Problem 1 Let’s explore why in the RSA public key system each person has to be assigned a different modulus \(N = pq \). Suppose we try to use the same modulus \(N = pq \) for everyone. Each person is assigned a public exponent \(e_i \) and a private exponent \(d_i \) such that \(e_i \cdot d_i = 1 \mod \varphi(N) \). At first this appears to work fine: to encrypt a message to Bob, Alice computes \(c = m^{e_{\text{bob}}} \) and sends \(c \) to Bob. An eavesdropper Eve, not knowing \(d_{\text{bob}} \) appears to be unable to decrypt \(c \). Let’s show that using \(e_{\text{eve}} \) and \(d_{\text{eve}} \) Eve can very easily decrypt \(c \).

\[\text{a. Show that given } e_{\text{eve}} \text{ and } d_{\text{eve}} \text{ Eve can obtain a multiple of } \varphi(N). \]

\[\text{b. Show that given an integer } k \text{ which is a multiple of } \varphi(N) \text{ Eve can factor the modulus } N. \text{ Deduce that Eve can decrypt any RSA ciphertext encrypted using the modulus } N \text{ intended for Alice or Bob.} \]

Hint: Consider the sequence \(g^k, g^{k/2}, g^{k/4}, \ldots, g^{k/\tau(k)} \in \mathbb{Z}_N \) where \(g \) is random in \(\mathbb{Z}_N \) and \(\tau(k) \) is the largest power of 2 dividing \(k \). Use the the left most element in this sequence which is not equal to \(\pm 1 \) in \(\mathbb{Z}_N \).

Problem 2. Time-space tradeoff. Let \(f : X \rightarrow X \) be a one-way permutation. Show that one can build a table \(T \) of size \(B \) bytes (\(B \ll |X| \)) that enables an attacker to invert \(f \) in time \(O(|X|/B) \). More precisely, construct an \(O(|X|/B) \)-time deterministic algorithm \(A \) that takes as input the table \(T \) and a \(y \in X \), and outputs an \(x \in X \) satisfying \(f(x) = y \). This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point \(z \in X \) and compute the sequence

\[z_0 := z, \quad z_1 := f(z), \quad z_2 := f(f(z)), \quad z_3 := f(f(f(z))), \ldots \]

Since \(f \) is a permutation, this sequence must come back to \(z \) at some point (i.e. there exists some \(j > 0 \) such that \(z_j = z \)). We call the resulting sequence \((z_0, z_1, \ldots, z_j)\) an \(f \)-cycle. Let \(t := \lceil |X|/B \rceil \). Try storing \((z_0, z_t, z_{2t}, z_{3t}, \ldots)\) in memory. Use this table (or perhaps, several such tables) to invert an input \(y \in X \) in time \(O(t) \).

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value \(x \) to Bob. The scheme is secure if the commitment does not reveal to Bob any information about the committed value \(x \). At a later time Alice may open the commitment and convince Bob that the committed value is \(x \). The commitment is binding if Alice cannot convince Bob that the committed value is some \(x' \neq x \). Here is an example commitment scheme:
Public values: (1) a 1024 bit prime \(p \), and (2) two elements \(g \) and \(h \) of \(\mathbb{Z}_p^* \) of prime order \(q \).

Commitment: To commit to an integer \(x \in [0, q - 1] \) Alice does the following: (1) she picks a random \(r \in [0, q - 1] \), (2) she computes \(b = g^x \cdot h^r \mod p \), and (3) she sends \(b \) to Bob as her commitment to \(x \).

Open: To open the commitment Alice sends \((x, r)\) to Bob. Bob verifies that
\[b = g^x \cdot h^r \mod p. \]

Show that this scheme is secure and binding.

a. To prove security show that \(b \) does not reveal any information to Bob about \(x \). In other words, show that given \(b \), the committed value can be any integer \(x' \in [0, q - 1] \).

Hint: show that for any \(x' \) there exists a unique \(r' \in [0, q - 1] \) so that
\[b = g^{x'} \cdot h^{r'} \mod p. \]

b. To prove the binding property show that if Alice can open the commitment as \((x', r')\) where \(x' \neq x \) then Alice can compute the discrete log of \(h \) base \(g \). In other words, show that if Alice can find an \((x', r')\) such that
\[b = g^{x'} \cdot h^{r'} \mod p \]
then she can find the discrete log of \(h \) base \(g \). Recall that Alice also knows the \((x, r)\) used to create \(b \).

Problem 4. In class we showed a collision resistant hash function from the discrete-log problem. Here let’s do the same, but from the RSA problem. Let \(n \) be a random RSA modulus, \(e \) a prime relatively prime to \(\varphi(n) \), and \(u \) random in \(\mathbb{Z}_n^* \). Show that the function

\[H_{n,u,e}: \mathbb{Z}_n^* \times \{0, \ldots, e - 1\} \to \mathbb{Z}_n^* \]

defined by
\[H_{n,u,e}(x, y) := x^e u^y \in \mathbb{Z}_n \]

is collision resistant assuming that taking \(e \)’th roots modulo \(n \) is hard.

