
CS255: Cryptography and Computer Security Winter 2013

Assignment #2
Due: 5pm Friday, Feb. 22, 2013.

Problem 1. Merkle hash trees.
Merkle suggested a parallelizable method for constructing hash functions out of com-
pression functions. Let f be a compression function that takes two 512 bit blocks
and outputs one 512 bit block. To hash a message m one uses the following tree
construction:

Block 1 Block 2 Block 3 Block 4 Block 15Message Block 16

msg-len

Hash

f f f

ff

f

f

For similicity, let’s assume that the number of blocks in m is always a power of 2.

a. Prove that if one can find a collision for the resulting hash function then one can
find collisions for the compression function.

b. Show that if the msg-len block is eliminated (e.g. the contents of that block is
always set to 0) then the construction is not collision resistant.

Problem 2. In the lecture we saw that Davies-Meyer is often used to convert an ideal block
cipher into a collision resistant compression function. Let E(k,m) be a block cipher
where the message space is the same as the key space (e.g. 128-bit AES). Show that
the following methods do not work:

f1(x, y) = E(y, x)⊕ y and f2(x, y) = E(x, x)⊕ y ⊕ x

1

That is, show an efficient algorithm for constructing collisions for f1 and f2. Recall
that the block cipher E and the corresponding decryption algorithm D are both known
to you.

Problem 3. Suppose we implement the CBC-MAC using a PRP (E,D). Show that for any
key k the function H(m) := rawCBCE(k,m) is not collision resistant. That is, for an
arbitrary key k show how to construct distinct m and m′ such that rawCBCE(k,m) =
rawCBCE(k,m′). Note that here k is public.

Problem 4. Suppose user A is broadcasting packets to n recipients B1, . . . , Bn. Privacy is
not important but integrity is. In other words, each of B1, . . . , Bn should be assured
that the packets he is receiving were sent by A. User A decides to use a MAC.

a. Suppose user A and B1, . . . , Bn all share a secret key k. User A MACs every packet
she sends using k. Each user Bi can then verify the MAC. Using at most two
sentences explain why this scheme is insecure, namely, show that user B1 is not
assured that packets he is receiving are from A.

b. Suppose user A has a set S = {k1, . . . , km} of m secret keys. Each user Bi has some
subset Si ⊆ S of the keys. When A transmits a packet she appends m MACs
to it by MACing the packet with each of her m keys. When user Bi receives a
packet he accepts it as valid only if all MAC’s corresponding to keys in Si are
valid. What property should the sets S1, . . . , Sn satisfy so that the attack from
part (a) does not apply? We are assuming all users B1, . . . , Bn are sufficiently far
apart so that they cannot collude.

c. Show that when n = 10 (i.e. ten recipients) the broadcaster A need only append
5 MAC’s to every packet to satisfy the condition of part (b). Describe the sets
S1, . . . , S10 ⊆ {k1, . . . , k5} you would use.

Problem 5. CBC padding attack. Recall that when using CBC mode, TLS pads messages
to a multiple of the block length by appending a t byte pad for a suitable value of
t and all bytes of the pad are set to t − 1. For example, if a 2 byte pad is needed,
TLS appends (1, 1) to the plaintext prior to CBC encryption. The recipient, after
decrypting the CBC chain, checks that the pad has the correct format and if not
rejects the ciphertext. A bug in older versions of OpenSSL lets the attacker learn if
ciphertext rejection happened due to a bad pad.

Now, suppose an attacker intercepts a target ciphertext cfull. The attacker deletes the
last block of cfull thereby deleting any padding blocks. Let c be the resulting truncated
ciphertext and let m be the result of decrypting this c using CBC decryption. Your
goal is to show that this OpenSSL bug can let the attacker test if the last of byte of m
is equal to some byte g of the attacker’s choosing. Using c, construct a ciphertext c′

that has the following property: when c′ is sent to the server, the decryption of c′ will
end with a valid pad if the last byte of m is equal to g and will end with an invalid
pad (with high probability) otherwise. By sending c′ to the server, the attacker can
therefore learn if m ends with g.

