
CS255: Cryptography and Computer Security Winter 2016

Project #1
Due: Friday, Feb. 12, 2016

1 Introduction

February 1, 2046 : Your friends all laughed at you when you left your seven-figure job as a cryp-
tographer to found Spacebook, the social network for astronauts. But now that Elon Musk’s Mars
colony has grown to over one million inhabitants, space travel has gone mainstream and your social
network is the hottest website on the information superhighway. However, you have a problem.
In order to enable quick access to your website, you have had to co-locate servers in various data
centers throughout the solar system, not all of which you control or trust.

To manage this problem, you serve the Spacebook homepage only from data centers you trust.
The homepage is small and rarely changes, so it can be downloaded quickly and cached by the
browser. The homepage contains Javascript that downloads encrypted user-specific data, such as
photos of the user’s friends, from a CDN. This CDN, or content delivery network, consists of servers
in untrusted data centers, which is one reason it is important that the user’s data be encrypted.
This data is then decrypted in the browser using Javascript and displayed for the user.

In this assignment, you will write the code that verifies and decrypts the user’s data. Your
implementation will use authenticated encryption (AES using Galois/Counter Mode), a SHA-256
Merkle tree, and a new password hashing function called Balloon. We have provided a library that
exposes the hashing and decryption functions you will use, as well as a starter homepage and some
content on a “CDN.”

Here’s what content gets loaded when, and from where.

1



2



2 Running the assignment

This assignment has been tested in Chrome and Firefox. If you open Spacebook’s index.html

file directly in the browser using a file:// URL, the starter code will not work (due to CORS
restrictions on file:// URLs). Instead, you should serve the files using a web server.

One easy way to serve the webpage locally is to open a Terminal, change into the proj1 directory,
and run python --version. If you see “Python 2.x.x”, run python -m SimpleHTTPServer. If you
see “Python 3.x.x”, run python -m http.server. Then visit http://localhost:8000/spacebook
in Chrome or Firefox. If you don’t have Python, you can try Mongoose, a small stand-alone web
server.

You can also use Stanford’s shared computing resources to host your assignment. Just be sure
not to make your code available to others on the Internet. We have made it easy to protect your
code using WebAuth, Stanford’s authentication system. Follow these instructions to go that route.

1. ssh yourSUNet @corn.stanford.edu

2. cd WWW

3. wget https://crypto.stanford.edu/~dabo/cs255/hw_and_proj/proj1.zip

4. unzip proj1.zip

5. In a text editor, open proj1/spacebook/.htaccess and change dabo to your SUNet ID.

6. In Chrome or Firefox, visit https://www.stanford.edu/~yourSUNet /proj1/spacebook.

7. You may have to log in using your SUNet ID. This is to prevent other students from viewing
your solution.

If you need help setting up the assignment, please post on Piazza.

3 FAQ and summary of requirements

• Your code should use the given Merkle path to compute the root of the Merkle tree containing
the encrypted data, and verify that it matches the given Merkle root.

• You can read about Merkle trees on Wikipedia. The Merkle tree we have constructed uses
the SHA-256 hash function.

• Your code should use Balloon hashing to derive a key from the user-provided password and
the salt given in the starter code.

• The correct password is crypto, but you should not embed the plain-text password in your
code (e.g., no if (password === "crypto")).

• You must import your key and use it to decrypt and display the provided data.

• balloonHash outputs 512 bits while importKey only takes 256 bits. You should only use the
first 256 bits of balloonHash’s output.

• Your code should only call balloonHash once.

3

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://localhost:8000/spacebook
https://www.cesanta.com/products#binary
https://crypto.stanford.edu/~dabo/cs255/hw_and_proj/proj1.zip
https://en.wikipedia.org/wiki/Merkle_tree


4 Submitting

You will submit your assignment by uploading the proj1 folder to AFS and running the submit
script. This should look something like the following.

