
1

CPA Security:

How to use a key multiple times

CS255: Winter 2025

Dan Boneh, Stanford University

Quick Recap

A block cipher is a pair of efficient algs. (E, D):

E, D CT Block

n bits

PT Block

n bits

Key k bits

Canonical examples:

• AES: n=128 bits, k = 128, 192, 256 bits

 (hardware support for many blocks in parallel)

• 3DES: n= 64 bits, k = 168 bits (historical)

Abstract block ciphers: PRFs and PRPs

PRF: an efficiently computable 𝐹: 𝐾 𝑋 → 𝑌

PRP: (a.k.a block cipher) 𝐸: 𝐾 𝑋 → 𝑋

 is a PRF, such that

• for all 𝑘 ∊ 𝐾: the function 𝐸(𝑘,) is one-to-one,

• there is an “efficient” inversion algorithm 𝐷(𝑘, 𝑥).

Secure PRF (resp. PRP):

 the uniform distribution on 𝑆𝐹 ≔ { 𝐹(𝑘,) ∶ 𝑘 ∊ 𝐾 }

 is indistinguishable by queries from

 the uniform distribution on Funs 𝑋, 𝑌 (resp. Perms 𝑋).

4

ECB: Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:

– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

5

Modes of Operation for

One-time Use Key

Example application:

 Encrypted email. New key for every message.

How to use a block cipher?

6

Semantic Security for a one-time key

• E = (E,D) a cipher defined over (K,M,C)

• For b=0,1 define EXP(b) as:

• Def: E is sem. sec. for one-time key if for all “efficient” 𝒜 :

 AdvSS[𝒜,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] |
 is “negligible.”

Chal.

b

Adv. 𝒜

kK m0 , m1 M : |m0| = |m1|

c E(k, mb)

b’ {0,1}

7

A Semantically Secure Scheme

EDETCTR (k,m) =

⇒ Stream cipher built from PRF (e.g. AES)

m[0] m[1] …

F(k,0) F(k,1) …

m[L]

F(k,L)

c[0] c[1] … c[L]

indist. from

a OTP

Deterministic counter mode from a PRF

 𝐹: 𝐾 × 0,1, … , 𝐿 ⇾ 0,1 𝑛

8

Modes of Operation for

Many-time Key

Example applications:

1. File systems: Same AES key used to encrypt many files.

2. IPsec: Same AES key used to encrypt many packets.

How to use a block cipher?

Semantic Security for many-time key (CPA security)

Cipher E = (E,D) defined over (K,M,C).

For b=0,1 define EXP(b) as:

Def: E is sem. sec. under CPA if for all “efficient” 𝒜 :

 AdvCPA [𝒜,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] |
is “negligible.”

Chal. Adv. 𝒜

kK

b’ {0,1}

mi,0 , mi,1 M : |mi,0| = |mi,1|

ci E(k, mi,b)

if adv. wants c = E(k, m) it queries with mj,0= mj,1=m

for i=1,…,q:
b ∈ {0,1}

10

Security for many-time key

Fact: stream ciphers are insecure under CPA.

– More generally: if E(k,m) always produces same

ciphertext, then cipher is insecure under CPA.

If secret key is to be used multiple times

 given the same plaintext message twice,

 the encryption alg. must produce different outputs.

Chal. Adv.

kK

m0 , m1 M

c E(k, mb)

m0 , m0 M

c0 E(k, m0)

output 0

if c = c0

Nonce-based Encryption

nonce n: a value that changes from msg to msg

 (k,n) pair never used more than once

• method 1: encryptor chooses a random nonce, n N

• method 2: nonce is a counter (e.g. packet counter)

– used when encryptor keeps state from msg to msg

– if decryptor has same state, need not send nonce with CT

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]IV

E(k,)

c[0] c[1] c[2] c[3]IV

ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

13

CBC: CPA Analysis

CBC Theorem: For any L>0,

 If E is a secure PRP over (K,X) then

 ECBC is a sem. sec. under CPA over (K, XL, XL+1).

