 1 \mod p$. The order of $g \in \mathbb{Z}_p^*$ is denoted $\operatorname{ord}_p(g)$. Example: $\operatorname{ord}_7(3) = 6$ and $\operatorname{ord}_7(2) = 3$.
- 4. Lagrange's theorem: for all $g \in \mathbb{Z}_p^*$ we have that $\operatorname{ord}_p(g)$ divides p-1.

5. If the factorization of p-1 is known then there is a simple and efficient algorithm to determine $\operatorname{ord}_p(g)$ for any $g \in \mathbb{Z}_p^*$.

Quadratic residues

1. The square root of $x \in \mathbb{Z}_p$ is a number $y \in \mathbb{Z}_p$ such that $y^2 = x \mod p$.

Example: 1. $\sqrt{2} \mod 7 = 3$ since $3^2 = 2 \mod 7$.

- 2. $\sqrt{3} \mod 7$ does not exist.
- 2. An element $x \in \mathbb{Z}_p^*$ is called a *Quadratic Residue* (QR for short) if it has a square root in \mathbb{Z}_p .
- 3. How many square roots does $x \in \mathbb{Z}_p$ have? If $x^2 = y^2 \mod p$ then $0 = x^2 - y^2 = (x - y)(x + y) \mod p$. Since \mathbb{Z}_p is an "integral domain" we know that x = y or $x = -y \mod p$. Hence, elements in \mathbb{Z}_p have either zero square roots or two square roots. If a is the square root of x then -a is also a square root of x modulo p.
- 4. Euler's theorem: $x \in \mathbb{Z}_p$ is a QR if and only if $x^{(p-1)/2} = 1 \mod p$. Example: $2^{(7-1)/2} = 1 \mod 7$ but $3^{(7-1)/2} = -1 \mod 7$.
- 5. Let $g \in \mathbb{Z}_p^*$. Then $a = g^{(p-1)/2}$ is a square root of 1. Indeed, $a^2 = g^{p-1} = 1 \mod p$. Square roots of 1 modulo p are 1 and -1. Hence, for $g \in \mathbb{Z}_p^*$ we know that $g^{(p-1)/2}$ is 1 or -1.
- 6. Legendre symbol: for $x \in \mathbb{Z}_p$ define $\left(\frac{x}{p}\right) = \begin{cases} 1 & \text{if } x \text{ is a QR in } \mathbb{Z}_p \\ -1 & \text{if } x \text{ is not a QR in } \mathbb{Z}_p \end{cases}$.
- 7. By Euler's theorem we know that $\left(\frac{x}{p}\right) = x^{(p-1)/2} \mod p$. \implies the Legendre symbol can be efficiently computed.
- 8. Easy fact: let g be a generator of \mathbb{Z}_p^* . Let $x = g^r$ for some integer r. Then x is a QR in \mathbb{Z}_p if and only if r is even.
 - \implies the Legendre symbol reveals the parity of r.
- 9. Since $x = g^r$ is a QR if and only if r is even it follows that exactly half the elements of \mathbb{Z}_p are QR's.
- 10. When $p=3 \mod 4$ computing square roots of $x \in \mathbb{Z}_p$ is easy. Simply compute $a=x^{(p+1)/4} \mod p$. $a=\sqrt{x}$ since $a^2=x^{(p+1)/2}=x\cdot x^{(p-1)/2}=x\cdot 1=x\pmod p$.
- 11. When $p = 1 \mod 4$ computing square roots in \mathbb{Z}_p is possible but somewhat more complicated (randomized algorithm).

2

12. We now have an algorithm for solving quaratic equations in \mathbb{Z}_p . We know that if a solution to $ax^2 + bx + c = 0 \mod p$ exists then it is given by:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \pmod{p}$$

Hence, the equation has a solution in \mathbb{Z}_p if and only if $\Delta = b^2 - 4ac$ is a QR in \mathbb{Z}_p . Using our algorithm for taking square roots in \mathbb{Z}_p we can find $\sqrt{\Delta}$ mod p and recover x_1 and x_2 .

13. What about cubic equations in \mathbb{Z}_p ? There exists an efficient randomized algorithm that solves any equation of degree d in time polynomial in d.

Computing in \mathbb{Z}_p

- 1. Since p is a huge prime (e.g. 1024 bits long) it cannot be stored in a single register.
- 2. Elements of \mathbb{Z}_p are stored in buckets where each bucket is 32 or 64 bits long depending on the processor's chip size.
- 3. Adding two elements $x, y \in \mathbb{Z}_p$ can be done in linear time in the length of p.
- 4. Multiplying two elements $x, y \in \mathbb{Z}_p$ can be done in quadratic time in the *length* of p. If p is n bits long, more clever (and practical) algorithms work in time $O(n^{1.7})$ (rather than $O(n^2)$).
- 5. Inverting an element $x \in \mathbb{Z}_p$ can be done in quadratic time in the length of p.
- 6. Using the repeated squaring algorithm, $x^r \mod p$ can be computed in time $(\log_2 r)O(n^2)$ where p is n bits long. Note, the algorithm takes linear time in the length of r.

Summary

Let p be a 1024 bit prime. Easy problems in \mathbb{Z}_p :

- 1. Generating a random element. Adding and multiplying elements.
- 2. Computing $q^r \mod p$ is easy even if r is very large.
- 3. Inverting an element. Solving linear systems.
- 4. Testing if an element is a QR and computing its square root if it is a QR.
- 5. Solving polynomial equations of degree d can be done in polynomial time in d.

Problems that are believed to be hard in \mathbb{Z}_p :

1. Let g be a generator of \mathbb{Z}_p^* . Given $x \in \mathbb{Z}_p^*$ find an r such that $x = g^r \mod p$. This is known as the discrete log problem.

- 2. Let g be a generator of \mathbb{Z}_p^* . Given $x, y \in \mathbb{Z}_p^*$ where $x = g^{r_1}$ and $y = g^{r_2}$. Find $z = g^{r_1 r_2}$. This is known as the *Diffie-Hellman problem*.
- 3. Finding roots of sparse polynomials of high degree. For example finding a root of: $x^{(2^{500})} + 7 \cdot x^{(2^{301})} + 11 \cdot x^{(2^{157})} + x + 17 = 0 \bmod p.$