Problem 1 Let’s explore why in the RSA public key system each person has to be assigned a different modulus $N = pq$. Suppose we try to use the same modulus $N = pq$ for everyone. Each person is assigned a public exponent e_i and a private exponent d_i such that $e_i \cdot d_i = 1 \mod \varphi(N)$. At first this appears to work fine: to encrypt a message to Bob, Alice computes $c = m^{e_{bob}}$ and sends c to Bob. An eavesdropper Eve, not knowing d_{bob} appears to be unable to decrypt c. Let’s show that using e_{eve} and d_{eve} Eve can very easily decrypt c.

a. Show that given e_{eve} and d_{eve} Eve can obtain a multiple of $\varphi(N)$.

b. Show that given an integer k which is a multiple of $\varphi(N)$ Eve can factor the modulus N. Deduce that Eve can decrypt any RSA ciphertext encrypted using the modulus N intended for Alice or Bob.

Hint: Consider the sequence $g^k, g^{k/2}, g^{k/4}, \ldots g^{k/\tau(k)} \in \mathbb{Z}_N$ where g is random in \mathbb{Z}_N and $\tau(k)$ is the largest power of 2 dividing k. Use the the left most element in this sequence which is not equal to ± 1 in \mathbb{Z}_N.

Problem 2. Time-space tradeoff. Let $f : X \rightarrow X$ be a one-way permutation. Show that one can build a table T of size B bytes ($B \ll |X|$) that enables an attacker to invert f in time $O(|X|/B)$. More precisely, construct an $O(|X|/B)$-time deterministic algorithm A that takes as input the table T and a $y \in X$, and outputs an $x \in X$ satisfying $f(x) = y$. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point $z \in X$ and compute the sequence

$$z_0 := z, \; z_1 := f(z), \; z_2 := f(f(z)), \; z_3 := f(f(f(z))), \; \ldots$$

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists some $j > 0$ such that $z_j = z$). We call the resulting sequence (z_0, z_1, \ldots, z_j) an f-cycle. Let $t := \lceil |X|/B \rceil$. Try storing $(z_0, z_t, z_{2t}, z_{3t}, \ldots)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time $O(t)$.

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value x to Bob. The scheme is secure if the commitment does not reveal to Bob any information about the committed value x. At a later time Alice may open the commitment and convince Bob that the committed value is x. The commitment is binding if Alice cannot convince Bob that the committed value is some $x' \neq x$. Here is an example commitment scheme:
Public values: (1) a 1024 bit prime p, and (2) two elements g and h of \mathbb{Z}_p^* of prime order q.

Commitment: To commit to an integer $x \in [0,q-1]$ Alice does the following: (1) she picks a random $r \in [0,q-1]$, (2) she computes $b = g^x \cdot h^r \mod p$, and (3) she sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x,r) to Bob. Bob verifies that $b = g^x \cdot h^r \mod p$.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In other words, show that given b, the committed value can be any integer x' in $[0,q-1]$.

Hint: show that for any x' there exists a unique $r' \in [0,q-1]$ so that $b = g^{x'}h^{r'}$.

b. To prove the binding property show that if Alice can open the commitment as (x',r') where $x \neq x'$ then Alice can compute the discrete log of h base g. In other words, show that if Alice can find an (x',r') such that $b = g^{x'}h^{r'} \mod p$ then she can find the discrete log of h base g. Recall that Alice also knows the (x,r) used to create b.

Problem 4 Threshold signatures. A company wants to institute a policy that two executives are needed to sign a contract. The process is as follows: a secretary sends the contract to both execs, they each sign and send their signature back to the secretary. The secretary then assembles the two signatures into a valid signature on the contract. Note that the two execs communicate with the secretary, but are not allowed to communicate with each other. One option is to give each exec a signature key and say that a signature is valid only if it contains valid signatures from both execs. In this question we develop a method that results in a shorter signature. Let (N, e) be the company’s RSA public key and let d be the corresponding signing key.

a. Let d_1 be a random integer in $[1, \ldots, N]$ and let $d_2 = d - d_1$. Suppose we give d_1 to one exec and d_2 to the other. Explain how the secretary can interact with the execs to generate a signature under the company’s RSA public key (N, e). The execs cannot communicate with one another and should keep their secrets to themselves.