 In particular, for a q-query adversary A attacking ECBC

 there exists a PRP adversary B s.t.:

 AdvCPA[A, ECBC] 2AdvPRP[B, E] + 2 q2 L2 / |X|

Note: CBC is only secure as long as q2⋅L2 ≪ |X|

messages enc. with key max msg length

14

Construction 1’: CBC with unique nonce

Cipher block chaining with unique IV (IV = nonce)

E(k1,) E(k1,) E(k1,)

m[0] m[1] m[2] m[3]

E(k1,)

c[0] c[1] c[2] c[3]IV

ciphertext

IV

E(k2,)

IV′

unique IV means: (key,IV) pair is used for only one message

included only if unknown to decryptor

A CBC technicality: padding

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3] ll pad

E(k,)

c[0] c[1] c[2] c[3]IV

IV

E(k1,)

IV′

TLS 1.0: if need n-byte pad, n>0, use:

 if no pad needed, add a dummy block

n-1 n-1 ⋯ n-1
pad is

removed

during

decryption

16

Construction 2: rand ctr-mode

m[0] m[1] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)

c[0] c[1] … c[L]

IV

IV

IV - chosen at random for every message

note: parallelizable (unlike CBC)

msg

ciphertext

F: PRF defined over (K,X,Y) where X = {0,1, … , 2𝑛-1} and Y = {0,1}𝑛

(counter counts mod 2𝑛)

(e.g., n=128)

Why is this CPA secure?

CPA security holds as long as intervals do not intersect

• q msgs, L blocks each ⇒ Pr[intersection] ≤ 2 q2 L / |X|

17

the set X: domain of PRF

msg1

IV1 IV1+1 ⋯ IV1+L

msg2

IV2 IV2+1 ⋯ IV2+L

msg3

IV3 IV3+1 ⋯ IV3+L

msg4

msg5

needs to be negligible

18

rand ctr-mode: CPA analysis

Randomized counter mode: random IV.

Counter-mode Theorem: For any L>0,

 If F is a secure PRF over (K,X,X) then

 ECTR is a sem. sec. under CPA over (K,XL,XL+1).

 In particular, for a q-query adversary A attacking ECTR

 there exists a PRF adversary B s.t.:

 AdvCPA[A, ECTR] 2AdvPRF[B, F] + 2 q2 L / |X|

Note: ctr-mode only secure as long as q2⋅L ≪ |X|

 Better then CBC !

An example

q = # messages encrypted with k , L = length of max msg

Suppose we want AdvCPA[A, ECTR] ≤ 1/ 231

• Then need: q2 L / |X| ≤ 1/ 232

• AES: |X| = 2128 ⇒ q L1/2 < 248

 So, after 232 CTs each of len 232 , must change key

 (total of 264 AES blocks)

AdvCPA [A, ECTR] 2AdvPRF[B, E] + 2 q2 L / |X|

Construction 2’: nonce ctr-mode

nonce

128 bits

0000000IV:
96 bits 32 bits

To ensure F(k,x) is never used more than once, choose IV as:

starts at 0

for every msg

nonce 0000001IV+1:

nonce 0000002IV+2:

Comparison: ctr vs. CBC

CBC ctr mode

required primitive PRP PRF

parallel processing No Yes

security q^2 L^2 << |X| q^2 L << |X|

dummy padding block Yes* No

1 byte msgs

 (nonce-based)
16x expansion no expansion

* for CBC, dummy padding block can be avoided using ciphertext stealing

22

Summary

PRPs and PRFs: a useful abstraction of block ciphers.

We examined two security notions:

1. Semantic security against one-time.

2. Semantic security against many-time CPA.

Note: neither mode ensures data integrity.

Stated security results summarized in the following table:

one-time key
Many-time key

(CPA)

CPA and

CT integrity

Sem. Sec.
steam-ciphers

det. ctr-mode

rand CBC

rand ctr-mode
later

Goal

Power

Attacks on block ciphers

Goal: distinguish block cipher from a random permutation

• if this can be done efficiently then block cipher is broken

Harder goal:

 find key 𝑘 given many 𝑐𝑖 = 𝐸(𝑘, 𝑚𝑖) for random 𝑚𝑖

23

(1) Linear and differential attacks
[BS’89,M’93]

Given many (𝑚𝑖 , 𝑐𝑖) pairs, can recover key much faster than

exhaustive search

Linear cryptanalysis (overview) : let c = DES(k, m)

Suppose for random 𝑘, 𝑚 :

 Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + 𝜀

For some 𝜀.

