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Quick Recap

A block cipher is a pair of efficient algs. (E, D):
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E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:
1. AES:     n=128 bits,   k = 128, 192, 256 bits
2. 3DES:   n= 64 bits,    k = 168 bits    (historical)



Block Ciphers Built by Iteration

R(k,m) is called a round function

3DES: n=48,      AES128: n=10,      AES256:  n=14

key  k

key expansion

k1 k2 k3 kn

R
(k

1, 
×)

R
(k

2, 
×)

R
(k

3, 
×)

R
(k

n, 
×)m c



AES:  an iterated Even-Mansour cipher

input ⨁

𝑘2

⋯

𝑘!"#

⨁𝜋 ⨁
𝑘1

⨁

𝑘0

output

⨁

𝑘𝑑

key key expansion:

invertible

𝜋 𝜋

𝜋: {0,1}𝑛 ⇾ {0,1}𝑛 invertible function

single round EM



AES128:   10 rounds of EM

input

4

4

10 rounds

(1) ByteSub
(2) ShiftRow
(3) MixColumn ⨁

k2

⋯

k9

⨁

(1) ByteSub
(2) ShiftRow
(3) MixColumn

⨁
k1

⨁

k0

(1) ByteSub
(2) ShiftRow

output

4

4

⨁

k10

key
16 bytes

key expansion:

invertible

16 bytes ⟶176 bytes



The permutation 𝜋
(1) ByteSub:    a 1 byte S-box.    256 byte table. (invertible)

(2) ShiftRows:  

(3) MixColumns:



Recall the AES pledge
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I promise that I will not implement AES myself 
in production code, even though it might be 

fun.  This agreement will remain in effect until 
I learn all about side-channel attacks and 

countermeasures to the point where I lose all 
interest in implementing AES myself.



Performance  (no HW acceleration)

Cipher Block/key size Speed (MB/sec)

ChaCha20 - / 256 643

3DES 64 / 168 30
AES128 128 / 128 163

AES256 128 / 256 115

block



AES-NI:   AES hardware instructions

AES instructions (Intel, AMD, ARM, …)

• aesenc,  aesenclast:    do one round of AES

128-bit registers:  xmm1=state,   xmm2=round key

aesenc xmm1, xmm2   ;   puts result in xmm1  

• aesdec,  aesdeclast: one round of AES-1

• aeskeygenassist:    performs AES key expansion

Claim 1:  14 x speed-up over OpenSSL on same hardware

Claim 2:   constant  time execution



AES-NI:   parallelism and pipelining

• Intel Skylake (old):    4 cycles for one aesenc
• fully pipelined:   can issue one instruction every cycle

• Intel Icelake (2019):   vectorized aesenc (vaesenc)
• vaesenc:  compute aesenc on four blocks in parallel
• fully pipelined

Implications:  

• AES128 encrypt a single block takes 40 cycles  (10 rounds)

• AES128 encrypt 16 blocks on Icelake takes 43 cycles
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AES128 encrypt on Icelake

To encrypt 16 blocks do:       m0, …, m15   ∈ {0,1}128

11cycles

(4 cycles)

… finish all 10 rounds after 43 cycles

m0 m1 m2 m3 (vaesenc)

m4 m5 m6 m7 (vaesenc)

m8 m9 m10 m11 (vaesenc)

m12 m13 m14 m15 (vaesenc)

m0' m1’ m2’ m3’ (aesenc)

m4’ m5’ m6’ m7’ (vaesenc)
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PRPs and PRFs

Topics:

1. Abstract block ciphers:    PRPs  and  PRFs

2. Security models for encryption

3. Analysis of CBC and counter mode
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PRPs and PRFs
• Pseudo Random Function   (PRF)    defined over (K,X,Y):

F:  K ´ X  ® Y    

such that exists “efficient” algorithm to evaluate F(k,x)

• Pseudo Random Permutation   (PRP)    defined over (K,X):

