Problem 1 Let’s explore why in the RSA public key system each person has to be assigned a different modulus \(N = pq \). Suppose we try to use the same modulus \(N = pq \) for everyone. Each person is assigned a public exponent \(e_i \) and a private exponent \(d_i \) such that \(e_i \cdot d_i = 1 \mod \varphi(N) \). At first this appears to work fine: to encrypt to Bob, Alice computes \(c = x^{e_{bob}} \) for some value \(x \) and sends \(c \) to Bob. An eavesdropper Eve, not knowing \(d_{bob} \) appears to be unable to invert Bob’s RSA function to decrypt \(c \). Let’s show that using \(e_{eve} \) and \(d_{eve} \) Eve can very easily decrypt \(c \).

a. Show that given \(e_{eve} \) and \(d_{eve} \) Eve can obtain a multiple of \(\varphi(N) \). Let us denote that integer by \(V \).

b. Suppose Eve intercepts a ciphertext \(c = x^{e_{bob}} \mod N \). Show that Eve can use \(V \) to efficiently obtain \(x \) from \(c \). In other words, Eve can invert Bob’s RSA function.

Hint: First, suppose \(e_{bob} \) is relatively prime to \(V \). Then Eve can find an integer \(d \) such that \(d \cdot e_{bob} = 1 \mod V \). Show that \(d \) can be used to efficiently compute \(x \) from \(c \). Next, show how to make your algorithm work even if \(e_{bob} \) is not relatively prime to \(V \).

Note: In fact, one can show that Eve can completely factor the global modulus \(N \).

Problem 2. Time-space tradeoff. Let \(f : X \to X \) be a one-way permutation. Show that one can build a table \(T \) of size \(B \) bytes (\(B \ll |X| \)) that enables an attacker to invert \(f \) in time \(O(|X|/B) \). More precisely, construct an \(O(|X|/B) \)-time deterministic algorithm \(A \) that takes as input the table \(T \) and a \(y \in X \), and outputs an \(x \in X \) satisfying \(f(x) = y \). This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point \(z \in X \) and compute the sequence

\[
z_0 := z, \quad z_1 := f(z), \quad z_2 := f(f(z)), \quad z_3 := f(f(f(z))), \ldots
\]

Since \(f \) is a permutation, this sequence must come back to \(z \) at some point (i.e. there exists some \(j > 0 \) such that \(z_j = z \)). We call the resulting sequence \((z_0, z_1, \ldots, z_j) \) an \(f \)-cycle. Let \(t := \lceil |X|/B \rceil \). Try storing \((z_0, z_t, z_{2t}, z_{3t}, \ldots) \) in memory. Use this table (or perhaps, several such tables) to invert an input \(y \in X \) in time \(O(t) \).
Problem 3 Last week Apple released a software patch that fixes a significant vulnerability in their TLS implementation. The following code was used to verify a signature in a client-side function:

```c
// initialize the hashing context
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
    goto fail;

// Hash the signed parameters
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
    goto fail;
    goto fail;

// read the final hash output into hashOut
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
    goto fail;

// check that *signature is a valid signature on hashOut
err = sslRawVerify(ctx,
    ctx->peerPubKey,
    hashOut,
    signature,
    signatureLen);
if(err) { // Report invalid signature error
    sslErrorLog("sslRawVerify returned %d\n", (int)err);
    goto fail;
}

fail:
    SSLFreeBuffer(&signedHashes);
    SSLFreeBuffer(&hashCtx);
    return err;
```

a. Note the two gotos following the second if statement. Does the function properly check the signature in the buffer `signature`?

b. This function is used in the TLS EDH key exchange to verify the server’s signature on the ephemeral Diffie-Hellman parameters in the `server_key_exchange` message. Explain in detail how a network attacker can exploit the error in the code to eavesdrop on all traffic between the client and the server. Draw a diagram of the messages sent from browser to server and vice versa and how an attacker would subvert them.

Problem 4 Commitment schemes. A commitment scheme enables Alice to commit a value x to Bob. The scheme is secure if the commitment does not reveal to Bob any information about the committed value x. At a later time Alice may open the commitment
and convince Bob that the committed value is x. The commitment is binding if Alice cannot convince Bob that the committed value is some $x' \neq x$. Here is an example commitment scheme:

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of \mathbb{Z}_p^* of prime order q.

