Assignment \#3

Due: Thursday, Mar. 14, 2013, 5pm.

Problem 1 Let's explore why in the RSA public key system each person has to be assigned a different modulus $N=p q$. Suppose we try to use the same modulus $N=p q$ for everyone. Each person is assigned a public exponent e_{i} and a private exponent d_{i} such that $e_{i} \cdot d_{i}=1 \bmod \varphi(N)$. At first this appears to work fine: to encrypt to Bob, Alice computes $c=x^{e_{\text {bob }}}$ for some value x and sends c to Bob. An eavesdropper Eve, not knowing $d_{\text {bob }}$ appears to be unable to invert Bob's RSA function to decrypt c. Let's show that using $e_{\text {eve }}$ and $d_{\text {eve }}$ Eve can very easily decrypt c.
a. Show that given $e_{\text {eve }}$ and $d_{\text {eve }}$ Eve can obtain a multiple of $\varphi(N)$. Let us denote that integer by V.
b. Suppose Eve intercepts a ciphertext $c=x^{e_{\mathrm{bob}}} \bmod N$. Show that Eve can use V to efficiently obtain x from c. In other words, Eve can invert Bob's RSA function.
Hint: First, suppose $e_{\text {bob }}$ is relatively prime to V. Then Eve can find an integer d such that $d \cdot e_{\text {bob }}=1 \bmod V$. Show that d can be used to efficiently compute x from c. Next, show how to make your algorithm work even if $e_{\text {bob }}$ is not relatively prime to V.

Note: In fact, one can show that Eve can completely factor the global modulus N.
Problem 2. Time-space tradeoff. Let $f: X \rightarrow X$ be a one-way permutation. Show that one can build a table T of size B bytes $(B \ll|X|)$ that enables an attacker to invert f in time $O(|X| / B)$. More precisely, construct an $O(|X| / B)$-time deterministic algorithm \mathcal{A} that takes as input the table T and a $y \in X$, and outputs an $x \in X$ satisfying $f(x)=y$. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.
Hint: Pick a random point $z \in X$ and compute the sequence

$$
z_{0}:=z, \quad z_{1}:=f(z), \quad z_{2}:=f(f(z)), \quad z_{3}:=f(f(f(z))), \quad \ldots
$$

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists some $j>0$ such that $z_{j}=z$). We call the resulting sequence $\left(z_{0}, z_{1}, \ldots, z_{j}\right)$ an f-cycle. Let $t:=\lceil|X| / B\rceil$. Try storing $\left(z_{0}, z_{t}, z_{2 t}, z_{3 t}, \ldots\right)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time $O(t)$.

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value x to Bob. The scheme is secure if the commitment does not reveal to Bob any information about the committed value x. At a later time Alice may open the commitment
and convince Bob that the committed value is x. The commitment is binding if Alice cannot convince Bob that the committed value is some $x^{\prime} \neq x$. Here is an example commitment scheme:

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of \mathbb{Z}_{p}^{*} of prime order q.
Commitment: To commit to an integer $x \in[0, q-1]$ Alice does the following: (1) she picks a random $r \in[0, q-1]$, (2) she computes $b=g^{x} \cdot h^{r} \bmod p$, and (3) she sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that $b=g^{x} \cdot h^{r} \bmod p$.

Show that this scheme is secure and binding.
a. To prove security show that b does not reveal any information to Bob about x. In other words, show that given b, the committed value can be any integer x^{\prime} in [0, q-1].
Hint: show that for any x^{\prime} there exists a unique $r^{\prime} \in[0, q-1]$ so that $b=g^{x^{\prime}} h^{r^{\prime}}$.
b. To prove the binding property show that if Alice can open the commitment as $\left(x^{\prime}, r^{\prime}\right)$ where $x \neq x^{\prime}$ then Alice can compute the discrete \log of h base g. In other words, show that if Alice can find an $\left(x^{\prime}, r^{\prime}\right)$ such that $b=g^{x^{\prime}} h^{r^{\prime}} \bmod p$ then she can find the discrete \log of h base g. Recall that Alice also knows the (x, r) used to create b.