b. Are both execs needed to generate a signature under (N, e), or is one execs sufficient? Briefly explain your answer.

c. Generalize the mechanism from part (a) so that any 2 out of 3 execs can generate a signature under (N, e), but no single exec can do it.
Problem 5. Access control and file sharing using RSA. In this problem $N = pq$ is some RSA modulus. All arithmetic operations are done modulo N.

a. Suppose we have a file system containing n files. Let e_1, \ldots, e_n be relatively prime integers that are also relatively prime to $\varphi(N)$, i.e. $\gcd(e_i, e_j) = \gcd(e_i, \varphi(N)) = 1$ for all $i \neq j$. The integers e_1, \ldots, e_n are public. Choose a random $r \in \mathbb{Z}_N^*$ and suppose each file F_i is encrypted using the key $\text{key}_i := r^{1/e_i}$.

Now, let $S_u \subseteq \{1, \ldots, n\}$ and set $b = \prod_{i \in S_u} e_i$. Suppose user u is given $K_u = r^{1/b}$. Show that user u can decrypt any file $i \in S_u$. That is, show how user u using K_u can compute any key key_i for $i \in S_u$.

With this mechanism, every user u_j can be given a key K_{u_j} enabling it to access exactly those files to which it has access permission.

b. Next we need to show that user u, who has K_u, cannot construct a key key_i for $i \notin S_u$. To do so we first consider a simpler problem. Let d_1, d_2 be two integers relatively prime to $\varphi(N)$ and relatively prime to each other. Suppose there is an efficient algorithm A such that $A(r, r^{1/d_1}) = r^{1/d_2}$ for all $r \in \mathbb{Z}_N^*$. In other words, given the d_1'th root of $r \in \mathbb{Z}_N^*$ algorithm A is able to compute the d_2'th root of r.

Show that there is an efficient algorithm B to compute d_2'th roots in \mathbb{Z}_N^*. That is, $B(x) = x^{1/d_2}$ for all $x \in \mathbb{Z}_N^*$. Algorithm B uses A as a subroutine.

c. Show using part (b) that user u cannot obtain the key key_i for any $i \notin S_u$ assuming that computing e'th roots modulo N is hard for any e such that $\gcd(e, \varphi(N)) = 1$. (the contra-positive of this statement should follow from (b) directly).

Problem 6. Time lock. Our goal in this question is to build a mechanism by which Alice can encrypt a secret S that can be decrypted only after a certain amount of time has passed (e.g. a week, a year, a 100 years).

a. Alice’s first solution is as follows. Let (E, D) be a symmetric cipher built from AES. Alice chooses a random AES key k and publishes (C, T) where $C \leftarrow E(k, S)$ and T contains all but t bits of k. Then by exhaustive search the attacker can decrypt C and recover S in time 2^t. By tuning t Alice can choose the time it will take for S to be revealed.

Unfortunately, this approach does not work. Briefly explain how an attacker can recover S in time $2^t/L$ for some L of the attacker’s choosing.

Hint: think parallel processing.

b. Alice then remembers that she read somewhere that the best algorithm for computing g^x requires $O(\log x)$ sequential multiplications and that parallel processing cannot speed this up much. She decides to use the following approach. First, she generates two primes p and q and sets $n \leftarrow pq$. Next, she chooses a random g in \mathbb{Z}_n^*. Finally, she publishes (n, g, C, t) where

$$C \leftarrow S + g^{(2^{(2^t)})} \in \mathbb{Z}_n$$

3
Describe an algorithm that enables anyone to recover S from (n, g, C) using 2^t modular multiplications. Hence, by tuning t Alice can make the puzzle take as long as she wants, even if the attacker mounts your attack from part (a).

c. Finally, show that Alice need not spend time 2^t herself to prepare the puzzle. Show that Alice can use her knowledge of $\varphi(n)$ to construct C using only $O(t)$ modular multiplications.

d. After setting this up Alice wondered if she could use a prime p in place of the RSA modulus n in the system above. Will the resulting time-lock system remain secure if n is replaced by p? If so, explain why. If not, describe an attack.