Problem 1. Let’s explore why in the RSA public key system each person has to be assigned a different modulus $n = pq$. Suppose we try to use the same modulus $n = pq$ for everyone. Each person is assigned a public exponent e_i and a private exponent d_i such that $e_i \cdot d_i = 1 \mod \varphi(n)$. At first this appears to work fine: to encrypt to Bob, Alice computes $c = x^{e_{bob}}$ for some value x and sends c to Bob. An eavesdropper Eve, not knowing d_{bob} appears to be unable to invert Bob’s RSA function to decrypt c. Let’s show that using e_{eve} and d_{eve} Eve can very easily decrypt c.

a. Show that given e_{eve} and d_{eve} Eve can obtain a multiple of $\varphi(n)$. Let us denote that integer by V.

b. Suppose Eve intercepts a ciphertext $c = x^{e_{bob}} \mod n$. Show that Eve can use V to efficiently obtain x from c. In other words, Eve can invert Bob’s RSA function.

Hint: First, suppose e_{bob} is relatively prime to V. Then Eve can find an integer d such that $d \cdot e_{bob} = 1 \mod V$. Show that d can be used to efficiently compute x from c. Next, show how to make your algorithm work even if e_{bob} is not relatively prime to V.

Note: In fact, one can show that Eve can completely factor the global modulus n.

Problem 2. Time-space tradeoff. Let $f : X \rightarrow X$ be a one-way one-to-one function. Show that one can build a table T of size 2^B elements of X ($B \ll |X|$) that enables an attacker to invert f in time $O(|X|/B)$. More precisely, construct an $O(|X|/B)$-time deterministic algorithm A that takes as input the table T and a $y \in X$, and outputs an $x \in X$ satisfying $f(x) = y$. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point $z \in X$ and compute the sequence

$$z_0 := z, \quad z_1 := f(z), \quad z_2 := f(f(z)), \quad z_3 := f(f(f(z))), \ldots$$

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists some $j > 0$ such that $z_j = z$). We call the resulting sequence (z_0, z_1, \ldots, z_j) an f-cycle. Let $t := \lceil |X|/B \rceil$. Try storing $(z_0, z_t, z_{2t}, z_{3t}, \ldots)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time $O(t)$.
Problem 3. A commitment scheme enables Alice to commit a value \(x \) to Bob. The scheme is *hiding* if the commitment does not reveal to Bob any information about the committed value \(x \). At a later time Alice may *open* the commitment and convince Bob that the committed value is \(x \). The commitment is *binding* if Alice cannot convince Bob that the committed value is some \(x' \neq x \). Here is an example commitment scheme:

Public values: A group \(G \) of prime order \(q \) and two generators \(g, h \in G \).

Commitment: To commit to an integer \(x \in \mathbb{Z}_q \) Alice does the following: (1) she chooses a random \(r \in \mathbb{Z}_q \), (2) she computes \(b = g^x \cdot h^r \in G \), and (3) she sends \(b \) to Bob as her commitment to \(x \).

Open: To open the commitment Alice sends \((x, r)\) to Bob. Bob verifies that \(b = g^x \cdot h^r \).

Show that this scheme is hiding and binding.

- **a.** To prove the hiding property show that \(b \) reveals no information about \(x \). In other words, show that given \(b \), the committed value can be any element \(x' \in \mathbb{Z}_q \).

 Hint: show that for any \(x' \in \mathbb{Z}_q \) there exists a unique \(r' \in \mathbb{Z}_q \) so that \(b = g^{x'} h^{r'} \).

- **b.** To prove the binding property show that if Alice can open the commitment as \((x', r')\), where \(x \neq x' \), then Alice can compute the discrete log of \(h \) base \(g \). In other words, show that if Alice can find an \((x', r')\) such that \(b = g^{x'} \cdot h^{r'} \) and \(x \neq x' \) then she can find the discrete log of \(h \) base \(g \). Recall that Alice also knows the \((x, r)\) used to create \(b \).

- **c.** Show that the commitment is *additively homomorphic*: given a commitment to \(x \in \mathbb{Z}_q \) and a commitment to \(y \in \mathbb{Z}_q \), Bob can construct a commitment to \(z = ax + by \), for any \(a, b \in \mathbb{Z}_q \) of his choice.

Problem 4. Fast one-time signatures from discrete-log. Let's see another application for the commitment scheme from the previous problem. Let \(G \) be a group of prime order \(q \) with generator \(g \). Consider the following signature system for signing messages in \(\mathbb{Z}_q \):

- **KeyGen:** choose \(x, y \overset{\$}{\leftarrow} \mathbb{Z}_q \), set \(h := g^x \) and \(u := g^y \).

 output \(sk := (x, y) \) and \(pk := (g, h, u) \in G^3 \).

- **Sign**\((sk, m \in \mathbb{Z}_q)\): output \(s \in \mathbb{Z}_q \) such that \(u = g^m h^s \).

- **Verify**\((pk, m, s)\): output ‘yes’ if \(u = g^m h^s \) and ‘no’ otherwise.

