
Dan Boneh

Auth. Key Exchange

Dan Boneh

Review: key exchange
Alice and Bank want to generate a secret key
• So far we saw key exchange secure against eavesdropping

BankAlice

k k
eavesdropper ??

• This lecture: Authenticated Key Exchange (AKE)
key exchange secure against active adversaries

Dan Boneh

Active adversary
Adversary has complete control of the network:
• Can modify, inject and delete packets
• Example: man-in-the-middle

Moreover, some users are honest and others are corrupt
• Corrupt users are controlled by the adversary
– Key exch. with corrupt users should not “affect” other sessions

BankAlice m
m’

Dan Boneh

Trusted Third Party (TTP)
All AKE protocols require a TTP to certify user identities.

Registration process:

Alice Bank
TTPI am Alice, proof I am Bank.com, proof

Two types of TTP:

• Offline TTP (CA): contacted only during registration (and revocation)

• Online TTP: actively participates in every key exchange (Kerberos)
Benefit: security using only symmetric crypto

skalice skbank

(here, we only consider offline TTP)

certalice certbank

Dan Boneh

AKE: syntax

Followed by Alice sending E(k, “data”) to Bank and vice versa.

Alice Bank
skalice skbank

certbankcertalice

Bank Alice

pkCA pkCA

k , Bank k , Aliceor ⊥ or ⊥

Dan Boneh

Basic AKE security (very informal)
Suppose Alice successfully completes an AKE to obtain (k, Bank)

If Bank is not corrupt then:

Authenticity for Alice: (similarly for Bank)
• If Alice’s key k is shared with anyone, it is only shared with Bank

Secrecy for Alice: (similarly for Bank)
• To the adversary, Alice’s key k is indistinguishable from random

(even if adversary sees keys from other instances of Alice or Bank)

Consistency: if Bank completes AKE then it obtains (k, Alice)

Dan Boneh

AKE security levels (very informal)
Three levels of (core) security:

• Static security: previous slide

• Forward secrecy: static security, and if adv. learns skbank at time T
then all sessions with Bank from time t<T remain secret.

• HSM security: if adv. queries an HSM holding skbank n times,
then at most n sessions are compromised.
Moreover, forward secrecy holds.

Several other AKE requirements … Hardware Security
Module (HSM)

Dan Boneh

One-sided AKE: syntax

Used when only one side has a certificate.
• Similarly, three security levels.

Alice Bank
skbank

certbank

Bank ??

vkCA
vkCA

k , Bank k , ??or ⊥ or ⊥

Dan Boneh

Things to remember …

Do not design AKE protocol yourself …

Just use latest version of TLS

Dan Boneh

Building blocks
certbank: contains pkbank . Bank has skbank .

Ebank((m,r)) = E(pkbank, (m,r)) where E is chosen-ciphertext secure

• Recall: from Ebank((m,r)) adv. cannot build Ebank((m,r’)) for r’ ≠ r

Salice((m,r)) = S(skalice, (m,r)) where S is a secure signing alg.

R: some large set, e.g. {0,1}256

Dan Boneh

Protocol #1

Dan Boneh

Simple one-sided AKE protocol

Alice Bank
skbank

certbank

k , Bank
k , ??

r ⟵ R , certbank

c ⟵ Ebank((k, r))k⟵ K

“Thm”: protocol is a statically secure one-sided AKE

Informally: if Alice and Bank are not corrupt then we have
(1) secrecy for Alice and (2) authenticity for Alice

decrypt(c),
check correct r

Bank ??

