
CS255: Cryptography and Computer Security Winter 2003

Basic number theory fact sheet

Part II: Arithmetic modulo composites

Basic stuff

1. We are dealing with integers N on the order of 300 digits long, (1024 bits). Unless
otherwise stated, we assume N is the product of two equal size primes, e.g. on the
order of 150 digits each (512 bits).

2. For a composite N let ZN = {0, 1, 2, . . . , N − 1}.
Elements of ZN can be added and multiplied modulo N .

3. The inverse of x ∈ ZN is an element y ∈ ZN such that x · y = 1 mod N .
An element x ∈ ZN has an inverse if and only if x and N are relatively prime. In other
words, gcd(x,N) = 1.

4. Elements of ZN can be efficiently inverted using Euclid’s algorithm. If gcd(x,N) = 1
then using Euclid’s algorithm it is possible to efficiently construct two integers a, b ∈ Z

such that ax + bN = 1. Reducing this relation modulo N leads to ax = 1 mod N .
Hence a = x−1 mod N .
Note: this inversion algorithm also works in Zp for a prime p and is more efficient than
inverting x by computing xp−2 mod p.

5. Denote by Z
∗
N the set of invertible elements in ZN .

6. We now have an algorithm for solving linear equations: a · x = b mod N .
Solution: x = b · a−1 where a−1 is computed using Euclid’s algorithm.

7. How many elements are in Z
∗
N? We denote by ϕ(N) the number of elements in Z

∗
N .

We already know that ϕ(p) = p − 1 for a prime p.

8. One can show that if N = pe1

1 · · · pem

m then ϕ(N) = N ·
∏m

i=1

(

1 − 1
pi

)

.

In particular, when N = pq we have that ϕ(N) = (p − 1)(q − 1) = N − p − q + 1.
Example: ϕ(15) = |{1, 2, 4, 7, 8, 11, 13, 14}| = 8 = 2 ∗ 4.

9. Euler’s theorem: for any a ∈ Z
∗
N we have that aϕ(N) = 1 mod N .

Note: Euler’s theorem implies that for a prime p we have aϕ(p) = ap−1 = 1 mod p for
all a ∈ Z

∗
p. Hence, Euler’s theorem is a generalization of Fermat’s theorem.

1

Structure of ZN

1. The Chinese Remainder Theorem (CRT): Let p, q be relatively primes integers and let
N = pq. Given r1 ∈ Zp and r2 ∈ Zq there exists a unique element s ∈ ZN such that
s = r1 mod p and s = r2 mod q. Furthermore, s can be computed efficiently.

2. The CRT shows that each element s ∈ ZN can be viewed as a pair (s1, s2) where
s1 = s mod p and s2 = s mod q. The uniqueness guarantee shows that each pair
(s1, s2) ∈ Zp × Zq corresponds to one element of ZN . For example, the pair (1, 1)
corresponds to 1 ∈ ZN .

3. Note that by the CRT if x = y mod p and x = y mod q then x = y mod N .

4. An element s ∈ ZN is invertible if and only if s mod p in invertible in Zp and s mod q is
invertible in Zq. Hence, the number of invertible elements in ZN is ϕ(N) = (p−1)(q−1).

5. An element s ∈ Z
∗
N is a Q.R. if and only if s mod p is a Q.R. in Zp and s mod q is a

Q.R. in Zq. Hence, the number of Q.R. in ZN is p−1
2

· q−1
2

= ϕ(N)
4

.

6. Jacobi symbol: for x ∈ ZN define
(

x
N

)

=
(

x
p

)

·
(

x
q

)

.

As it turns out, there is en efficient algorithm to compute the Jacobi symbol of x ∈ ZN

without knowing the factorization of N .

7. Consider the RSA function f(x) = xe mod N . When e is odd we have that:

(

xe

N

)

=

(

xe

p

)

·

(

xe

q

)

=

(

x

p

)

·

(

x

q

)

=
(x

N

)

Hence, given an RSA ciphertext C = xe mod N the Jacobi symbol of C reveals the
Jacobi symbol of x.

Computing in ZN

1. Since N is a huge prime (e.g. 1024 bits long) it cannot be stored in a single register.

2. Elements of ZN are stored in buckets where each bucket is 32 or 64 bits long depending
on the processor’s register size.

3. Adding two elements x, y ∈ ZN can be done in linear time in the length of N .

4. Multiplying two elements x, y ∈ ZN can be done in quadratic time in the length of N .
For an n bit integer N faster multiplication algorithms work in time O(n1.7) (rather
than O(n2)).