For DES, this exists with 𝜀 = 1/221 ≈ 0.0000000477 !!

Linear attacks

Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + ε

Thm: given 1/ε2 random pairs (m, c=DES(k, m)) then

 k[l1]⨁…⨁k[lu] = MAJ[m[i1]⨁…⨁m[ir] ⨁ c[jj]⨁…⨁c[jv]]

 with prob. ≥ 97.7%

⇒ with 1/ε2 inp/out pairs can find k[l1]⨁…⨁k[lu] in time ≈1/ε2

Linear attacks

For DES, ε = 1/221 ⇒

 with 242 inp/out pairs can find k[l1]⨁…⨁k[lu] in time 242

Roughly speaking: can find 14 key “bits” this way in time 242

Brute force remaining 56−14=42 bits in time 242

Attack time: ≈243 (≪ 256) with 242 random inp/out pairs

Lesson

A tiny bit of linearly leads to a 242
 time attack.

⇒ don’t design ciphers yourself !!

(2) Side channel attacks on software AES

Attacker measures the time to compute AES128(k,m) for

many random blocks m.

– Suppose that the 256-byte S table is not in L1 cache at

the start of each invocation

 ⟹ time to encrypt reveals the order in which S entries

 are accessed

 ⟹ leaks info. that can compromise entire key

Lesson: don’t implement AES yourself !

Mitigation: AES-NI or use vetted software (e.g., BoringSSL)

28

(3) Quantum attacks

Generic search problem:

 Let 𝑓: 𝑋 ⟶ {0,1} be a function.

 Goal: find 𝑥 ∈ 𝑋 s.t. 𝑓(𝑥) = 1.

Classical computer: best generic algorithm time = 𝑂(|𝑋|)

Quantum computer [Grover ’96] : time = 𝑂(𝑋 1/2)

 (requires a long running quantum computation)

Quantum exhaustive search

Given m, c=E(k,m) define

Grover ⇒ quantum computer can find k in time O(|K|1/2)

 AES128: quantum key recovery time ≈264

Adversary has access to a quantum computer ⟹

 encrypt data using a cipher with 256-bit keys (AES256)

1 if E(k,m) = c

0 otherwise
𝑓(𝑘) =

THE END

31

	Recap
	Slide 1: CPA Security: How to use a key multiple times
	Slide 2: Quick Recap
	Slide 3: Abstract block ciphers: PRFs and PRPs
	Slide 4: ECB: Incorrect use of a PRP
	Slide 5: Modes of Operation for One-time Use Key
	Slide 6: Semantic Security for a one-time key
	Slide 7: A Semantically Secure Scheme
	Slide 8: Modes of Operation for Many-time Key
	Slide 9: Semantic Security for many-time key (CPA security)
	Slide 10: Security for many-time key
	Slide 11: Nonce-based Encryption
	Slide 12: Construction 1: CBC with random nonce
	Slide 13: CBC: CPA Analysis
	Slide 14: Construction 1’: CBC with unique nonce
	Slide 15: A CBC technicality: padding
	Slide 16: Construction 2: rand ctr-mode
	Slide 17: Why is this CPA secure?
	Slide 18: rand ctr-mode: CPA analysis
	Slide 19: An example
	Slide 20: Construction 2’: nonce ctr-mode
	Slide 21: Comparison: ctr vs. CBC
	Slide 22: Summary

	Attacks
	Slide 23: Attacks on block ciphers
	Slide 24: (1) Linear and differential attacks [BS’89,M’93]
	Slide 25: Linear attacks
	Slide 26: Linear attacks
	Slide 27: Lesson
	Slide 28: (2) Side channel attacks on software AES
	Slide 29: (3) Quantum attacks
	Slide 30: Quantum exhaustive search
	Slide 31: THE END