E:   K ´ X  ® X     
such that:

1. Exists “efficient” algorithm to evaluate  E(k,x)

2. The function   E( k, × )   is  one-to-one
3. Exists “efficient” inversion algorithm   D(k,x)



14

Running example

• Example PRPs:    3DES,   AES,   …

AES128:   K ´ X  ® X where      K = X = {0,1}128

DES:   K ´ X  ® X where      X = {0,1}64 ,  K = {0,1}56

3DES:   K ´ X  ® X where      X = {0,1}64 ,  K = {0,1}168

• Functionally, any PRP is also a PRF.
– A PRP is a PRF where X=Y and is efficiently invertible

– A PRP is sometimes called a block cipher
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Secure PRFs
• Let   F:  K ´ X  ® Y   be a PRF

Funs[X,Y]:     the set of all functions from X to Y

SF =  {  F(k,×)   s.t.   k Î K  }      Í Funs[X,Y]

• Intuition:   a PRF is secure if 
a random function in Funs[X,Y] is indistinguishable from 
a random function in SF

SF

Size |K|

Funs[X,Y]

Size |Y||X|



Secure PRFs
• Let   F:  K ´ X  ® Y   be a PRF

Funs[X,Y]:     the set of all functions from X to Y

SF =  {  F(k,×)   s.t.   k Î K  }      Í Funs[X,Y]

• Intuition:   a PRF is secure if 
a random function in Funs[X,Y] is indistinguishable from 
a random function in SF

k ¬ K

f ¬ Funs[X,Y]
x Î X

f(x)  or  F(k,x)  ?

???
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Secure PRF:  defintion
• For   b=0,1   define experiment   EXP(b)  as:

• Def:  F is a secure PRF if for all “efficient” 𝒜 :
AdvPRF[𝒜,F]  =  |Pr[EXP(0) = 1] – Pr[EXP(1) = 1] |

is “negligible.”

Chal.

b

Adv. 𝒜b=0:   k¬K,  f ¬F(k,×)
b=1:   f¬Funs[X,Y]

xi Î X
f(xi)

b’ Î {0,1}



An example
Let K = X = {0,1}n .
Consider the PRF:     F(k, x) = k ⊕ x     defined over  (K, X, X)

Let’s show that F is insecure:
Adversary 𝒜 : (1) choose arbitrary  x0 ≠ x1 ∈ X 

(2) query for   y0 = f(x0)   and   y1 = f(x1)
(3) output `0’  if  y0 ⊕ y1 = x0 ⊕ x1 ,   else `1’
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⟹ AdvPRF[𝒜,F] = 1 − (1/2𝑛) (not negligible)

Pr[EXP(0) = 0] = 1 Pr[EXP(1) = 0] = 1/2n
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Secure PRP
• For   b=0,1   define experiment   EXP(b)  as:

• Def:  E is a secure PRP if for all “efficient” 𝒜 :
AdvPRP[𝒜,E]  =  |Pr[EXP(0) = 1] – Pr[EXP(1) = 1] |

is “negligible.”

Chal.

b

Adv. 𝒜b=0:   k¬K,  f ¬E(k,×)
b=1:   f¬Perms[X]

xi Î X
f(xi)

b’ Î {0,1}
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Example secure PRPs

• Example secure PRPs:      3DES,   AES,   …

AES256:   K ´ X  ® X where      X = {0,1}128

• AES256 PRP Assumption (example) :

For all 𝒜 s.t. time(𝒜) < 280 :      AdvPRP[𝒜, AES256] < 2-40

K = {0,1}256
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The PRP-PRF Switching Lemma

Any secure PRP is also a secure PRF.

Lemma:     Let   E   be a PRP over  (K, X). 
Then for any   q-query  adversary 𝒜 :

| AdvPRF[𝒜,E] - AdvPRP[𝒜,E] | <   q2 / 2|X|

Þ Suppose |X| is large so that    q2 / 2|X|     is “negligible” 

Then   AdvPRP[𝒜,E] “negligible”   Þ AdvPRF[𝒜,E] “negligible”
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Using PRPs and PRFs
• Goal:  build “secure” encryption from a PRP.