5. Inverting an element x ∈ ZN can be done in quadratic time in the length of N using
Euclid’s algorithm.

6. Using the repeated squaring algorithm, xr mod N can be computed in time (log2 r)O(n2)
where N is n bits long. Note, the algorithm takes linear time in the length of r.

2

7. Efficient exponentiation modulo N = pq when the factorization of N is known: to
compute a = xs mod N one does the following:

(a) Compute a1 = xs mod p and a2 = xs mod q. Note that it suffices to compute
a1 = xs mod p−1 mod p and a2 = xs mod q−1 mod q.

(b) Use the Chinese Remainder Theorem to construct a ∈ ZN such that a = a1 mod p

and a = a2 mod q. Then a = xs mod N since this relation holds modulo p and
modulo q.

Since p and q are half the size of N arithmetic modulo p and q is four times as fast
(recall, multiplication takes quadratic time). Furthermore, s mod p−1 and s mod q−1
are each roughly half that size of s (we are assuming s is as large as N). Hence,
computing of a1 = xs mod p−1 mod p is eight times faster than computing a = xs mod N .
Since we repeat this step twice, once for p and once for q, exponentiation using CRT
is four times faster overall.

Summary

Let N be a 1024 bit integer which is a product of two 512 bit primes. Easy problems in ZN :

1. Generating a random element. Adding and multiplying elements.

2. Computing gr mod N is easy even if r is very large.

3. Inverting an element. Solving linear systems.

Problems that are believed to be hard if the factorization of N is unknown, but become easy
if the factorization of N is known:

1. Finding the prime factors of N .

2. Testing if an element is a QR in ZN .

3. Computing the square root of a QR in ZN . This is provably as hard as factoring N .
When the factorization of N = pq is known one computes the square root of x ∈ Z

∗
N by

first computing the square root in Zp of x mod p and the square root in Zq of x mod q

and then using the CRT to obtain the square root of x in ZN .

4. Computing e’th roots modulo N when gcd(e, ϕ(N)) = 1.

5. More generally, solving polynomial equations of degree d. This is believed to be hard
when the factorization of N is unknown, but can be done in polynomial time in d

when the factorization is given. When the factorization of N is given one solves the
polynomial equation by first solving it modulo p and q and then using the CRT to
obtain the roots in ZN .

3

Problems that are believed to be hard in ZN :

1. Let g be a generator of Z
∗
N . Given x ∈ Z

∗
N find an r such that x = gr mod N . This is

known as the discrete log problem.

2. Let g be a generator of Z
∗
N . Given x, y ∈ Z

∗
N where x = gr1 and y = gr2 . Find z = gr1r2 .

This is known as the Diffie-Hellman problem.

One-way functions

Recall: a function f : {0, 1}n → {0, 1}m is a (t, ε) one-way function if

1. There is an efficient algorithm that for any x ∈ {0, 1}n outputs f(x).

2. The function is hard to invert. More precisely, for any algorithm A whose running
time is at most t we have

Pr
x∈{0,1}n

[

f(A(f(x))) = f(x)
]

< ε

In other words, when given f(x) as input algorithm A is unlikely to output a y such
that f(y) = f(x).

Based on block ciphers If E(M,k) is a block cipher secure against a chosen ciphertext
attack then f(k) = E(0, k) is a one way function. Such general one-way functions can
be used for symmetric encryption, but cannot be used for efficient key-exchange.

Discrete log Fix a prime p and an element g ∈ Z
∗
p of “large” order.

Define fDlog(x) = gx mod p.
Main property: linear: Given a ∈ Z and f(x), f(y) one can easily compute f(a · x)
and f(x + y).
The one-wayness of this function is essential for the security of the Diffie-Hellman
protocol and ElGamal public key system.

RSA Let N = pq be a product of two large primes. Let e be an integer relatively prime to
ϕ(N). Define fRSA(x) = xe mod N .
Main property: trapdoor. Given the factorization of N the function can be inverted
efficiently.
The one wayness of this function is essential to the security of the RSA public key
system.

Rabin Let N = pq be a product of two large primes. Define fRabin(x) = x2 mod N . This
function is one-way if there is no efficient algorithm to factor integers of the form
N = pq. As in the case of RSA, the factorization of N enables efficient inversion. The
one wayness of this function is essential to the security of Rabin’s signature scheme.

4

