
CS255: Intro. to Cryptography Winter 2025

Assignment #2
Due: 11:59pm on Thu., Jan. 30, 2025, on Gradescope (each answer on a separate page)

Problem 1. (The trouble with compression) Let (E,D) be a semantically secure cipher that
operates on messages in {0, 1}≤n (i.e. messages whose length is at most n bits). Suppose that the
ciphertext output by the encryption algorithm is exactly 128 bits longer than the input plaintext.
To reduce ciphertext size, there is a strong desire to combine encryption with lossless compression.
We can think of compression as a function from {0, 1}≤n to {0, 1}≤n where, for some messages,
the output is shorter than the input. As always, the compression algorithm is publicly known to
everyone.

a. Compress-then-encrypt: Suppose the encryptor compresses the plaintext message m before
passing it to the encryption algorithm E. Some n-bit messages compress well, while other
messages do not compress at all. Show that the resulting system is not semantically secure by
exhibiting a semantic security adversary that obtains advantage close to 1.

b. Encrypt-then-compress: Suppose that instead, the encryptor applies compression to the output
of algorithm E (here you may assume the compression algorithm takes messages of length up
to n+ 128 bits as input). Explain why this proposal is of no use for reducing ciphertext size.

Problem 2. (Broadcast encryption) The movie industry wants to protect digital content dis-
tributed on DVDs. Here is one possible approach. Suppose there are at most a total of n DVD
players in the world (e.g. n = 232). We view these n players as the leaves of a binary tree of height
log2 n. Every node vj in this binary tree contains an AES key kj ∈ K. These keys are kept secret
from consumers and are fixed for all time. At manufacturing time every DVD player is assigned a
serial number i ∈ {0, . . . , n− 1}. Let Si be the set of 1+ log2 n nodes along the path from the root
of the binary tree to leaf number i. The manufacturer embeds in player number i the 1+log2 n keys
associated with the nodes in Si. In this way each DVD player ships with 1+ log2 n keys embedded
in it, and these keys are supposedly inaccessible to the end user. A DVD movie m is encrypted as

DVD := E(kroot, k)︸ ︷︷ ︸
header

∥∥∥∥ E(k,m)︸ ︷︷ ︸
body

,

where k ←R K is a fresh random key called a content key. Since all DVD players have the key kroot,
all players can decrypt the content m. We refer to E(kroot, k) as the header and E(k,m) as the
body. In what follows the DVD header may contain multiple ciphertexts where each ciphertext is
the encryption of the content key k under some key ki in the binary tree.

a. Suppose the 1 + log2 n keys embedded in DVD player number r are exposed by hackers and
published on the Internet. Show that when the movie industry is about to distribute a new
movie m, they can encrypt m using a header containing log2 n short ciphertexts, so that all
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DVD players can decrypt the movie except for player number r. In effect, the movie industry
disables player number r.
Hint: the header will contain log2 n ciphertexts where each ciphertext is the encryption of the
content key k under certain log2 n keys from the binary tree.

b. Next, suppose the keys embedded in s DVD players R = {r1, . . . , rs} are exposed by hackers,
where s > 1. Show that the movie industry can encrypt the contents of a new DVD using a
header containing O(s log n) short ciphertexts so that all players can decrypt the movie except
for the players in R. You have just shown that all hacked players can be disabled without
affecting other consumers.

Side note: the AACS system used to encrypt Blu-ray and HD-DVD disks uses a related system. It
was quickly discovered that hackers can expose player secret keys faster than the MPAA can revoke
them.

Problem 3. The purpose of this problem is to exercise the concept of advantage. Consider the
following two experiments EXP(0) and EXP(1) between a challenger and an adversary A:

• In EXP(0) the challenger choose a uniform random number x in the set {1, 2, . . . , 6}, and
sends x to the adversary A.

• In EXP(1) the challenger choose a uniform random number y in the set {1, 2, . . . , 10}, and
sends y to the adversary A.

The adversary’s goal is to distinguish these two experiments: at the end of each experiment the
adversary A outputs a bit 0 or 1 for its guess for which experiment it is in. For b = 0, 1 let Wb

be the event that in experiment b the adversary outputs 1. The adversary tries to maximize its
distinguishing advantage, namely the quantity

Adv[A] :=
∣∣∣Pr[W0]− Pr[W1]

∣∣∣ ∈ [0, 1] .

The advantage Adv captures the adversary’s ability to distinguish the two distributions. If the
advantage is 0 then the adversary behaves exactly the same in both experiments and therefore does
not distinguish between them. If the advantage is 1 then the adversary can tell perfectly what
experiment it is in. If the advantage is negligible for all efficient adversaries (as defined in class)
then we say that the two experiments are indistinguishable.

a. Consider the following adversary A0 that takes as input an integer z and outputs {0, 1}:

if z ∈ {1, . . . , 4}: output 0
else: output 1

What is the advantage Adv[A0] of this adversary in distinguishing the two experiments?

b. Describe an adversary A1 that achieves the highest advantage you can think of.
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Problem 4. (PRFs) Let F be a secure PRF defined over (K,X ,Y), where K = X = Y = {0, 1}n.