• Security is always defined using two parameters:

1.  What “power” does adversary have?      
examples: 
• Adv sees only one ciphertext (one-time key)
• Adv sees many   PT/CT  pairs    (many-time key,  CPA)

2.  What “goal” is adversary trying to achieve?    
examples:
• Fully decrypt a challenge ciphertext.
• Learn info about PT from CT   (semantic security)
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Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:   
– if    m1=m2 then   c1=c2

PT:

CT:

m1 m2

c1 c2
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In pictures

(courtesy B. Preneel)
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Modes of Operation for 
One-time Use Key

Example application:    

Encrypted email.    New key for every message.
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Semantic Security for one-time key
• E = (E,D)   a cipher defined over  (K,M,C)
• For   b=0,1   define EXP(b)  as:

• Def: E is sem. sec. for one-time key if for all “efficient” 𝒜 :

AdvSS[𝒜,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |
is “negligible.”

Chal.

b

Adv. 𝒜

k¬K m0 , m1  Î M :    |m0| = |m1|

c ¬ E(k, mb)

b’ Î {0,1}
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Adv. B  (us)

Semantic security (cont.)
Sem. Sec. Þ no “efficient” adversary learns “info” about PT 

from a single CT.
Example:  suppose efficient 𝒜 can deduce LSB of PT from CT.     
Then E = (E,D) is not semantically secure.  

Chal.

bÎ{0,1}

Adv. 𝒜
(given)

k¬K

c ¬ E(k, mb)

m0, LSB(m0)=0
m1, LSB(m1)=1

c

LSB(mb)=b

Then  AdvSS[B, E] = 1     Þ E is not sem. sec. 
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Note:  ECB is not Sem. Sec.

ECB is not semantically secure for messages that contain 
two or more blocks.

Two blocks
Chal.

bÎ{0,1}

Adv. 𝒜

k¬K

(c1,c2) ¬ E(k, mb)

m0 = “Hello  World”

m1 = “Hello  Hello”

If  c1=c2 output 1,  else output 0
Then  AdvSS[𝒜, ECB] = 1 



29

Secure Constructions

Examples of sem. sec. systems:
1.  AdvSS[𝒜, OTP] = 0     for all 𝒜

2.  Deterministic counter mode from a PRF  F :
• EDETCTR (k,m)  = 

• Stream cipher built from PRF   (e.g.  AES)

m[0] m[1] …

F(k,0) F(k,1) …

m[L]

F(k,L)
Å

c[0] c[1] … c[L]
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Det. counter-mode security

Theorem: For any L>0.
If F is a secure PRF over (K,X,X) then 
EDETCTR is sem. sec. cipher over (K,XL,XL).

In particular,  for any adversary 𝒜 attacking EDETCTR

there exists a PRF adversary B  s.t.:

AdvSS[𝒜, EDETCTR] = 2×AdvPRF[B, F]

AdvPRF[B, F]  is negligible  (since F is a secure PRF)

⇒ AdvSS[𝒜, EDETCTR]  must be negligible.
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Modes of Operation for 
Many-time Key

Example applications:    

1.  File systems:    Same AES key used to encrypt many files.

2.  IPsec:   Same AES key used to encrypt many packets.



Semantic Security for many-time key   (CPA security)

Cipher E = (E,D)  defined over  (K,M,C).    
For   b=0,1   define EXP(b)  as:

Def: E is sem. sec. under CPA if for all “efficient” 𝒜 :
AdvCPA [𝒜,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |    

is “negligible.”

Chal. Adv. 𝒜

k¬K

b’ Î {0,1}

mi,0 , mi,1  Î M :    |mi,0| = |mi,1|

ci ¬ E(k, mi,b)

if adv. wants  c = E(k, m)  it queries with  mj,0= mj,1=m

for i=1,…,q:  b ∈ {0,1}
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Security for many-time key
Fact: stream ciphers are insecure under CPA.

