
1

PRPs and PRFs

CS255: Winter 2022

Dan Boneh, Stanford University

Quick Recap

A block cipher is a pair of efficient algs. (E, D):

2

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:
1. AES: n=128 bits, k = 128, 192, 256 bits
2. 3DES: n= 64 bits, k = 168 bits (historical)

Block Ciphers Built by Iteration

R(k,m) is called a round function

3DES: n=48, AES128: n=10, AES256: n=14

key k

key expansion

k1 k2 k3 kn

R
(k

1,
×)

R
(k

2,
×)

R
(k

3,
×)

R
(k

n,
×)m c

AES: an iterated Even-Mansour cipher

input ⨁

𝑘2

⋯

𝑘!"#

⨁𝜋 ⨁
𝑘1

⨁

𝑘0

output

⨁

𝑘𝑑

key key expansion:

invertible

𝜋 𝜋

𝜋: {0,1}𝑛 ⇾ {0,1}𝑛 invertible function

single round EM

AES128: 10 rounds of EM

input

4

4

10 rounds

(1) ByteSub
(2) ShiftRow
(3) MixColumn ⨁

k2

⋯

k9

⨁

(1) ByteSub
(2) ShiftRow
(3) MixColumn

⨁
k1

⨁

k0

(1) ByteSub
(2) ShiftRow

output

4

4

⨁

k10

key
16 bytes

key expansion:

invertible

16 bytes ⟶176 bytes

The permutation 𝜋
(1) ByteSub: a 1 byte S-box. 256 byte table. (invertible)

(2) ShiftRows:

(3) MixColumns:

Recall the AES pledge

7

I promise that I will not implement AES myself
in production code, even though it might be

fun. This agreement will remain in effect until
I learn all about side-channel attacks and

countermeasures to the point where I lose all
interest in implementing AES myself.

Performance (no HW acceleration)

Cipher Block/key size Speed (MB/sec)

ChaCha20 - / 256 643

3DES 64 / 168 30
AES128 128 / 128 163

AES256 128 / 256 115

block

AES-NI: AES hardware instructions

AES instructions (Intel, AMD, ARM, …)

• aesenc, aesenclast: do one round of AES

128-bit registers: xmm1=state, xmm2=round key

aesenc xmm1, xmm2 ; puts result in xmm1

• aesdec, aesdeclast: one round of AES-1

• aeskeygenassist: performs AES key expansion

Claim 1: 14 x speed-up over OpenSSL on same hardware

Claim 2: constant time execution

AES-NI: parallelism and pipelining

• Intel Skylake (old): 4 cycles for one aesenc
• fully pipelined: can issue one instruction every cycle

• Intel Icelake (2019): vectorized aesenc (vaesenc)
• vaesenc: compute aesenc on four blocks in parallel
• fully pipelined

Implications:

• AES128 encrypt a single block takes 40 cycles (10 rounds)

• AES128 encrypt 16 blocks on Icelake takes 43 cycles

10

AES128 encrypt on Icelake

To encrypt 16 blocks do: m0, …, m15 ∈ {0,1}128

11cycles

(4 cycles)

… finish all 10 rounds after 43 cycles

m0 m1 m2 m3 (vaesenc)

m4 m5 m6 m7 (vaesenc)

m8 m9 m10 m11 (vaesenc)

m12 m13 m14 m15 (vaesenc)

m0' m1’ m2’ m3’ (aesenc)

m4’ m5’ m6’ m7’ (vaesenc)

12

PRPs and PRFs

Topics:

1. Abstract block ciphers: PRPs and PRFs

2. Security models for encryption

3. Analysis of CBC and counter mode

13

PRPs and PRFs
• Pseudo Random Function (PRF) defined over (K,X,Y):

F: K ´ X ® Y

such that exists “efficient” algorithm to evaluate F(k,x)

• Pseudo Random Permutation (PRP) defined over (K,X):

E: K ´ X ® X
such that:

1. Exists “efficient” algorithm to evaluate E(k,x)

2. The function E(k, ×) is one-to-one
3. Exists “efficient” inversion algorithm D(k,x)

14

Running example

• Example PRPs: 3DES, AES, …

AES128: K ´ X ® X where K = X = {0,1}128

DES: K ´ X ® X where X = {0,1}64 , K = {0,1}56

3DES: K ´ X ® X where X = {0,1}64 , K = {0,1}168

• Functionally, any PRP is also a PRF.
– A PRP is a PRF where X=Y and is efficiently invertible

