
CS255: Cryptography and Computer Security Winter 2006

Assignment #3
Due: Monday, Mar. 6th, 2006.

Problem 1 Conference key setup.
Parties A1, . . . , An and B wish to generate a secret conference key. All parties should
know the conference key, but an eavesdropper should not be able to obtain any in-
formation about the key. They decide to use the following variant of Diffie-Hellman:
there is a public prime p and a public element g ∈ Z∗

p of order q for some large prime q
dividing p−1. User B picks a secret random b ∈ [1, q−1] and computes y = gb mod p.
Each party Ai picks a secret random ai ∈ [1, q− 1] and computes xi = gai mod p. User
Ai sends xi to B. User B responds to party i by sending zi = xb

i mod p.

a. Show that party i given zi (and ai) can determine y.

b. Explain why (a hash of) y can be securely used as the conference key. Namely,
explain why at the end of the protocol all parties A1, . . . , An and B know y and
give a brief informal explanation why an eavesdropper cannot determine y.

c. Prove part (b). Namely, show that if there exists an efficient algorithm A that
given the public values in the above protocol, outputs y, then there also exists an
efficient algorithm B that breaks the Computational Diffie-Hellman assumption
(using p and g as the public values). Use algorithm A as a subroutine in your
algorithm B. Note that algorithm B takes ga mod p and gb mod p as input and
should output gab mod p.

Problem 2 Commitment schemes. A commitment scheme enables Alice to commit a value
x to Bob. The scheme is secure if the commitment does not reveal to Bob any infor-
mation about the committed value x. At a later time Alice may open the commitment
and convince Bob that the committed value is x. The commitment is binding if Alice
cannot convince Bob that the committed value is some x′ 6= x. Here is an example
commitment scheme:

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of Z∗
p of prime

order q.

Commitment: To commit to an integer x ∈ [0, q − 1] Alice does the following: (1)
she picks a random r ∈ [0, q− 1], (2) she computes b = gx · hr mod p, and (3) she
sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that
b = gx · hr mod p.

Show that this scheme is secure and binding.

1



a. To prove security show that b does not reveal any information to Bob about x. In
other words, show that given b, the committed value can be any integer x′ in
[0, q − 1].
Hint: show that for any x′ there exists a unique r′ ∈ [0, q − 1] so that b = gx′

hr′
.

b. To prove the binding property show that if Alice can open the commitment as
(x′, r′) where x 6= x′ then Alice can compute the discrete log of h base g. In other
words, show that if Alice can find an (x′, r′) such that b = gx′

hr′
mod p then she

can find the discrete log of h base g. Recall that Alice also knows the (x, r) used
to create b.

Problem 3. Incremental hashing. Let p be a prime and let g ∈ Z∗
p be an element of prime

order q. We let G denote the group generated by g and we let I denote the set of integers
{1, . . . , q}. Fix n values g1, . . . , gn ∈ G and define the hash function H : In → G by

H(x1, . . . , xn) = gx1
1 gx2

2 · · · gxn
n

a. Show that H is collision resistant assuming discrete-log in G is intractable. That is,
show that an attacker capable of finding a collision for H for a random g1, . . . , gn ∈
G can be used to compute discrete-log in G.
Hint: given a pair g, h ∈ G your goal is to find an α ∈ Z such that gα = h. Choose
g1, . . . , gn ∈ G so that a collision on the resulting H will reveal α.

b. Let M be a message in In. Suppose user Alice already computed the hash of M ,
namely H(m). Now, Alice changes only one coordinate of M to obtain a new
message M ′. Show that Alice can quickly compute H(M ′) from H(M) in time
that is independent of the length of M .
You have just shown that after making a small change to a message there is no
need to rehash the entire message. Collision resistant hash functions of this type
are said to support incremental hashing.