- **a.** Explain how the signing algorithm works. That is, show how to find \(s \) using \(sk \). Note that signing is super fast.

- **b.** Show that the signature scheme is weakly one-time secure assuming the discrete-log problem in \(G \) is hard. The weak one-time security game is defined as follows:

 the adversary \(\mathcal{A} \) first outputs a message \(m \in \mathbb{Z}_q \) and in response is given the public key \(pk \) and a valid signature \(s \) on \(m \) relative to \(pk \). The adversary’s goal is to output a signature forgery \((m^*, s^*)\) where \(m \neq m^* \).
Show how to use A to compute discrete-log in G. This will prove that the signature is secure in this weak sense as long as the adversary sees at most one signature.

[Recall that in the standard game defined in class the adversary is first given the public-key and only then outputs a message m. In the weak game above the adversary is forced to choose the message m before seeing the public-key. The standard game from class gives the adversary more power and more accurately models the real world.]

Hint: Your goal is to construct an algorithm B that given a random $h \in G$ outputs an $x \in \mathbb{Z}_q$ such that $h = g^x$. Your algorithm B runs adversary A and receives a message m from A. Show how B can generate a public key $pk = (g, h, u)$ so that it has a signature s for m. Your algorithm B then sends pk and s to A and receives from A a signature forgery (m^*, s^*). Show how to use the signatures on m^* and m to compute the discrete-log of h base g.

c. Show that this signature scheme is not 2-time secure. Given the signature on two distinct messages $m_0, m_1 \in \mathbb{Z}_q$ show how to forge a signature for any other message $m \in \mathbb{Z}_q$.

Problem 5. Oblivious PRF. Let G be a cyclic group of prime order q generated by $g \in G$. Let $H : \mathcal{M} \to G$ be a hash function. Let F be the PRF defined over $(\mathbb{Z}_q, \mathcal{M}, G)$ as follows:

$$F(k, m) := H(m)^k \text{ for } k \in \mathbb{Z}_q, m \in \mathcal{M}.$$

It is not difficult to show that this F is a secure PRF assuming the Decision Diffie-Hellman (DDH) assumption holds in the group G and, the hash function H is modeled as a random oracle.

Show that this PRF F can be evaluated obliviously. That is, show that if Bob has the key k and Alice has an input m, there is a simple protocol that allows Alice to learn $F(k, m)$ without learning anything else about k. Moreover, Bob learns nothing about m. You may assume that g and g^k are publicly known values. An oblivious PRF like this is quite handy for many applications.

a. To start the protocol, Alice generates a random $r \overset{R}{\leftarrow} \mathbb{Z}_q$ and sends to Bob $u := H(m) \cdot g^r$. Show that this u is uniformly distributed in G and is independent of m, so that Bob learns nothing about m.

b. Show how Bob can respond to enable Alice to learn $F(k, m)$ and nothing else.
Problem 6. A bad choice of primes for RSA. Let’s see why when choosing an RSA modulus \(n = pq \) it is important to choose the two primes \(p \) and \(q \) independently at random. Suppose \(n \) is generated by choosing the prime \(p \) at random, and then choosing the prime \(q \) dependent on \(p \). In particular, suppose that \(p \) and \(q \) are close, namely \(|p - q| < n^{1/4} \). Let’s show that the resulting \(n \) can be easily factored.

a. Let \(A = (p + q)/2 \) be the arithmetic mean of \(p \) and \(q \). Recall that \(\sqrt{n} \) is the geometric mean of \(p \) and \(q \). Show that when \(|p - q| < n^{1/4} \) we have that
\[
A - \sqrt{n} < 1.
\]

Hint: one way to prove this is by multiplying both sides by \(A + \sqrt{n} \) and then using the fact that \(A \geq \sqrt{n} \) by the AGM inequality.

b. Because \(p \) and \(q \) are odd primes, we know that \(A \) is an integer. Then by part (a) we can deduce that \(A = \lceil \sqrt{n} \rceil \), and therefore it is easy to calculate \(A \) from \(n \). Show that using \(A \) and \(n \) it is easy to factor \(n \).

Problem 7. Consider again the RSA-FDH signature scheme. The public key is a pair \((N, e)\) where \(N \) is an RSA modulus, and a signature on a message \(m \in \mathcal{M} \) is defined as \(\sigma := H(m)^{1/e} \in \mathbb{Z}_N \), where \(H : \mathcal{M} \to \mathbb{Z}_N \) is a hash function. Suppose the adversary could find three messages \(m_1, m_2, m_3 \in \mathcal{M} \) such that \(H(m_1) \cdot H(m_2) = H(m_3) \) in \(\mathbb{Z}_N \). Show that the resulting RSA-FDH signature scheme is no longer existentially unforgeable under a chosen message attack.

More generally, your attack shows that for security of the signature scheme, it should be difficult to find a set of inputs to \(H \) where the corresponding outputs have a known algebraic relation in \(\mathbb{Z}_N \). One can show that this is indeed the case for a random function \(H : \mathcal{M} \to \mathbb{Z}_N \), which is what we assumed when proving security of RSA-FDH.