The RSA Trapdoor Permutation
Trapdoor functions (TDF)

Def: a trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F^{-1})

- $G()$: randomized alg. outputs a key pair (pk, sk)
- $F(pk, \cdot)$: det. alg. that defines a function $X \rightarrow Y$
- $F^{-1}(sk, \cdot)$: defines a function $Y \rightarrow X$ that inverts $F(pk, \cdot)$

More precisely: $\forall (pk, sk) \text{ output by } G$

$$\forall x \in X: \quad F^{-1}(sk, F(pk, x)) = x$$
Secure Trapdoor Functions (TDFs)

(G, F, F^{-1}) is secure if $F(pk, \cdot)$ is a “one-way” function:

- can be evaluated, but cannot be inverted without sk

Def: (G, F, F^{-1}) is a secure TDF if for all efficient A:

$$\text{Adv}_{OW}[A,F] = \Pr[x = x'] < \text{negligible}$$
Public-key encryption from TDFs

- \((G, F, F^{-1})\): secure TDF \(X \rightarrow Y\)
- \((E_s, D_s)\): symmetric auth. encryption defined over \((K,M,C)\)
- \(H: X \rightarrow K\) a hash function

We construct a pub-key enc. system \((G, E, D)\):

Key generation \(G\): same as \(G\) for TDF
Public-key encryption from TDFs

- (G, F, F^{-1}): secure TDF $X \rightarrow Y$
- (E_s, D_s): symmetric auth. encryption defined over (K, M, C)
- $H: X \rightarrow K$ a hash function

\[E(pk, m) : \]
\[x \leftarrow^R X, \quad y \leftarrow F(pk, x) \]
\[k \leftarrow H(x), \quad c \leftarrow E_s(k, m) \]
output (y, c)

\[D(sk, (y,c)) : \]
\[x \leftarrow F^{-1}(sk, y), \]
\[k \leftarrow H(x), \quad m \leftarrow D_s(k, c) \]
output m
In pictures:

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, (E_s, D_s) provides auth. enc. and $H: X \rightarrow K$ is a “random oracle”
then (G,E,D) is CCA^ro secure.
Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

\[
\begin{align*}
E(\text{pk}, m) : & & \text{output} & c \leftarrow F(\text{pk}, m) \\
D(\text{sk}, c) : & & \text{output} & F^{-1}(\text{sk}, c)
\end{align*}
\]

Problems:
- Deterministic: cannot be semantically secure !!
- Many attacks exist (coming)
The RSA trapdoor permutation
Review: arithmetic mod composites

Let \(N = p \cdot q \) where \(p, q \) are prime

\[Z_N = \{0, 1, 2, \ldots, N-1\} \ ; \quad (Z_N)^* = \{\text{invertible elements in } Z_N\} \]

Facts:
\(x \in Z_N \) is invertible \(\iff \) \(\gcd(x, N) = 1 \)

– Number of elements in \((Z_N)^*\) is \(\varphi(N) = (p-1)(q-1) = N-p-q+1 \)

Euler’s thm:
\(\forall x \in (Z_N)^* : \quad x^{\varphi(N)} = 1 \)
The RSA trapdoor permutation

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems

 ... many others
The RSA trapdoor permutation

\[G() : \text{choose random primes } p, q \approx 1024 \text{ bits. Set } N = pq. \]

choose integers \(e, d \) s.t. \(e \cdot d = 1 \) \(\pmod {\varphi (N)} \)

output \(pk = (N, e), \ sk = (N, d) \)

\[
F(pk, x) : \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^* ; \quad RSA(x) = x^e \quad (\text{in } \mathbb{Z}_N)
\]

\[
F^{-1}(sk, y) = y^d ; \quad y^d = RSA(x)^d = x^{ed} = x^{k\varphi(N)+1} = (x^{\varphi(N)})^k \cdot x = x
\]

Dan Boneh
The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A:

\[
\Pr\left[A(N,e,y) = y^{1/e} \right] < \text{negligible}
\]

where \(p, q \xleftarrow{R} \text{n-bit primes} \), \(N \leftarrow pq \), \(y \xleftarrow{R} \mathbb{Z}_N^* \)
RSA pub-key encryption (ISO std)

(E_s, D_s): symmetric enc. scheme providing auth. encryption.

H: \(Z_N \rightarrow K \) where K is key space of \((E_s, D_s)\)

• \(G() \): generate RSA params: \(pk = (N,e), \ sk = (N,d) \)

• \(E(pk, m) \): (1) choose random \(x \) in \(Z_N \)

(2) \(y \leftarrow RSA(x) = x^e, \ k \leftarrow H(x) \)

(3) output \((y, E_s(k,m)) \)

• \(D(sk, (y, c)) \): output \(D_s(H(RSA^{-1}(y)), c) \)
Textbook RSA is insecure

Textbook RSA encryption:

- public key: \((N,e)\)
 Encrypt: \(c \leftarrow m^e\) (in \(Z_N\))

- secret key: \((N,d)\)
 Decrypt: \(c^d \rightarrow m\)

Insecure cryptosystem !!