– More generally:    if  E(k,m)  always produces same 
ciphertext, then cipher is insecure under CPA.

If secret key is to be used multiple times   Þ
given the same plaintext message twice, 
the encryption alg. must produce different outputs.

Chal. Adv.

k¬K

m0 , m1  Î M 

c ¬ E(k, mb)

m0 Î M
c0 ¬E(k, m0)

output 0
if  c = c0



Nonce-based Encryption

nonce  n:    a value that changes from msg to msg
(k,n)  pair never used more than once

• method 1:   encryptor chooses a random nonce,   n ¬ N

• method 2:   nonce is a counter   (e.g. packet counter)
– used when encryptor keeps state from msg to msg
– if decryptor has same state, need not send nonce with CT
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Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce
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Construction 1:   CBC with random nonce

Cipher block chaining with a random IV        (IV = nonce)

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3]IV

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

note:   CBC where attacker can predict the IV is not CPA-secure.  HW.
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CBC:    CPA Analysis

CBC Theorem:     For any L>0,
If E is a secure PRP over (K,X) then 
ECBC is a sem. sec. under CPA over (K, XL, XL+1).

In particular,  for a q-query adversary A attacking ECBC

there exists a PRP adversary B  s.t.:

AdvCPA[A, ECBC] £ 2×AdvPRP[B, E]  +  2 q2 L2 / |X|

Note:    CBC is only secure as long as q2⋅L2 ≪ |X|

# messages enc. with key max msg length



37

Construction 1’:   CBC with unique nonce

Cipher block chaining with unique IV        (IV = nonce)

E(k1,×) E(k1,×) E(k1,×)

m[0] m[1] m[2] m[3]

Å ÅÅ

E(k1,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

IV

E(k2,×)

IV′

unique IV means:    (key,IV)  pair is used for only one message

included only if unknown to decryptor



A CBC technicality:  padding

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3]  ll pad

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

IV

E(k1,×)

IV′

TLS 1.0:  if need n-byte pad, n>0, use:
if no pad needed, add a dummy block

n-1 n-1 ⋯ n-1 
pad is 
removed
during
decryption
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Construction 2:  rand ctr-mode

m[0] m[1] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)
Å

c[0] c[1] … c[L]

IV

IV

IV - chosen at random for every message

note:  parallelizable (unlike CBC)

msg

ciphertext
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Construction 2’:  nonce ctr-mode

m[0] m[1] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)
Å

c[0] c[1] … c[L]

IV

IV

msg

ciphertext

nonce
128 bits

counterIV:
96 bits 32 bits

To ensure  F(K,x)  is never used more than once, choose IV as: 

starts at 0
for every msg
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rand ctr-mode:   CPA analysis
Randomized counter mode:   random IV.

Counter-mode Theorem:     For any L>0,
If F is a secure PRF over (K,X,X) then 
ECTR is a sem. sec. under CPA over (K,XL,XL+1).

In particular,  for a q-query adversary A attacking ECTR

there exists a PRF adversary B  s.t.:

AdvCPA[A, ECTR] £ 2×AdvPRF[B, F]  +  2 q2 L / |X|

Note:    ctr-mode only secure as long as q2⋅L  ≪ |X|

Better then CBC !    



An example

q = # messages encrypted with k  ,    L = length of max msg

Suppose we want    AdvCPA[A, ECTR]   ≤   1/ 231

• Then need:   q2 L / |X|  ≤  1/ 232

• AES:     |X| = 2128 ⇒ q L1/2 < 248

So, after  232 CTs each of  len 232 , must change key

(total of 264 AES blocks)

AdvCPA [A, ECTR] £ 2×AdvPRF[B, E]  +  2 q2 L / |X|



Comparison:  ctr vs. CBC
CBC ctr mode

required primitive PRP PRF

parallel processing No Yes

security q^2 L^2  << |X| q^2 L  << |X|

dummy padding block Yes* No

1 byte msgs
(nonce-based) 16x expansion no expansion

* for CBC, dummy padding block can be avoided using ciphertext stealing
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Summary

PRPs and PRFs:   a useful abstraction of block ciphers.