Dan Boneh

Insecure variant 1: r not encrypted

Problem: replay attack

Alice Bank
skbank

certbank

k , Bank k , ??

r ⟵ R , certbank

c ⟵ Ebank((k)), rk ⟵ K

Dan Boneh

Replay attack

Alice
Bank

skbank

certbank

r ⟵ R , certbank

c ⟵ Ebank((k)), rk ⟵ K

c1⟵ Esym(k, “I am Alice, pay Bob 30$”)

Bank
skbank

certbank

r’ ⟵ R , certbank
c, r’

c1

Later:

Dan Boneh

Two-sided AKE (mutual authentication)

Alice Bank

skbank

certbank

k , Bank

k , Alice

r ⟵ R , certbank

c ⟵ Ebank((k, “alice”))
σ ⟵ Salice((r, c, “bank”)), certalice

k ⟵ K

decrypt(c),
check correct id,
check sig. σ

bank aliceskalice
certalice

“Thm”: this protocol is a statically secure AKE

Dan Boneh

Insecure variant: encrypt r instead of “Alice”

Alice Bank
skbank

certbank

k , Bank

k , Alice

r ⟵ R , certbank

c ⟵ Ebank((k, r))
σ ⟵ Salice((r, c, “bank”)), certalice

k ⟵ K

decrypt(c),
check correct r,
check sig. σ

bank aliceskalice
certalice

Any change to protocol makes it insecure, sometime in subtle ways

Example:

Dan Boneh

Attack: identity misbinding

Alice Bank

r ⟵ R , certbank

c ⟵ Ebank((k, r))
σ ⟵ Salice((r, c, “bank”)), certalice

bank evil

c
σ’ ⟵ Sevil((r, c, “bank”)) , certevil

Esym(k, “deposit this check into my account”)

decrypt(c),
check r,
check sig. σ’

Dan Boneh

Problem: no forward secrecy

Suppose a year later adversary obtains skbank

⇒ can decrypt all recorded traffic
This protocol is used in TLS 1.2, deprecated in TLS 1.3

Alice Bank
skbank

certbank

k , Bank
k , ??

r ⟵ R , certbank

c ⟵ Ebank((k, r))k⟵ K

decrypt(c),
check correct rrecord

all traffic

Same attack on
the two-sided AKE

Recall the one-sided AKE:

Dan Boneh

Protocol #2: forward secrecy

Server compromise at time T should not
compromise sessions at time t<T

Dan Boneh

Simple one-sided AKE with forward-secrecy

(pk, sk) are ephemeral: sk is deleted when protocol completes

Compromise of Bank: past sessions are unaffected

Alice Bank

skbank
certbank

k , Bank k , ??

pk , certbank
σ ⟵ Sbank((pk))

c ⟵ E(pk, k)
k ⟵ K

k ⟵ D(sk, c)
delete sk

Bank ??

(pk, sk) ⟵ Gencheck sig. σ

Dan Boneh

Insecure variant: do not sign pk

Attack: complete key exposure

Alice Bank

k , Bank k , ??

pk , certbank
σ ⟵ Sbank((pk))

c ⟵ E(pk, k)k ⟵ K k ⟵ D(sk, c)
delete sk

Bank ??

(pk, sk) ⟵ Gen

Dan Boneh

Attack: key exposure

Alice Bank

bank
pk , certbank

pk’ , certbank

(pk’, sk’) ⟵ Gen

c ⟵ E(pk’, k)

Esym(k, “data”)

k ⟵ K

(pk, sk) ⟵ Gen

Adv. gets
k and data

Dan Boneh

Problem: not HSM secure

Alice Bank

skbank

certbank

k , Bank k , ??

pk , certbank
σ ⟵ Sbank((pk))

c ⟵ E(pk, k)
k ⟵ K

check sig. σ

HSM

Suppose attacker breaks into Bank and queries HSM once
⇒ complete key exposure forever !

Dan Boneh

Problem: not HSM secure

Alice
Bank

skbank

certbank

k , Bank

pk’ , certbank
σ' ⟵ Sbank((pk’))

c ⟵ E(pk’, k)
k ⟵ K

check sig. σ’

HSM

(pk’, sk’) ⟵ Gen

pk’

σ' ⟵ Sbank((pk’))

k Attacker gets Alice’s
data encrypted with k

Single HSM query:

Dan Boneh

Protocol #3: HSM Security

Forward secrecy, and

n queries to HSM should compromise at most n sessions

Dan Boneh

Simple HSM security (one-sided)

Alice Bank

skbank

certbank

k , Bank k , ??

pk

c ⟵ E(pk, k)
certbank , σ ⟵ Sbank((pk, c))

k ⟵ K

Bank ??