- Is not semantically secure and many attacks exist

\[\Rightarrow \]
The RSA trapdoor permutation is not an encryption scheme!
A simple attack on textbook RSA

Suppose k is 64 bits: $k \in \{0, ..., 2^{64}\}$. Eve sees: $c = k^e$ in \mathbb{Z}_N

If $k = k_1 \cdot k_2$ where $k_1, k_2 < 2^{34}$ (prob. $\approx 20\%$) then $c / k_1^e = k_2^e$ in \mathbb{Z}_N

Step 1: build table: $c/1^e, c/2^e, c/3^e, ..., c/2^{34}e$. time: 2^{34}

Step 2: for $k_2 = 0, ..., 2^{34}$ test if k_2^e is in table. time: 2^{34}

Output matching (k_1, k_2). Total attack time: $\approx 2^{40} << 2^{64}$
RSA in practice
RSA encryption in practice

Never use textbook RSA.

RSA in practice (since ISO standard is not often used):

Main questions:
- How should the preprocessing be done?
- Can we argue about security of resulting system?
PKCS1 v1.5

PKCS1 mode 2: (encryption)

- Resulting value is RSA encrypted
- Widely deployed, e.g. in HTTPS
Attack on PKCS1 v1.5 (Bleichenbacher 1998)

PKCS1 used in HTTPS:

⇒ attacker can test if 16 MSBs of plaintext = ’02’

Chosen-ciphertext attack: to decrypt a given ciphertext \(c \) do:

- Choose \(r \in \mathbb{Z}_N \). Compute \(c' \leftarrow r^e \cdot c = (r \cdot \text{PKCS1}(m))^e \)
- Send \(c' \) to web server and use response
Suppose N is $N = 2^n$ (an invalid RSA modulus). Then:

- Sending c reveals $\text{msb}(x)$
- Sending $2^e \cdot c = (2x)^e$ in \mathbb{Z}_N reveals $\text{msb}(2x \mod N) = \text{msb}_2(x)$
- Sending $4^e \cdot c = (4x)^e$ in \mathbb{Z}_N reveals $\text{msb}(4x \mod N) = \text{msb}_3(x)$
- ... and so on to reveal all of $x
Attacks discovered by Bleichenbacher and Klima et al. ... can be avoided by treating incorrectly formatted message blocks ... in a manner indistinguishable from correctly formatted RSA blocks. In other words:

1. Generate a string R of 46 random bytes

2. Decrypt the message to recover the plaintext M

3. If the PKCS#1 padding is not correct

 $\text{pre_master_secret} = R$
PKCS1 v2.0: OAEP

New preprocessing function: OAEP \([BR94]\)

Thm \([FOPS'01]\) : RSA is a trap-door permutation \(\Rightarrow\) RSA-OAEP is CCA secure when \(H,G\) are random oracles

in practice: use SHA-256 for \(H\) and \(G\)
OAEP Improvements

OAEP+: [Shoup’01]

\[\forall \] trap-door permutation \(F \)

F-OAEP+ is CCA secure when

\(H,G,W \) are random oracles.

During decryption validate \(W(m,r) \) field.

SAEP+: [B’01]

RSA (\(e=3 \)) is a trap-door perm \(\Rightarrow \)

RSA-SAEP+ is CCA secure when

\(H,W \) are random oracle.
Subtleties in implementing OAEP [M ’00]

OAEP-decrypt(ct):
 error = 0;

 if (RSA^{-1}(ct) > 2^{n-1})
 { error = 1; goto exit; }

 if (pad(OAEP^{-1}(RSA^{-1}(ct))) != “01000”)
 { error = 1; goto exit; }

Problem: timing information leaks type of error
⇒ Attacker can decrypt any ciphertext

Lesson: Don’t implement RSA-OAEP yourself!
Is RSA a one-way function?
Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

\[x \text{ from } c = x^e \pmod{N}. \]

How hard is computing \(e \)’th roots modulo \(N \)?

Best known algorithm:

– Step 1: factor \(N \) (hard)
– Step 2: compute \(e \)’th roots modulo \(p \) and \(q \) (easy)
Shortcuts?

Must one factor N in order to compute e’th roots?

To prove no shortcut exists show a reduction:

- Efficient algorithm for e’th roots mod N
 \[\Rightarrow \text{efficient algorithm for factoring } N. \]
- Oldest problem in public key cryptography.

Some evidence no reduction exists: \((BV’98) \)

- “Algebraic” reduction \[\Rightarrow \text{factoring is easy.} \]
How **not** to improve RSA’s performance

To speed up RSA decryption use small private key d ($d \approx 2^{128}$)

$$c^d = m \pmod{N}$$

Wiener’87: if $d < N^{0.25}$ then RSA is insecure.