We examined two security notions:     
1. Semantic security against one-time.
2. Semantic security against many-time CPA.
Note:   neither mode ensures data integrity.

Stated security results summarized in the following table:

one-time key Many-time key 
(CPA)

CPA  and
CT integrity

Sem. Sec. steam-ciphers
det. ctr-mode

rand CBC
rand ctr-mode

later

Goal
Power



Attacks on block ciphers

Goal:   distinguish block cipher from a random permutation

• if this can be done efficiently then block cipher is broken

Harder goal:   
find key 𝑘 given many  𝑐𝑖 = 𝐸(𝑘,𝑚$) for random 𝑚𝑖
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(1) Linear and differential attacks   
[BS’89,M’93] 

Given many (𝑚$, 𝑐$) pairs, can recover key much faster than 
exhaustive search

Linear cryptanalysis   (overview) :   let  c = DES(k, m)

Suppose for random  𝑘,𝑚 :

Pr[ m[i1]⨁⋯⨁m[ir]  ⨁ c[jj]⨁⋯⨁c[jv]  =  k[l1]⨁⋯⨁k[lu] ] = ½ + 𝜀

For some  𝜀.      

For DES, this exists with    𝜀 = 1/221  ≈  0.0000000477    !!



Linear attacks

Pr[m[i1]⨁⋯⨁m[ir]  ⨁ c[jj]⨁⋯⨁c[jv]  =  k[l1]⨁⋯⨁k[lu] ] = ½ + ε

Thm:  given  1/ε2  random pairs  (m, c=DES(k, m)) then

k[l1]⨁…⨁k[lu]  = MAJ[ m[i1]⨁…⨁m[ir] ⨁ c[jj]⨁…⨁c[jv] ]
with prob. ≥ 97.7%

⇒ with  1/ε2 inp/out pairs can find  k[l1]⨁…⨁k[lu]  in time  ≈1/ε2

.



Linear attacks

For DES,  ε = 1/221   ⇒
with  242 inp/out pairs can find  k[l1]⨁…⨁k[lu] in time 242

Roughly speaking:   can find 14 key “bits” this way in time 242

Brute force remaining   56−14=42  bits in time 242

Attack time:   ≈243 ( << 256 )   with  242 random inp/out pairs 



Lesson

A tiny bit of linearly leads to a 242 time attack.

⇒ don’t design ciphers yourself  !!



(2) Side channel attacks on software AES

Attacker measures the time to compute AES128(k,m) for 
many random blocks m.

– Suppose that the 256-byte  S  table is not in L1 cache at 
the start of each invocation
⟹ time to encrypt reveals the order in which S entries 

are accessed
⟹ leaks info. that can compromise entire key

Lesson:  don’t implement AES yourself !

Mitigation:  AES-NI  or  use vetted software (e.g., BoringSSL)
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(3) Quantum attacks

Generic search problem:
Let   f: X ⟶ {0,1}  be a function.
Goal:    find  x∈X s.t. f(x)=1.

Classical computer:  best generic algorithm time  =  O( |X| )

Quantum computer [Grover ’96] :      time = O( |X|1/2 )

(requires a long running quantum computation)



Quantum exhaustive search

Given   m,  c=E(k,m)    define

Grover   ⇒ quantum computer can find k in time   O( |K|1/2 )

AES128:   quantum key recovery time   ≈264

Adversary has access to a quantum computer    ⟹

encrypt data using a cipher with 256-bit keys (AES256)

1 if  E(k,m) = c

0    otherwise
f(k) = 



THE  END
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