Problem 4 Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei · di = 1 mod ϕ(N). At first this appears to work fine: to encrypt a message
to Bob, Alice computes C = M ebob and sends C to Bob. An eavesdropper Eve, not
knowing dbob appears to be unable to decrypt C. Let’s show that using eeve and deve

Eve can very easily decrypt C.

a. Show that given eeve and deve Eve can obtain a multiple of ϕ(N).

b. Show that given an integer K which is a multiple of ϕ(N) Eve can factor the
modulus N . Deduce that Eve can decrypt any RSA ciphertext encrypted using
the modulus N intended for Alice or Bob.
Hint: Consider the sequence gK , gK/2, gK/4, . . . gK/τ(N) mod N where g is random
in ZN and τ(N) is the largest power of 2 dividing K. Use the the left most element
in this sequence which is not equal to 1 mod N .

2



Problem 5 Recall that a simple RSA signature S = H(M)d mod N is computed by first
computing S1 = H(M)d mod p and S2 = H(M)d mod q. The signature S is then found
by combining S1 and S2 using the Chinese Remainder Theorem (CRT). Now, suppose
a Certificate Authority (CA) is about to sign a certain certificate C. While the CA
is computing S1 = H(C)d mod p, a glitch on the CA’s machine causes it to produce
the wrong value S̃1 which is not equal to S1. The CA computes S2 = H(C)d mod q
correctly. Clearly the resulting signature S̃ is invalid. The CA then proceeds to publish
the newly generated certificate with the invalid signature S̃.

a. Show that any person who obtains the certificate C along with the invalid signature
S̃ is able to factor the CA’s modulus.
Hint: Use the fact that S̃e = H(C) mod q. Here e is the public verification
exponent.

b. Suggest some method by which the CA can defend itself against this danger.

Problem 6. Offline signatures. One approach to speeding up signature generation is to
perform the bulk of the work offline, before the message to sign is known. Then, once
the message M is given, generating the signature on M should be very fast. Our goal
is to design a signature system with this property.

a. Does the RSA Full-Domain-Hash (FDH) signature system enable this form of of-
fline signatures? In other words, can we substantially speed-up RSA signature
generation if we are allowed to perform offline computation before the message
M is given? It might help to explicitly write out the signing algorithm in RSA
FDH.

b. Our goal is to show that any signature system can be converted into a signature
where the bulk of the signing work can be done offline. Let (KeyGen, Sign, Verify)
be a signature system (such as RSA FDH) and let G be a group of order q
where discrete log is hard. Consider the following modified signature system
(KeyGen′, Sign′, Verify′):
• The KeyGen′ algorithm runs algorithm KeyGen to obtain a signing key SK

and verification V K. It also picks a random group element g ∈ G and sets
h = gα for some random α ∈ {1, . . . , q}. It outputs the verification key
V K ′ = (V K, g, h) and the signing key SK ′ = (V K ′, SK, α).

• The Sign′(SK ′, M) algorithm first picks a random r ∈ {1, . . . , q}, computes
m = gMhr ∈ G, and then runs Sign(SK, m) to obtain a signature σ. It
outputs the signature σ′ = (σ, r).

• The Verify′(V K ′, M, σ′) algorithm, where σ′ = (σ, r), computes m = gMhr ∈
G and outputs the result of Verify(V K, m, σ).

show that the bulk of the work in the Sign′ algorithm can be done before the
message is given.
Hint: First, observe that since α is part of the secret key SK ′, the signer can
compute m = gMhr as m = gM+αr. Now, offline, try running Sign(SK, m) on

3



a message m = gs for a randomly chosen s ∈ {1, . . . , q}. Let σ be the resulting
signature. Then, once the message M is given, show that the signer can eas-
ily convert σ into a valid signature σ′ for M using only one addition and one
multiplication modulo q.

c. (extra credit) Prove that the modified signature scheme is secure. In other words,
show that an existential forger under a chosen message attack on the modified
scheme gives an existential forger on the underlying scheme. You may use the fact
(proved in problem 3) that H(M, r) = gMhr is a collision resistant hash function
and hence the adversary cannot find collisions for it.

4