Suppose \(A \) is an algorithm that takes \(n, u \) as input and outputs a collision for \(H_{n,u,e}(\cdot, \cdot) \). Your goal is to construct an algorithm \(B \) for computing \(e \)’th roots modulo \(n \).

a. Your algorithm \(B \) takes random \(n, u \) as input and should output \(u^{1/e} \). First, show how to use \(A \) to construct \(a \in \mathbb{Z}_n \) and \(b \in \mathbb{Z} \) such that \(a^e = u^b \) and \(0 \neq |b| < e \).

b. Clearly \(a^{1/b} \) is an \(e \)’th root of \(u \) (since \((a^{1/b})^e = u \)), but unfortunately for \(B \), it cannot compute roots in \(\mathbb{Z}_n \). Nevertheless, show how \(B \) can compute \(a^{1/b} \). This will complete your description of algorithm \(B \) and prove that a collision finder can be used to compute \(e \)’th roots in \(\mathbb{Z}_n^* \).

Hint: since \(e \) is prime and \(0 \neq |b| < e \) we know that \(b \) and \(e \) are relatively prime. Hence, there are integers \(s, t \) so that \(bs + et = 1 \). Use \(a, u, s, t \) to find the \(e \)’th root of \(u \).

c. Show that if we extend the domain of the function to \(\mathbb{Z}_n^* \times \{0, \ldots, e\} \) then the function is no longer collision resistant.
Problem 5 Recall that a simple RSA signature $S = H(M)^d \mod N$ is computed by first computing $S_1 = H(M)^d \mod p$ and $S_2 = H(M)^d \mod q$. The signature S is then found by combining S_1 and S_2 using the Chinese Remainder Theorem (CRT). Now, suppose a Certificate Authority (CA) is about to sign a certain certificate C. While the CA is computing $S_1 = H(C)^d \mod p$, a glitch on the CA’s machine causes it to produce the wrong value \tilde{S}_1 which is not equal to S_1. The CA computes $S_2 = H(C)^d \mod q$ correctly. Clearly the resulting signature \tilde{S} is invalid. The CA then proceeds to publish the newly generated certificate with the invalid signature \tilde{S}.

a. Show that any person who obtains the certificate C along with the invalid signature \tilde{S} is able to factor the CA’s modulus.

Hint: Use the fact that $\tilde{S}^e = H(C) \mod q$. Here e is the public verification exponent.

b. Suggest some method by which the CA can defend itself against this danger.

Problem 6. Access control and file sharing using RSA. In this problem $N = pq$ is some RSA modulus. All arithmetic operations are done modulo N.

a. Suppose we have a file system containing n files. Let e_1, \ldots, e_n be relatively prime integers that are also relatively prime to $\varphi(N)$, i.e. $\gcd(e_i, e_j) = \gcd(e_i, \varphi(N)) = 1$ for all $i \neq j$. The integers e_1, \ldots, e_n are public. Choose a random $r \in \mathbb{Z}_N^*$ and suppose each file F_i is encrypted using the key $\text{key}_i := r^{1/e_i}$.

Now, let $S_u \subseteq \{1, \ldots, n\}$ and set $b = \prod_{i \in S_u} e_i$. Suppose user u is given $K_u = r^{1/b}$.

Show that user u can decrypt any file $i \in S_u$. That is, show how user u using K_u can compute any key key_i for $i \in S_u$.

With this mechanism, every user u_j can be given a key K_{u_j} enabling it to access exactly those files to which it has access permission.

b. Next we need to show that user u, who has K_u, cannot construct a key key_i for $i \notin S_u$. To do so we first consider a simpler problem. Let d_1, d_2 be two integers relatively prime to $\varphi(N)$ and relatively prime to each other. Suppose there is an efficient algorithm A such that $A(r, r^{1/d_1}) = r^{1/d_2}$ for all $r \in \mathbb{Z}_N^*$. In other words, given the d_1’th root of $r \in \mathbb{Z}_N^*$ algorithm A is able to compute the d_2’th root of r. Show that there is an efficient algorithm B to compute d_2’th roots in \mathbb{Z}_N^*. That is, $B(x) = x^{1/d_2}$ for all $x \in \mathbb{Z}_N^*$. Algorithm B uses A as a subroutine.

c. Show using part (b) that user u cannot obtain the key key_i for any $i \notin S_u$ assuming that computing e’th roots modulo N is hard for any e such that $\gcd(e, \varphi(N)) = 1$. (the contra-positive of this statement should follow from (b) directly).