1. (to upload to corn): scp -r proj1 yourSUNet @corn.stanford.edu:~

2. ssh yourSUNet @corn.stanford.edu

3. cd proj1 or cd WWW/proj1

4. /usr/class/cs255/bin/submit

5 Implementation details

We have provided you with the Spacebook homepage (index.html), the page-specific Javascript
(spacebook.js), a small cryptography library (lib.js), the Balloon hashing code (balloon.js),
and the encrypted payload from the CDN (data.enc). You should only need to look at spacebook.js
and lib.js, and should only need to edit spacebook.js.

The data you will decrypt is asynchronously loaded once the homepage opens, and is stored in
the variable data. The variables salt, iv, merkle root, and merkle tree will also be useful to you.
salt contains the salt used by Balloon to derive the password, iv contains the IV used to encrypt
the payload, and merkle root and merkle tree contain nodes of the Merkle tree, described below.
We have made these variables global so that they will be accessible from the developer console and
hopefully make debugging easier.

You will need to check the integrity of the encrypted data using the Merkle tree, decrypt it,
and display it for the user.

5.1 Asynchronous Javascript

The Web Cryptography API on which our cryptography wrapper library is based is asynchronous.
Rather than return hashes, keys, or data directly, the functions return promises. Each promise
“resolves” to a value, and once the promise is finished, it will call a function of your choosing and
pass it that value. For example, if we have the promise waitAndReturn4, then assuming it does
what its name suggests, writing

waitAndReturn4.then(function(num) {console.log(num);});
will eventually print “4” to the console.

5.2 spacebook.js

The Javascript starter code contains a passwordEntered() function that is called when the user
enters a password. It also contains a displayImage() function which takes as input an ArrayBuffer
containing an image and displays it on the page. Once you have decrypted the user’s data, you
should pass the resulting ArrayBuffer to displayImage() to display it.

4



5.3 Merkle tree

The Merkle tree was generated by hashing the latest version of every user’s data together. Using
the Merkle tree, we not only guarantee the integrity of our encrypted data (which authenticated
encryption does for us anyway), but also ensure that we have the latest version of our data.
Otherwise, a malicious or malfunctioning CDN could send us an old version of our data. For
simplicity, you may assume that the number of encrypted content items is fixed at eight. The
Merkle tree looks like the following image, with “tree” and “root” correspoding to the variables
merkle tree and merkle root.

The tree was generated by taking the SHA-256 hash of each user’s encrypted data, then con-
catenating each pair of hashes and hashing that, and repeating this process until reaching the root
of the tree.

5.4 Key generation

The key was generated using the password “crypto”. You will need to derive a key from the
password using Balloon hashing, then import the key to a format the library recognizes and can
use for decryption. The password entered by the user is stored in the variable password inside the
passwordEntered() function.

5.5 Error handling

It’s up to you exactly how to handle errors that might arise when this code is executed, but if the
Merkle tree integrity check fails you should not attempt to decrypt the data.

6 API description

6.1 lib.balloonHash(password, salt)

This function computes the Balloon password hashing function on the given password and salt,
using reasonable time and space cost parameters. It is very slow! It will output progress updates

5



in the development console as it runs.
The function returns a promise that will resolve to a 512-bit hash, contained in an ArrayBuffer.

6.2 lib.importKey(raw key)

The hash returned by balloonHash is a raw 512-bit key, and must be passed through the importKey
function to convert it to a CryptoKey object, which can be used by the decrypt function.

The function takes a 256-bit raw key in an ArrayBuffer and returns a promise that will resolve
to a CryptoKey object containing the 256-bit key.

6.3 lib.decrypt(key, data, iv)

This function decrypts the given data using the given key and IV.
The function returns a promise that will resolve to the decrypted data.

6.4 lib.sha256Hash(data)

This function takes in an ArrayBuffer and hashes it using the SHA-256 algorithm.
The function returns a promise that will resolve to the SHA-256 of the data, stored as an

ArrayBuffer.

6.5 lib.hexToArrayBuffer(hex)

Given a string containing hex data (e.g. “abcd25ff”), this function will return an ArrayBuffer
containing the same data.

6.6 lib.arrayBufferToHex(buf)

Given an ArrayBuffer, this function will return the bytes in the buffer represented as a hexadecimal
string.

6