Commitment: To commit to an integer $x \in [0, q-1]$ Alice does the following: (1) she picks a random $r \in [0, q-1]$, (2) she computes $b = g^x \cdot h^r \mod p$, and (3) she sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that $b = g^x \cdot h^r \mod p$.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In other words, show that given b, the committed value can be any integer x' in $[0, q-1]$.

Hint: show that for any x' there exists a unique $r' \in [0, q-1]$ so that $b = g^{x'} \cdot h^{r'}$.

b. To prove the binding property show that if Alice can open the commitment as (x', r') where $x \neq x'$ then Alice can compute the discrete log of h base g. In other words, show that if Alice can find an (x', r') such that $b = g^{x'} \cdot h^{r'} \mod p$ then she can find the discrete log of h base g. Recall that Alice also knows the (x, r) used to create b.

Problem 5. Let’s build a collision resistant hash function from the RSA problem. Let n be a random RSA modulus, e a prime relatively prime to $\varphi(n)$, and u random in \mathbb{Z}_n^*.

Show that the function

$$H_{n,u,e} : \mathbb{Z}_n^* \times \{0, \ldots, e-1\} \to \mathbb{Z}_n^*$$

defined by $H_{n,u,e}(x, y) := x^y u^y \in \mathbb{Z}_n$ is collision resistant assuming that taking e’th roots modulo n is hard.

Suppose A is an algorithm that takes n, u as input and outputs a collision for $H_{n,u,e}(\cdot, \cdot)$. Your goal is to construct an algorithm B for computing e’th roots modulo n.

a. Your algorithm B takes random n, u as input and should output $u^{1/e}$. First, show how to use A to construct $a \in \mathbb{Z}_n$ and $b \in \mathbb{Z}$ such that $a^e = u^b$ and $0 \neq |b| < e$.

b. Clearly $a^{1/b}$ is an e’th root of u (since $(a^{1/b})^e = u$), but unfortunately for B, it cannot compute roots in \mathbb{Z}_n. Nevertheless, show how B can compute $a^{1/b}$. This will complete your description of algorithm B and prove that a collision finder can be used to compute e’th roots in \mathbb{Z}_n^*.

Hint: since e is prime and $0 \neq |b| < e$ we know that b and e are relatively prime. Hence, there are integers s, t so that $bs + et = 1$. Use a, u, s, t to find the e’th root of u.

c. Show that if we extend the domain of the function to $\mathbb{Z}_n^* \times \{0, \ldots, e\}$ then the function is no longer collision resistant.
Problem 6. One-time signatures from discrete-log. Let G be a cyclic group of prime order q with generator g. Consider the following signature system for signing messages m in \mathbb{Z}_q:

KeyGen: choose $x, y \leftarrow \mathbb{Z}_q$, set $h := g^x$ and $u := g^y$.
output $\text{sk} := (x, y)$ and $\text{pk} := (g, h, u) \in G^3$.

Sign(sk, m): output s such that $u = g^m h^s$.

Verify(pk, m, s): output ‘1’ if $u = g^m h^s$ and ‘0’ otherwise.

a. Explain how the signing algorithm works. That is, show how to find s using sk.

b. Show that the signature scheme is weakly one-time secure assuming the discrete-log problem in G is hard. That is, suppose there is an adversary \mathcal{A} that asks for a signature on a message $m \in \mathbb{Z}_q$ and in response is given the public key pk and a signature s on m. The adversary then outputs a signature forgery (m^*, s^*) where $m \neq m^*$. Show how to use \mathcal{A} to compute discrete-log in G. This will prove that the signature is secure as long as the adversary sees at most one signature.

Hint: Your goal is to construct an algorithm \mathcal{B} that given a random $h \in G$ outputs an $x \in \mathbb{Z}_q$ such that $h = g^x$. Your algorithm \mathcal{B} runs adversary \mathcal{A} and receives a message m from \mathcal{A}. Show how \mathcal{B} can generate a public key $\text{pk} = (g, h, u)$ so that it has a signature s for m. Your algorithm \mathcal{B} then sends pk and s to \mathcal{A} and receives from \mathcal{A} a signature forgery (m^*, s^*). Show how to use the signatures on m^* and m to compute the discrete-log of h base g.

c. Show that this signature scheme is not 2-time secure. Given the signature on two distinct messages $m_0, m_1 \in \mathbb{Z}_q$ show how to forge a signature for any other message $m \in \mathbb{Z}_q$.

d. Explain how you would extend this signature scheme to sign arbitrary long messages rather than just messages in \mathbb{Z}_q.