2

note: In principle, the attacker can repeat this experiment for all 256 values of g
until a match is found. He then learns the last byte of m. However, TLS tears down
the connection and renegotiates a new key when a pad error occurs and therefore
this typically cannot be applied to TLS. Nevertheless, by injecting Javascript into an
insecure connection the attacker can cause the message m to be sent over and over on
new TLS connections. Each such transmission gives the attacker an opportunity to
test one value of g. This clever attack lets an attacker learn the value of a user’s secret
session cookie one byte at a time even if the cookie is only transmitted over HTTPS.

Problem 6. Conference key setup.
Parties A1, . . . , An and B wish to generate a secret conference key. All parties should
know the conference key, but an eavesdropper should not be able to obtain any in-
formation about the key. They decide to use the following variant of Diffie-Hellman:
there is a public prime p and a public element g ∈ Z∗p of order q for some large prime q
dividing p− 1. User B picks a secret random b ∈ [1, q − 1] and computes y = gb ∈ Z∗p.
Each party Ai picks a secret random ai ∈ [1, q − 1] and computes xi = gai ∈ Z∗p. User
Ai sends xi to B. User B responds to party i by sending zi = xb

i ∈ Z∗p.

a. Show that party i given zi (and ai) can determine y.

b. Explain why (a hash of) y can be securely used as the conference key. Namely,
explain why at the end of the protocol all parties A1, . . . , An and B know y and
give a brief informal explanation why an eavesdropper cannot determine y.

c. Prove part (b). Namely, show that if there exists an efficient algorithm A that
given the public values in the above protocol, outputs y, then there also exists an
efficient algorithm B that breaks the Computational Diffie-Hellman assumption
in the subgroup of Z∗p generated by g. Use algorithm A as a subroutine in your
algorithm B. Note that algorithm A takes as input a triple (g, gx, gy) and outputs
gx/y while algorithm B takes as input a triple (g, gx, gy) and outputs gxy

3

Problem 7. Private equality test. Suppose Alice has a secret number a ∈ Zq and Bob has
a secret number b ∈ Zq, for some prime q. They wish to design a private equality
protocol, namely a protocol such that at the end, if a = b Alice learns that fact, but if
a 6= b then Alice learns nothing else about b. Either way Bob learn nothing about a.
Think of a and b as hashes of a file. The two want to test if they have the same file
without leaking any other information about the contents of their files.

Let E be a public key encryption system with message space Zq. E satisfies the following
property: given pk and c1 = E(pk, x) and c2 = E(pk, y) for x, y in Zq it is possible
to create a new ciphertext c that is a fresh random encryption of x + y, namely c =
E(pk, x+y) and c is independent of c1 and c2. An encryption scheme with this property
is said to be additively homomorphic. Now, Alice proposes the following protocol:

– Alice generates a pk/sk pair for E and sends pk and c1 := E(pk, a) to Bob.

– Bob chooses random s
R← Z∗q and computes the encryption of E(pk, s(a− b)).

Call the resulting ciphertext c2. Bob sends c2 back to Alice.

a. Explain how Bob computes c2 given pk, c1 and s.
Hint: you will need to use a variant of the repeated squaring algorithm.

b. Explain how Alice uses c2 and her secret key to test if a = b. If a 6= b, explain why
Alice learns nothing about b other than the fact that a 6= b.

c. Let G be a group of order q where the Decision Diffie Hellman problem is hard. Let
g be a generator of G and let E be the following variant of ElGamal encryption:
the public key is pk = (g, h = gd) and the secret key is d. The “encryption” of a
message a ∈ Zq is defined as:

E(pk, a) = (gr, hr+a) where r
R← Zq

Show that given E(pk, a) Alice can use her secret key d to compute ha. Note that
this system is not really an encryption system since Alice cannot fully recover the
plaintext a from a given ciphertext.

d. Explain how to instantiate the protocol above using the system from part (c).
Describe exactly what message Alice would send to Bob, how Bob would respond,
and how Alice would learn the comparison result.

4

