
CS255: Intro. to Cryptography Winter 2024

Assignment #3
Due: 11:59pm on Thu., Feb. 22, 2024, on Gradescope (each answer on a new page).

Problem 1. (One-time MAC ) Recall that the one-time pad (OTP) is a semantically secure
cipher that is unconditionally secure (that is, we can prove it secure without making any
assumptions). In this question we build a one-time MAC that is unconditionally secure. A
one-time MAC is a MAC that is secure against an adversary that makes at most a single
chosen message query. The adversary chooses a message m ∈ M; issues a chosen message
query for m and gets back a tag t for m; and then wins the MAC game if it can output a
valid message-tag pair (m∗, t∗) where (m∗, t∗) ̸= (m, t). The MAC is one-time unconditionally
secure if no adversary can win this game with probability better than 1/|T |.

Let p be a prime and let M := Zp, K := (Zp)
2, and T := Zp. Consider the following

MAC (S, V ) defined over (M,K, T ):

S
(
(k1, k2),m

)
:= k1m+ k2 and V

(
(k1, k2),m, t

)
:=

{
accept if t = k1m+ k2

}
Here additions and multiplications are defined in Zp. It is not difficult to show that (S, V )
is an unconditionally secure one-time MAC (while it is not part of the homework problem,
you can try to prove this for yourself). Your goal for this problem is to show that (S, V ) is
not two-time secure. That is, describe an adversary that can forge the MAC on some third
message after issuing two chosen message queries.

Problem 2. (Multicast MACs) Suppose user A wants to broadcast a message to n recipients
B1, . . . , Bn. Privacy is not important but integrity is: each of B1, . . . , Bn should be assured
that the message it received was sent by A. User A decides to use a MAC.
a. Suppose user A and B1, . . . , Bn all share a secret key k. User A computes the tag for

every message she sends using k. Every user Bi verifies the tag using k. Using at most
two sentences explain why this scheme is insecure, namely, show that user B1 is not
assured that the messages it received are from A.

b. Suppose user A has a set S = {k1, . . . , kℓ} of ℓ secret keys. Each user Bi has some subset
Si ⊆ S of the keys. When A transmits a message she appends ℓ tags to it by MACing
the message with each of her ℓ keys. When user Bi receives a message it accepts the
message as valid only if all tags corresponding to keys in Si are valid. Let us assume
that the users B1, . . . , Bn do not collude with each other. What property should the sets
S1, . . . , Sn satisfy so that the attack from part (a) does not apply?

c. Show that when n = 10 (i.e. ten recipients) it suffices to take ℓ = 5 in part (b). Describe
the sets S1, . . . , S10 ⊆ {k1, . . . , k5} you would use.

d. Show that the scheme from part (c) is insecure if two users are allowed to collude.
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Problem 3. (Parallel Merkle-Damg̊ard) Recall that the Merkle-Damg̊ard construction
gives a sequential method for extending the domain of a CRHF. The tree construction in
the figure below is a parallelizable approach: all the hash functions h within a single level
can be computed in parallel. Prove that the resulting hash function defined over (X≤L, X )
is collision resistant, assuming h is collision resistant. Here h is a compression function
h : X 2 → X , and we assume the message length can be encoded as an element of X .

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

h h h h h

h h h

h

h 11 (msg-len)

h

output

More precisely, the hash function is defined as follows:

input: m1 . . .ms ∈ X s for some 1 ≤ s ≤ L
output: y ∈ X
let t ∈ Z be the smallest power of two such that t ≥ s (i.e., t := 2⌈log2 s⌉)
for i = s+ 1 to t: mi ← ⊥
for i = t+ 1 to 2t− 1:

ℓ← 2(i− t)− 1, r ← ℓ+ 1 // indices of left and right children
if mℓ = ⊥ and mr = ⊥: mi ← ⊥ // if node has no children, set node to null
else if mr = ⊥: mi ← mℓ // if one child, propagate child as is
else mi ← h(mℓ,mr) // if two children, hash with h

output y ← h
(
m2t−1, s

)
// hash final output and message length

Problem 4. (Davies-Meyer) In the lecture we saw that Davies-Meyer is used to convert
an ideal block cipher into a collision resistant compression function. Let E(k,m) be a block
cipher where the message space is the same as the key space (e.g. 128-bit AES). Show that
the following methods do not work:

f1(x, y) = E(y, x)⊕ y and f2(x, y) = E(x, x⊕ y)