BD’98: if $d < N^{0.292}$ then RSA is insecure (open: $d < N^{0.5}$)

Insecure: priv. key d can be found from (N,e)
Wiener’s attack

Recall: \(e \cdot d = 1 \pmod{\varphi(N)} \) \(\Rightarrow \) \(\exists \ k \in \mathbb{Z} : \ e \cdot d = k \cdot \varphi(N) + 1 \)

\[
\left| \frac{e}{\varphi(N)} - \frac{k}{d} \right| = \frac{1}{d \cdot \varphi(N)} \leq \frac{1}{\sqrt{N}}
\]
Wiener’s attack

Recall: \(e \cdot d = 1 \mod \varphi(N) \) \(\implies \exists k \in \mathbb{Z} : e \cdot d = k \cdot \varphi(N) + 1 \)

\[
\left| \frac{e}{\varphi(N)} - \frac{k}{d} \right| = \frac{1}{d \cdot \varphi(N)} \leq \frac{1}{\sqrt{N}}
\]

\(\varphi(N) = N - p - q + 1 \) \(\implies |N - \varphi(N)| \leq p + q \leq 3\sqrt{N} \)
Wiener’s attack

Recall: \(e \cdot d = 1 \pmod{\varphi(N)} \) \(\Rightarrow \) \(\exists k \in \mathbb{Z} : e \cdot d = k \cdot \varphi(N) + 1 \)

\[
\left| \frac{e}{\varphi(N)} - \frac{k}{d} \right| = \frac{1}{d \cdot \varphi(N)} \leq \frac{1}{\sqrt{N}}
\]

\(\varphi(N) = N - p - q + 1 \) \(\Rightarrow \) \(|N - \varphi(N)| \leq p + q \leq 3\sqrt{N} \)

\(d \leq N^{0.25}/3 \) \(\Rightarrow \) \(\left| \frac{e}{N} - \frac{k}{d} \right| \leq \left| \frac{e}{N} - \frac{e}{\varphi(N)} \right| + \left| \frac{e}{\varphi(N)} - \frac{k}{d} \right| \leq \frac{1}{2d^2} \)
Wiener’s attack

Recall: \(e \cdot d = 1 \pmod{\varphi(N)} \) \(\Rightarrow \) \(\exists k \in \mathbb{Z} : e \cdot d = k \cdot \varphi(N) + 1 \)

\[
\left| \frac{e}{\varphi(N)} - \frac{k}{d} \right| = \frac{1}{d \cdot \varphi(N)} \leq \frac{1}{\sqrt{N}}
\]

\(\varphi(N) = N - p - q + 1 \) \(\Rightarrow \) \(|N - \varphi(N)| \leq p + q \leq 3\sqrt{N} \)

\(d \leq N^{0.25}/3 \) \(\Rightarrow \)

\[
\left| \frac{e}{N} - \frac{k}{d} \right| \leq \left| \frac{e}{N} - \frac{e}{\varphi(N)} \right| + \left| \frac{e}{\varphi(N)} - \frac{k}{d} \right| \leq \frac{1}{2d^2}
\]

Continued fraction expansion of \(e/N \) gives \(k/d \).

\(e \cdot d = 1 \pmod{k} \) \(\Rightarrow \) \(\gcd(d,k)=1 \) \(\Rightarrow \) can find \(d \) from \(k/d \)
RSA With Low public exponent

To speed up RSA encryption use a small e: $c = m^e \pmod{N}$

- Minimum value: $e=3$ (gcd(e, $\varphi(N)$) = 1)
- Recommended value: $e=65537=2^{16}+1$

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.
- ElGamal (next module): approx. same time for both.
Key lengths

Security of public key system should be comparable to security of symmetric cipher:

<table>
<thead>
<tr>
<th>Cipher key-size</th>
<th>RSA Modulus size</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 bits</td>
<td>1024 bits</td>
</tr>
<tr>
<td>128 bits</td>
<td>3072 bits</td>
</tr>
<tr>
<td>256 bits (AES)</td>
<td>15360 bits</td>
</tr>
</tbody>
</table>
Implementation attacks

Timing attack: [Kocher et al. 1997], [BB’04]
The time it takes to compute $c^d \pmod{N}$ can expose d

Power attack: [Kocher et al. 1999)
The power consumption of a smartcard while it is computing $c^d \pmod{N}$ can expose d.

Faults attack: [BDL’97]
A computer error during $c^d \pmod{N}$ can expose d.

A common defense: check output. 10% slowdown.
An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: \(x = c^d \text{ in } Z_N \)

- **decrypt mod p:** \(x_p = c^d \text{ in } Z_p \)
- **decrypt mod q:** \(x_q = c^d \text{ in } Z_q \)

Combine to get \(x = c^d \text{ in } Z_N \)

Suppose error occurs when computing \(x_q \), but no error in \(x_p \)

Then: output is \(x' \) where \(x' = c^d \text{ in } Z_p \) but \(x' \neq c^d \text{ in } Z_q \)

\[(x')^e = c \text{ in } Z_p \text{ but } (x')^e \neq c \text{ in } Z_q \Rightarrow \text{gcd}((x')^e - c, N) = p \]
RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

Suppose poor entropy at startup:

• Same \(p \) will be generated by multiple devices, but different \(q \)
• \(N_1, N_2 \) : RSA keys from different devices \(\Rightarrow \) \(\gcd(N_1, N_2) = p \)

```python
prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q
```
RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys !!

Lesson:

– Make sure random number generator is properly seeded when generating keys
THE END