a. Show that F1

(
(k1, k2), (x1, x2)

)
:= F (k1, x1)⊕F (k2, x2) is not a secure PRF. That is, construct

a PRF adversary A1 that has non-negligible advantage in distinguishing F1(k, ·) from a random
function in Funs[X 2,Y]. Hint: your attacker will query F1 at four points.

b. Show that F2(k, x) := F (k, x) ∥ F (k, F (k, x)) is not a secure PRF. Here ∥ means the concatena-
tion of the two outputs. Hint: your adversary A2 will query F2 at two inputs, where the second
query depends on the answer to the first query.

c. Prove that F3(k, x) := F (k, x)⊕ x is a secure PRF. Do so by proving the contrapositive: show
that if an adversary A3 can distinguish F3(k, ·) from a random function then there is adversary
B (that is a wrapper around A3) that can distinguish F from a random function. This B will
play the role of PRF challenger to A3, and attack F .

Problem 5. (Broken Even-Mansour ciphers) Let π : X → X be a fixed public one-to-one
function, where X := {0, 1}n, and where π and π−1 are efficiently computable. The Even-Mansour
pseudorandom permutation (E,D) derived from π, is defined as

E
(
(k0, k1), x

)
:= π(x⊕ k0)⊕ k1 and D

(
(k0, k1), c

)
:= π−1(c⊕ k1)⊕ k0.

This permutation corresponds to one round of AES, and can be shown to be a secure PRP when π
is chosen at random from Perms[X ], and when |X | is sufficiently large. Let’s look at some broken
variants of Even-Mansour.

a. Show that E1(k1, x) := π(x)⊕ k1 is not a secure PRP.

b. Show that E2(k0, x) := π(x⊕ k0) is not a secure PRP.

Problem 6. (Exercising the definition of semantic security) Let (E,D) be a semantically secure
cipher defined over (K,M, C), where M = C = {0, 1}L. Which of the following encryption algo-
rithms yields a semantically secure scheme? Either give an attack or provide a security proof. To
prove security, prove the contrapositive, that is prove that a semantic security attacker A on the
proposed system gives a semantic security attacker B on (E,D), with the same advantage.

a. E1(k,m) := 0 ∥ E(k,m)

b. E2(k,m) := E(k,m) ∥ parity(m)

c. E3(k,m) := reverse(E(k,m))

d. E4(k,m) := E(k, reverse(m))

Here, for a bit string s, parity(s) is 1 if the number of 1’s in s is odd, and 0 otherwise; also,
reverse(s) is the string obtained by reversing the order of the bits in s, e.g., reverse(1011) = 1101.
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Problem 7. (Why double-AES128 is a bad idea) Let E := (E,D) be a cipher defined over
(K,M, C) where C ⊆ M. One can define a cipher with double the key length, called 2E , defined
over (K2,M, C) as follows:

2E
(
(k1, k2),m

)
:= E

(
k1, E(k2,m)

)
.

That is, we apply the encryption algorithm E twice with independent keys k1 and k2.

a. Write out the decryption algorithm: 2D
(
(k1, k2), c

)
:= . . .

Recall that the AES block cipher can take either 128, 192, or 256 bit keys, denoted AES128,
AES192, and AES256, respectively. You are probably wondering why is there a need for AES256.
We can simply define AES256 to be 2AES128, namely define

BadAES256
(
(k1, k2),m

)
:= 2AES128

(
(k1, k2),m

)
= AES128

(
k1,AES128(k2,m)

)
.

The key for this BadAES256 is (k1, k2) which is 256 bits, as required. So why is AES256 a separate
algorithm? Why can’t we simply use 2AES128?

b. Your goal is to show that the 2E cipher is no more secure than the underlying E cipher. This
means that 2AES128 is no more secure than AES128, which is not what we want for AES256.

For a multi-block message M = (m1,m2, . . . ,mn) write E(k,M) :=
(
E(k,m1), . . . , E(k,mn)

)
.

You are given a pair (M,C) where C = 2E
(
(k1, k2),M

)
. You may assume that there is a unique

(k1, k2) ∈ K2 that satisfies C = 2E
(
(k1, k2),M

)
. Your goal is to find this (k1, k2).

Given (M,C) as input, an exhaustive search algorithm over all possible (k1, k2) will take time
O(|K|2). Your goal is to design an algorithm that finds (k1, k2) in time O(|K|). This is the time
to break E by exhaustive search which means that 2E is no more secure than E .

Hint: First, observe that if C = 2E
(
(k1, k2),M

)
then

E(k2,M) = D(k1, C). (1)

Try building a table T of pairs
(
k, E(k,M)

)
for all k ∈ K. Constructing this table takes |K|

evaluations of E(k,M), and the table will contain all possible values of the left-hand side of (1).
Now that T is built, show that you can find (k1, k2) in time O(|K|). To do so, use the right-hand
side of (1). You can assume that testing if T contains a pair (∗, c) can be done in constant time
using an appropriate data structure for T .

Discussion: The algorithm from part (b) is called a meet in the middle attack because you are
attacking the mid-point of algorithm 2E . Meet in the middle attacks come up often in cryptography.
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