– A PRP is sometimes called a block cipher

15

Secure PRFs
• Let F: K ´ X ® Y be a PRF

Funs[X,Y]: the set of all functions from X to Y

SF = { F(k,×) s.t. k Î K } Í Funs[X,Y]

• Intuition: a PRF is secure if
a random function in Funs[X,Y] is indistinguishable from
a random function in SF

SF

Size |K|

Funs[X,Y]

Size |Y||X|

Secure PRFs
• Let F: K ´ X ® Y be a PRF

Funs[X,Y]: the set of all functions from X to Y

SF = { F(k,×) s.t. k Î K } Í Funs[X,Y]

• Intuition: a PRF is secure if
a random function in Funs[X,Y] is indistinguishable from
a random function in SF

k ¬ K

f ¬ Funs[X,Y]
x Î X

f(x) or F(k,x) ?

???

17

Secure PRF: defintion
• For b=0,1 define experiment EXP(b) as:

• Def: F is a secure PRF if for all “efficient” 𝒜 :
AdvPRF[𝒜,F] = |Pr[EXP(0) = 1] – Pr[EXP(1) = 1] |

is “negligible.”

Chal.

b

Adv. 𝒜b=0: k¬K, f ¬F(k,×)
b=1: f¬Funs[X,Y]

xi Î X
f(xi)

b’ Î {0,1}

An example
Let K = X = {0,1}n .
Consider the PRF: F(k, x) = k ⊕ x defined over (K, X, X)

Let’s show that F is insecure:
Adversary 𝒜 : (1) choose arbitrary x0 ≠ x1 ∈ X

(2) query for y0 = f(x0) and y1 = f(x1)
(3) output `0’ if y0 ⊕ y1 = x0 ⊕ x1 , else `1’

18

⟹ AdvPRF[𝒜,F] = 1 − (1/2𝑛) (not negligible)

Pr[EXP(0) = 0] = 1 Pr[EXP(1) = 0] = 1/2n

19

Secure PRP
• For b=0,1 define experiment EXP(b) as:

• Def: E is a secure PRP if for all “efficient” 𝒜 :
AdvPRP[𝒜,E] = |Pr[EXP(0) = 1] – Pr[EXP(1) = 1] |

is “negligible.”

Chal.

b

Adv. 𝒜b=0: k¬K, f ¬E(k,×)
b=1: f¬Perms[X]

xi Î X
f(xi)

b’ Î {0,1}

20

Example secure PRPs

• Example secure PRPs: 3DES, AES, …

AES256: K ´ X ® X where X = {0,1}128

• AES256 PRP Assumption (example) :

For all 𝒜 s.t. time(𝒜) < 280 : AdvPRP[𝒜, AES256] < 2-40

K = {0,1}256

21

The PRP-PRF Switching Lemma

Any secure PRP is also a secure PRF.

Lemma: Let E be a PRP over (K, X).
Then for any q-query adversary 𝒜 :

| AdvPRF[𝒜,E] - AdvPRP[𝒜,E] | < q2 / 2|X|

Þ Suppose |X| is large so that q2 / 2|X| is “negligible”

Then AdvPRP[𝒜,E] “negligible” Þ AdvPRF[𝒜,E] “negligible”

22

Using PRPs and PRFs
• Goal: build “secure” encryption from a PRP.

• Security is always defined using two parameters:

1. What “power” does adversary have?
examples:
• Adv sees only one ciphertext (one-time key)
• Adv sees many PT/CT pairs (many-time key, CPA)

2. What “goal” is adversary trying to achieve?
examples:
• Fully decrypt a challenge ciphertext.
• Learn info about PT from CT (semantic security)

23

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:
– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

24

In pictures

(courtesy B. Preneel)

25

Modes of Operation for
One-time Use Key

Example application:

Encrypted email. New key for every message.

26

Semantic Security for one-time key
• E = (E,D) a cipher defined over (K,M,C)
• For b=0,1 define EXP(b) as:

• Def: E is sem. sec. for one-time key if for all “efficient” 𝒜 :

AdvSS[𝒜,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] |
is “negligible.”

Chal.

b

Adv. 𝒜

k¬K m0 , m1 Î M : |m0| = |m1|

c ¬ E(k, mb)

b’ Î {0,1}

27

Adv. B (us)

Semantic security (cont.)
Sem. Sec. Þ no “efficient” adversary learns “info” about PT

from a single CT.
Example: suppose efficient 𝒜 can deduce LSB of PT from CT.
Then E = (E,D) is not semantically secure.