That is, show an efficient algorithm for constructing collisions for f1 and f2. Recall that the
block cipher E and the corresponding decryption algorithm D are both known to you.
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Problem 5. (Authenticated encryption) Let (E,D) be an encryption system that provides
authenticated encryption. Here E does not take a nonce as input and therefore must be
a randomized encryption algorithm. Which of the following systems provide authenticated
encryption? For those that do, give a short proof. For those that do not, present an attack
that either breaks CPA security or ciphertext integrity.

a. E1(k,m) =
[
c← E(k,m), output (c, c)

]
and D1(k, (c1, c2) ) = D(k, c1)

b. E2(k,m) =
[
c← E(k,m), output (c, c)

]
and D2(k, (c1, c2) ) =

{
D(k, c1) if c1 = c2

fail otherwise

c. E3(k,m) =
(
E(k,m), E(k,m)

)
and D3(k, (c1, c2) ) =

{
D(k, c1) if D(k, c1) = D(k, c2)

fail otherwise

To clarify: E(k,m) is randomized so that running it twice on the same input will result
in different outputs with high probability.

d. E4(k,m) =
(
E(k,m), H(m)

)
and D4(k, (c1, c2) ) =

{
D(k, c1) if H(D(k, c1)) = c2

fail otherwise

where H is a collision resistant hash function.

Problem 6. Let F be a secure PRF defined over (K,X ,Y) where Y := {0, 1}n. Let
(Ectr, Dctr) be the cipher derived from F using randomized counter mode. Let H : Y≤L → Y
be a collision resistant hash function. Consider the following attempt at building an AE-
secure cipher defined over (K, Y≤L,Y≤L+2):

E ′(k,m) := Ectr

(
k, (H(m),m)

)
; D′(k, c) :=

{
(t,m)← Dctr(k, c)
if t = H(m) output m, else reject

}
Note that when encrypting a single block message m ∈ Y , the output is three blocks: the
random IV, a ciphertext block corresponding to H(m), and a ciphertext block corresponding
to m. Show that (E ′, D′) is not AE-secure by showing that it does not have ciphertext
integrity. Your attack should make a single encryption query.

At some point in the past, this type of construction was used to protect secret keys in
the Android KeyStore. Your attack resulted in a compromise of the key store.

Problem 7. Alice and Bob run the Diffie-Hellman protocol in the cyclic group G = Z∗
101

with generator g = 11. What is the Diffie-Hellman secret s = gab ∈ G if Alice uses a = 7
and Bob uses b = 43? You do not need a calculator to solve this problem!
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Problem 8. (Exponentiation algorithms) Let G be a finite cyclic group of order p with
generator g. In class we discussed the repeated squaring algorithm for computing gx ∈ G
for 0 ≤ x < p. The algorithm needed at most 2 log2 p multiplications in G.

In this question we develop a faster exponentiation algorithm. For some small constant
w, called the window size, the algorithm begins by building a table T of size 2w defined as
follows:

set T [k] := gk for k = 0, . . . , 2w − 1 . (1)

a. Show that once the table T is computed, we can compute gx using only (1+1/w)(log2 p)
multiplications in G. Your algorithm shows that when the base of the exponentiation g
is fixed forever, the table T can be pre-computed once and for all. Then exponentiation
is faster than with repeated squaring.
Hint: Start by writing the exponent x base 2w so that:

x = x0 + x12
w + x2(2

w)2 + . . .+ xd−1(2
w)d−1 where 0 ≤ xi < 2w for all i = 0, . . . , d− 1.

Here there are d digits in the representation of x base 2w. Start the exponentiation
algorithm with xd−1 and work your way down, squaring the accumulator w times at
every iteration.

b. Suppose every exponentiation is done relative to a different base, so that a new table
T must be re-computed for every exponentiation. What is the worse case number of
multiplications as a function of w and log2 p?

c. Continuing with Part (b), compute the optimal window size w when log2 p = 256, namely
the w that minimizes the overall worst-case running time. What is the worst-case running
time with this w? (counting only multiplications in G)

4


