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Review:   key exchange
Alice and Bank want to generate a secret key
• So far we saw key exchange secure against eavesdropping

BankAlice

k k
eavesdropper ??

• This lecture:   Authenticated Key Exchange  (AKE)
key exchange secure against active adversaries
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Active adversary
Adversary has complete control of the network:
• Can modify,  inject  and  delete packets
• Example:   man-in-the-middle

Moreover, some users are honest and others are corrupt
• Corrupt users are controlled by the adversary
– Key exch. with corrupt users should not “affect” other sessions 

BankAlice m
m’
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Trusted Third Party  (TTP)
All AKE protocols require a TTP to certify user identities.

Registration process:

Alice Bank
TTPI am Alice,  proof I am Bank.com,  proof

Two types of TTP:    

• Offline TTP (CA):  contacted only during registration  (and revocation)

• Online TTP: actively participates in every key exchange    (Kerberos)
Benefit:   security using only symmetric crypto

skalice skbank

(here, we only consider offline TTP)

certalice certbank
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AKE:   syntax

Followed by Alice sending   E(k, “data”)  to Bank and vice versa.

Alice Bank
skalice skbank

certbankcertalice

Bank Alice

pkCA pkCA

k ,  Bank k , Aliceor ⊥ or ⊥
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Basic AKE security   (very informal)
Suppose Alice successfully completes an AKE to obtain  (k, Bank)

If Bank is not corrupt then:

Authenticity for Alice: (similarly for Bank)
• If Alice’s key k is shared with anyone, it is only shared with Bank

Secrecy for Alice: (similarly for Bank)
• To the adversary, Alice’s key k is indistinguishable from random

(even if adversary sees keys from other instances of Alice or Bank)

Consistency:   if Bank completes AKE then it obtains  (k, Alice)
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AKE security levels (very informal)
Three levels of (core) security:

• Static security:   previous slide

• Forward secrecy:  static security, and if adv. learns skbank at time T 
then all sessions with Bank from time t<T remain secret.

• HSM security:  if adv. queries an HSM holding  skbank n times, 
then at most  n  sessions are compromised.
Moreover, forward secrecy holds.

Several other AKE requirements  … Hardware Security 
Module (HSM)
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One-sided AKE: syntax

Used when only one side has a certificate.
• Similarly, three security levels.

Alice Bank
skbank

certbank

Bank ??

vkCA
vkCA

k ,  Bank k , ??or ⊥ or ⊥
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Things to remember …

Do not design AKE protocol yourself … 

Just use latest version of TLS
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Building blocks
certbank:   contains  pkbank .      Bank has   skbank .

Ebank((m,r))  =  E(pkbank, (m,r)) where E is chosen-ciphertext secure 

• Recall:  from Ebank((m,r))  adv. cannot build   Ebank((m,r’))   for  r’ ≠ r

Salice((m,r)) =  S( skalice, (m,r) ) where  S  is a secure signing alg.

R:   some large set, e.g.   {0,1}256



Dan Boneh

Protocol #1
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Simple one-sided AKE protocol

Alice Bank
skbank

certbank

k ,  Bank
k ,  ??

r ⟵ R  ,   certbank

c ⟵ Ebank((k, r))k⟵ K

“Thm”:   protocol is a statically secure one-sided AKE

Informally:      if Alice and Bank are not corrupt then we have 
(1) secrecy for Alice and  (2) authenticity for Alice 

decrypt(c),
check correct r

Bank ??
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Insecure variant 1:  r not encrypted

Problem:   replay attack

Alice Bank
skbank

certbank

k ,  Bank k , ??

r ⟵ R  ,   certbank

c ⟵ Ebank((k)),   rk ⟵ K
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Replay attack

Alice
Bank

skbank

certbank

r ⟵ R  ,   certbank

c ⟵ Ebank((k)),   rk ⟵ K

c1⟵ Esym(k,  “I am Alice, pay Bob 30$”)