Chal.

bÎ{0,1}

Adv. 𝒜
(given)

k¬K

c ¬ E(k, mb)

m0, LSB(m0)=0
m1, LSB(m1)=1

c

LSB(mb)=b

Then AdvSS[B, E] = 1 Þ E is not sem. sec.

28

Note: ECB is not Sem. Sec.

ECB is not semantically secure for messages that contain
two or more blocks.

Two blocks
Chal.

bÎ{0,1}

Adv. 𝒜

k¬K

(c1,c2) ¬ E(k, mb)

m0 = “Hello World”

m1 = “Hello Hello”

If c1=c2 output 1, else output 0
Then AdvSS[𝒜, ECB] = 1

29

Secure Constructions

Examples of sem. sec. systems:
1. AdvSS[𝒜, OTP] = 0 for all 𝒜

2. Deterministic counter mode from a PRF F :
• EDETCTR (k,m) =

• Stream cipher built from PRF (e.g. AES)

m[0] m[1] …

F(k,0) F(k,1) …

m[L]

F(k,L)
Å

c[0] c[1] … c[L]

30

Det. counter-mode security

Theorem: For any L>0.
If F is a secure PRF over (K,X,X) then
EDETCTR is sem. sec. cipher over (K,XL,XL).

In particular, for any adversary 𝒜 attacking EDETCTR

there exists a PRF adversary B s.t.:

AdvSS[𝒜, EDETCTR] = 2×AdvPRF[B, F]

AdvPRF[B, F] is negligible (since F is a secure PRF)

⇒ AdvSS[𝒜, EDETCTR] must be negligible.

31

Modes of Operation for
Many-time Key

Example applications:

1. File systems: Same AES key used to encrypt many files.

2. IPsec: Same AES key used to encrypt many packets.

Semantic Security for many-time key (CPA security)

Cipher E = (E,D) defined over (K,M,C).
For b=0,1 define EXP(b) as:

Def: E is sem. sec. under CPA if for all “efficient” 𝒜 :
AdvCPA [𝒜,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] |

is “negligible.”

Chal. Adv. 𝒜

k¬K

b’ Î {0,1}

mi,0 , mi,1 Î M : |mi,0| = |mi,1|

ci ¬ E(k, mi,b)

if adv. wants c = E(k, m) it queries with mj,0= mj,1=m

for i=1,…,q: b ∈ {0,1}

33

Security for many-time key
Fact: stream ciphers are insecure under CPA.

– More generally: if E(k,m) always produces same
ciphertext, then cipher is insecure under CPA.

If secret key is to be used multiple times Þ
given the same plaintext message twice,
the encryption alg. must produce different outputs.

Chal. Adv.

k¬K

m0 , m1 Î M

c ¬ E(k, mb)

m0 Î M
c0 ¬E(k, m0)

output 0
if c = c0

Nonce-based Encryption

nonce n: a value that changes from msg to msg
(k,n) pair never used more than once

• method 1: encryptor chooses a random nonce, n ¬ N

• method 2: nonce is a counter (e.g. packet counter)
– used when encryptor keeps state from msg to msg
– if decryptor has same state, need not send nonce with CT

34

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

35

Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3]IV

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

36

CBC: CPA Analysis

CBC Theorem: For any L>0,
If E is a secure PRP over (K,X) then
ECBC is a sem. sec. under CPA over (K, XL, XL+1).

In particular, for a q-query adversary A attacking ECBC

there exists a PRP adversary B s.t.:

AdvCPA[A, ECBC] £ 2×AdvPRP[B, E] + 2 q2 L2 / |X|

Note: CBC is only secure as long as q2⋅L2 ≪ |X|

messages enc. with key max msg length

37

Construction 1’: CBC with unique nonce

Cipher block chaining with unique IV (IV = nonce)

E(k1,×) E(k1,×) E(k1,×)

m[0] m[1] m[2] m[3]

Å ÅÅ

E(k1,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

IV

E(k2,×)

IV′

unique IV means: (key,IV) pair is used for only one message

included only if unknown to decryptor

A CBC technicality: padding

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3] ll pad

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

IV

E(k1,×)

IV′

TLS 1.0: if need n-byte pad, n>0, use:
if no pad needed, add a dummy block

n-1 n-1 ⋯ n-1
pad is
removed
during
decryption

39

Construction 2: rand ctr-mode

m[0] m[1] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)
Å

c[0] c[1] … c[L]

IV

IV

IV - chosen at random for every message

note: parallelizable (unlike CBC)

msg

ciphertext

40

Construction 2’: nonce ctr-mode

m[0] m[1] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)
Å

c[0] c[1] … c[L]

IV

IV

msg

ciphertext

nonce
128 bits

counterIV:
96 bits 32 bits

To ensure F(K,x) is never used more than once, choose IV as:

starts at 0
for every msg

41

rand ctr-mode: CPA analysis
Randomized counter mode: random IV.