(pk, sk) ⟵ Gen

k ⟵ D(sk, c)
delete sk

check sig. σ

Main point: HSM needed to sign ephemeral pk from client
⇒ past access to HSM will not compromise current session

Dan Boneh

Final variant: end-point privacy
Protocol #3: eavesdropper learns that Alice wants to talk to Bank.
Solution: hide certbank

Alice Bank

skbank

certbank

k , Bank k , ??

pk

c ⟵ E(pk, (k, k’))
c’ ⟵ Esym(k’, (certbank , σ))

k, k’ ⟵ K

(pk, sk) ⟵ Gen

k, k’ ⟵ D(sk, c)
decrypt c’
check sig. σ
delete sk

σ ⟵ Sbank((pk, c))

Dan Boneh

Using Diffie-Hellman: DHAKE (simplified)

We can use Diffie-Hellman instead of general public-key encryption

Alice Bank

skbank

certbank

k , Bank k , ??

gα ∈ G

g𝜷 ∈ G
c’ ⟵ Esym(k’, (certbank , σ))

𝜷⟵ ℤq
k, k’ ⟵ H(gα𝜷)
σ ⟵ Sbank((gα,g𝜷))

delete 𝜷

α ⟵ℤq

k, k’ ⟵ H(gα𝜷)
decrypt c’
check sig. σ
delete α

[variant of TLS 1.3]

Dan Boneh

Many more AKE variants

AKE based on a pre-shared secret between Alice and Bank:
• High entropy pre-shared secret: ensure forward secrecy
• Password: ensure no offline dictionary attack (PAKE)

Deniable:
• Both sides can claim they did not participate in protocol
• In particular, parties do not sign public messages

Dan Boneh

Auth. key exchange

TLS 1.3 Session Setup

RFC 8446 (Aug. 2018)

Online Cryptography Course Dan Boneh

Dan Boneh

TLS 1.3 Session Setup
Generate unidirectional keys: kb⟶s and ks⟶b

Security goals:
• Support for one-sided and two-sided AKE
• HSM security (including forward secrecy and static security)
• End-point privacy against an eavesdropper

Protocol is related to the Diffie-Hellman protocol DHAKE above

Dan Boneh

TLS 1.3 session setup (full handshake, simplified)

C

ClientHello (cipherSuites, extensions)
KeyShare (Diffie-Hellman)

ServerHello (chosen cipherSuite),
KeyShare (Diffie-Hellman),
Encrypted Certificate S

Finished

Client Server

secret
key

Encrypted Application Data (HTTP)

cert

Dan Boneh

The need for negotiating ciphers

Web server
in Russia

US browser

prefer
NIST ciphers

Russian browser

Prefer GOST
ciphers (Russian)

old browser

does not understand
ECDHE

Dan Boneh

Session setup from pre-shared keys
Bank

Full handshake

⤷ PreSharedKey PreSharedKey⤶

Later (new TCP connection)

Abbreviated handshake

⤷ kb⟶s and ks⟶b ⤶

Session
Store

retrieve old
PreSharedKey

or
recompute

from ID

Goal: reduce # of full handshakes

NewSessionTicket(nonce, ID)

derived from session secrets and nonce

ClientHello w/PreSharedKey(ID)

Dan Boneh

PSK 0-RTT

Abbreviated handshake

⤷ kb⟶s and ks⟶b ⤶

ClientHello w/PreSharedKey(ID)
Esym(kce , 0-RTT application data)

kCE : client early key-exchange key.
derived from PSK (and other ClientHello data)

Problem: 0-RTT app data is vulnerable to replay.

Dan Boneh

THE END