Bank
skbank

certbank

r’ ⟵ R  ,   certbank
c,  r’

c1

Later:
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Two-sided AKE  (mutual authentication)

Alice Bank

skbank

certbank

k ,  Bank

k ,  Alice

r ⟵ R  ,   certbank

c ⟵ Ebank((k, “alice”)) 
σ ⟵ Salice((r, c, “bank”)),   certalice

k ⟵ K

decrypt(c),
check correct id,
check sig. σ

bank aliceskalice
certalice

“Thm”:    this protocol is a statically secure AKE
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Insecure variant:  encrypt r instead of “Alice”  

Alice Bank
skbank

certbank

k ,  Bank

k ,  Alice

r ⟵ R  ,   certbank

c ⟵ Ebank((k, r)) 
σ ⟵ Salice((r, c, “bank”)),   certalice

k ⟵ K

decrypt(c),
check correct r,
check sig. σ

bank aliceskalice
certalice

Any change to protocol makes it insecure, sometime in subtle ways

Example:



Dan Boneh

Attack:  identity misbinding

Alice Bank

r ⟵ R  ,   certbank

c ⟵ Ebank((k, r)) 
σ ⟵ Salice((r, c, “bank”)),   certalice

bank evil

c  
σ’ ⟵ Sevil((r, c, “bank”))  ,   certevil

Esym(k,   “deposit this check into my account”)

decrypt(c),
check  r,
check sig. σ’ 
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Problem: no forward secrecy

Suppose a year later adversary obtains  skbank

⇒ can decrypt all recorded traffic
This protocol is used in TLS 1.2, deprecated in TLS 1.3 

Alice Bank
skbank

certbank

k ,  Bank
k ,  ??

r ⟵ R  ,   certbank

c ⟵ Ebank((k, r))k⟵ K

decrypt(c),
check correct rrecord

all traffic

Same attack on
the two-sided AKE

Recall the one-sided AKE:
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Protocol #2:  forward secrecy

Server compromise at time T should not 
compromise sessions at time t<T
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Simple one-sided AKE with forward-secrecy

(pk, sk)  are ephemeral:    sk is deleted when protocol completes

Compromise of Bank:   past sessions are unaffected

Alice Bank

skbank
certbank

k ,  Bank k ,  ??

pk ,    certbank
σ ⟵ Sbank((pk))

c ⟵ E(pk, k)
k ⟵ K

k ⟵ D(sk, c)
delete sk

Bank ??

(pk, sk) ⟵ Gencheck sig. σ
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Insecure variant:  do not sign pk

Attack:    complete key exposure

Alice Bank

k ,  Bank k ,  ??

pk ,    certbank
σ ⟵ Sbank((pk))

c ⟵ E(pk, k)k ⟵ K k ⟵ D(sk, c)
delete sk

Bank ??

(pk, sk) ⟵ Gen
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Attack:  key exposure

Alice Bank

bank
pk ,    certbank

pk’   ,    certbank

(pk’, sk’) ⟵ Gen

c ⟵ E(pk’, k)

Esym(k,   “data”)

k ⟵ K

(pk, sk) ⟵ Gen

Adv. gets
k and data



Dan Boneh

Problem: not HSM secure

Alice Bank

skbank

certbank

k ,  Bank k ,  ??

pk ,    certbank
σ ⟵ Sbank((pk))

c ⟵ E(pk, k)
k ⟵ K

check sig. σ

HSM

Suppose attacker breaks into Bank and queries HSM once
⇒ complete key exposure forever !   
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Problem: not HSM secure

Alice
Bank

skbank

certbank

k ,  Bank

pk’ ,    certbank
σ' ⟵ Sbank((pk’))

c ⟵ E(pk’, k)
k ⟵ K

check sig. σ’ 

HSM

(pk’, sk’) ⟵ Gen

pk’

σ' ⟵ Sbank((pk’))

k Attacker gets Alice’s 
data encrypted with k

Single HSM query:
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Protocol #3:  HSM Security

Forward secrecy, and 

n queries to HSM should compromise at most n sessions
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Simple HSM security  (one-sided)

Alice Bank

skbank

certbank

k ,  Bank k ,  ??

pk

c ⟵ E(pk, k)
certbank ,  σ ⟵ Sbank((pk, c))

k ⟵ K

Bank ??