Counter-mode Theorem: For any L>0,
If F is a secure PRF over (K,X,X) then
ECTR is a sem. sec. under CPA over (K,XL,XL+1).

In particular, for a q-query adversary A attacking ECTR

there exists a PRF adversary B s.t.:

AdvCPA[A, ECTR] £ 2×AdvPRF[B, F] + 2 q2 L / |X|

Note: ctr-mode only secure as long as q2⋅L ≪ |X|

Better then CBC !

An example

q = # messages encrypted with k , L = length of max msg

Suppose we want AdvCPA[A, ECTR] ≤ 1/ 231

• Then need: q2 L / |X| ≤ 1/ 232

• AES: |X| = 2128 ⇒ q L1/2 < 248

So, after 232 CTs each of len 232 , must change key

(total of 264 AES blocks)

AdvCPA [A, ECTR] £ 2×AdvPRF[B, E] + 2 q2 L / |X|

Comparison: ctr vs. CBC
CBC ctr mode

required primitive PRP PRF

parallel processing No Yes

security q^2 L^2 << |X| q^2 L << |X|

dummy padding block Yes* No

1 byte msgs
(nonce-based) 16x expansion no expansion

* for CBC, dummy padding block can be avoided using ciphertext stealing

44

Summary

PRPs and PRFs: a useful abstraction of block ciphers.

We examined two security notions:
1. Semantic security against one-time.
2. Semantic security against many-time CPA.
Note: neither mode ensures data integrity.

Stated security results summarized in the following table:

one-time key Many-time key
(CPA)

CPA and
CT integrity

Sem. Sec. steam-ciphers
det. ctr-mode

rand CBC
rand ctr-mode

later

Goal
Power

Attacks on block ciphers

Goal: distinguish block cipher from a random permutation

• if this can be done efficiently then block cipher is broken

Harder goal:
find key 𝑘 given many 𝑐𝑖 = 𝐸(𝑘,𝑚$) for random 𝑚𝑖

45

(1) Linear and differential attacks
[BS’89,M’93]

Given many (𝑚$, 𝑐$) pairs, can recover key much faster than
exhaustive search

Linear cryptanalysis (overview) : let c = DES(k, m)

Suppose for random 𝑘,𝑚 :

Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + 𝜀

For some 𝜀.

For DES, this exists with 𝜀 = 1/221 ≈ 0.0000000477 !!

Linear attacks

Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + ε

Thm: given 1/ε2 random pairs (m, c=DES(k, m)) then

k[l1]⨁…⨁k[lu] = MAJ[m[i1]⨁…⨁m[ir] ⨁ c[jj]⨁…⨁c[jv]]
with prob. ≥ 97.7%

⇒ with 1/ε2 inp/out pairs can find k[l1]⨁…⨁k[lu] in time ≈1/ε2

.

Linear attacks

For DES, ε = 1/221 ⇒
with 242 inp/out pairs can find k[l1]⨁…⨁k[lu] in time 242

Roughly speaking: can find 14 key “bits” this way in time 242

Brute force remaining 56−14=42 bits in time 242

Attack time: ≈243 (<< 256) with 242 random inp/out pairs

Lesson

A tiny bit of linearly leads to a 242 time attack.

⇒ don’t design ciphers yourself !!

(2) Side channel attacks on software AES

Attacker measures the time to compute AES128(k,m) for
many random blocks m.

– Suppose that the 256-byte S table is not in L1 cache at
the start of each invocation
⟹ time to encrypt reveals the order in which S entries

are accessed
⟹ leaks info. that can compromise entire key

Lesson: don’t implement AES yourself !

Mitigation: AES-NI or use vetted software (e.g., BoringSSL)

50

(3) Quantum attacks

Generic search problem:
Let f: X ⟶ {0,1} be a function.
Goal: find x∈X s.t. f(x)=1.

Classical computer: best generic algorithm time = O(|X|)

Quantum computer [Grover ’96] : time = O(|X|1/2)

(requires a long running quantum computation)

Quantum exhaustive search

Given m, c=E(k,m) define

Grover ⇒ quantum computer can find k in time O(|K|1/2)

AES128: quantum key recovery time ≈264

Adversary has access to a quantum computer ⟹

encrypt data using a cipher with 256-bit keys (AES256)

1 if E(k,m) = c

0 otherwise
f(k) =

THE END

53