Problem 4. Let's build a collision resistant hash function from the RSA problem. Let n be a random RSA modulus, e a prime relatively prime to $\varphi(n)$, and u random in \mathbb{Z}_{n}^{*}. Show that the function

$$
H_{n, u, e}: \mathbb{Z}_{n}^{*} \times\{0, \ldots, e-1\} \rightarrow \mathbb{Z}_{n}^{*} \quad \text { defined by } \quad H_{n, u, e}(x, y):=x^{e} u^{y} \quad \in \mathbb{Z}_{n}
$$

is collision resistant assuming that taking e^{\prime} th roots modulo n is hard.
Suppose \mathcal{A} is an algorithm that takes n, u as input and outputs a collision for $H_{n, u, e}(\cdot, \cdot)$. Your goal is to construct an algorithm \mathcal{B} for computing e 'th roots modulo n.
a. Your algorithm \mathcal{B} takes random n, u as input and should output $u^{1 / e}$. First, show how to use \mathcal{A} to construct $a \in \mathbb{Z}_{n}$ and $b \in \mathbb{Z}$ such that $a^{e}=u^{b}$ and $0 \neq|b|<e$.
b. Clearly $a^{1 / b}$ is an e^{\prime} th root of u (since $\left(a^{1 / b}\right)^{e}=u$), but unfortunately for \mathcal{B}, it cannot compute roots in \mathbb{Z}_{n}. Nevertheless, show how \mathcal{B} can compute $a^{1 / b}$. This will complete your description of algorithm \mathcal{B} and prove that a collision finder can be used to compute e^{\prime} th roots in \mathbb{Z}_{n}^{*}.
Hint: since e is prime and $0 \neq|b|<e$ we know that b and e are relatively prime. Hence, there are integers s, t so that $b s+e t=1$. Use a, u, s, t to find the e^{\prime} th root of u.
c. Show that if we extend the domain of the function to $\mathbb{Z}_{n}^{*} \times\{0, \ldots, e\}$ then the function is no longer collision resistant.

Problem 5 Recall that a simple RSA signature $S=H(M)^{d} \bmod N$ is computed by first computing $S_{1}=H(M)^{d} \bmod p$ and $S_{2}=H(M)^{d} \bmod q$. The signature S is then found by combining S_{1} and S_{2} using the Chinese Remainder Theorem (CRT). Now, suppose a Certificate Authority (CA) is about to sign a certain certificate C. While the CA is computing $S_{1}=H(C)^{d} \bmod p$, a glitch on the CA's machine causes it to produce the wrong value \tilde{S}_{1} which is not equal to S_{1}. The CA computes $S_{2}=H(C)^{d} \bmod q$ correctly. Clearly the resulting signature \tilde{S} is invalid. The CA then proceeds to publish the newly generated certificate with the invalid signature \tilde{S}.
a. Show that any person who obtains the certificate C along with the invalid signature \tilde{S} is able to factor the CA's modulus.
Hint: Use the fact that $\tilde{S}^{e}=H(C) \bmod q$. Here e is the public verification exponent.
b. Suggest some method by which the CA can defend itself against this danger.

Problem 6. Recall that Lamport signatures are one-time signatures built from a one-way function f. Key generation outputs a public key containing $O(n)$ points in the image of f. A signature on an n-bit message is a set of $O(n)$ pre-images of certain points in the public key.
Show that the length of Lamport signatures can be reduced by a factor of t at the cost of expanding the public and secret keys by a factor of at most 2^{t}. Make sure to describe your key generation, signing, and verification algorithms.
Hint: Think of signing t bits of the message at a time (as opposed to one bit at a time).

In fact, one can shrink the size of Lamport signatures by a factor of t without expanding the public key. This is a little harder and we won't discuss it here.