(pk, sk) ⟵ Gen

k ⟵ D(sk, c)
delete sk

check sig. σ

Main point:   HSM needed to sign ephemeral pk from client
⇒ past access to HSM will not compromise current session
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Final variant:  end-point privacy
Protocol #3:   eavesdropper learns that Alice wants to talk to Bank.
Solution:  hide  certbank

Alice Bank

skbank

certbank

k ,  Bank k ,  ??

pk

c ⟵ E(pk, (k, k’))
c’ ⟵ Esym(k’, (certbank , σ))

k, k’ ⟵ K

(pk, sk) ⟵ Gen

k, k’ ⟵ D(sk, c)
decrypt c’
check sig. σ
delete sk

σ ⟵ Sbank((pk, c))
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Using Diffie-Hellman: DHAKE (simplified)

We can use Diffie-Hellman instead of general public-key encryption

Alice Bank

skbank

certbank

k ,  Bank k ,  ??

gα ∈ G

g𝜷 ∈ G
c’ ⟵ Esym(k’,  (certbank , σ))

𝜷⟵ ℤq
k, k’ ⟵ H(gα𝜷)
σ ⟵ Sbank((gα,g𝜷))

delete 𝜷

α ⟵ℤq

k, k’ ⟵ H(gα𝜷) 
decrypt c’
check sig. σ
delete α

[variant of TLS 1.3]
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Many more AKE variants

AKE based on a pre-shared secret between Alice and Bank:
• High entropy pre-shared secret:   ensure forward secrecy
• Password:   ensure no offline dictionary attack  (PAKE)

Deniable:
• Both sides can claim they did not participate in protocol
• In particular, parties do not sign public messages
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Auth. key exchange

TLS 1.3 Session Setup

RFC 8446  (Aug. 2018)

Online Cryptography Course Dan Boneh
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TLS 1.3 Session Setup
Generate unidirectional keys:    kb⟶s and   ks⟶b

Security goals:
• Support for one-sided and two-sided AKE
• HSM security  (including forward secrecy and static security)
• End-point privacy against an eavesdropper

Protocol is related to the Diffie-Hellman protocol DHAKE above
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TLS 1.3 session setup  (full handshake, simplified)

C

ClientHello (cipherSuites, extensions)
KeyShare (Diffie-Hellman)

ServerHello (chosen cipherSuite),
KeyShare (Diffie-Hellman), 
Encrypted Certificate S

Finished

Client Server

secret
key

Encrypted Application Data (HTTP)

cert
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The need for negotiating ciphers

Web server
in Russia

US browser

prefer
NIST ciphers

Russian browser

Prefer GOST
ciphers (Russian)

old browser

does not understand
ECDHE
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Session setup from pre-shared keys
Bank

Full handshake

⤷ PreSharedKey PreSharedKey⤶

Later (new TCP connection)

Abbreviated handshake

⤷ kb⟶s and   ks⟶b ⤶

Session
Store

retrieve old
PreSharedKey

or
recompute 

from ID

Goal:   reduce # of full handshakes

NewSessionTicket(nonce, ID)

derived from session secrets and nonce

ClientHello w/PreSharedKey(ID)
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PSK    0-RTT

Abbreviated handshake

⤷ kb⟶s and   ks⟶b ⤶

ClientHello w/PreSharedKey(ID)
Esym(kce ,  0-RTT application data) 

kCE :   client early key-exchange key.
derived from  PSK  (and other ClientHello data)

Problem:   0-RTT app data is vulnerable to replay.
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THE  END


