Assignment #1

Problem 1: a. Let \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \) be an efficiently computable one-to-one function. Show that if \(f \) has a \((t, \epsilon)\) hard core bit then \(f \) is \((t, 2\epsilon)\) one-way.

b. Show that if \(G : \{0, 1\}^n \rightarrow \{0, 1\}^{2n} \) is a \((t, \epsilon)\) PRNG then \(G \) is also \((t', \epsilon')\) one-way for some \((t', \epsilon')\) close to \((t, \epsilon)\). Give the best bounds you can.

c. Show that if \(F : \{0, 1\}^n \times \{0, 1\}^k \rightarrow \{0, 1\}^n \) is a \((t, \epsilon, q)\) PRF then
\[
G(s) = F(1, s) \parallel F(2, s) \parallel \cdots \parallel F(q, s)
\]
is a \((t - q, \epsilon)\) PRNG. We are assuming that evaluating \(F \) takes unit time.

Problem 2: Hybrid arguments (in part (a)).

a. Let \(G : \{0, 1\}^n \rightarrow \{0, 1\}^m \) be a \((t, \epsilon)\) PRNG. Define the distributions \(P_1 \) and \(P_2 \) as:
\[
P_1 = \{ G(x_1), \ldots, G(x_q) \in \{0, 1\}^m : x_1, \ldots, x_q \leftarrow \{0, 1\}^n \}
\]
\[
P_2 = \{ y_1, \ldots, y_q \leftarrow \{0, 1\}^m \}
\]
Show that \(P_1 \) and \(P_2 \) are \((t - cq, q\epsilon)\) indistinguishable for some constant \(c > 0 \).

b. Let \(H \) be a group of prime order \(q \) and \(g \in H \) a fixed public generator. Consider the following PRNG, \(G : \mathbb{Z}_q^2 \rightarrow H^3 \), defined by \(G(a, b) = [g^a, g^b, g^{ab}] \). As above, define the two distributions:
\[
P_1 = \{ G(a_1, b_1), \ldots, G(a_q, b_q) \in H^3 : a_1, b_1, \ldots, a_q, b_q \leftarrow \mathbb{Z}_q \}
\]
\[
P_2 = \{ h_1, \ldots, h_{3q} \leftarrow H \}
\]
Show that if the \((t, \epsilon)\)-DDH assumption holds in \(H \) then \(P_1 \) and \(P_2 \) are \((t - cq, \epsilon)\) indistinguishable for some constant \(c > 0 \) (assuming exponentiation in \(H \) takes constant time). Hence, for DDH PRNG we get a more efficient reduction than for general PRNG’s.

Problem 3: Let \(F : \{0, 1\}^n \times \{0, 1\}^s \rightarrow \{0, 1\}^t \) be a \((t, \epsilon, q)\) unpredictable function (UF). For vectors \(x, y \in \{0, 1\}^t \) define \(x \cdot y \) to be the inner product of \(x \) and \(y \) modulo 2, i.e. \(x \cdot y = \sum_{i=1}^t x_i y_i \mod 2 \). Define the function \(F' : \{0, 1\}^n \times \{0, 1\}^{s+t} \rightarrow \{0, 1\} \) by
\[
F'_{k,r}(x) = F'(x, (k, r)) \overset{\text{def}}{=} F_k(x) \cdot r \in \{0, 1\}
\]
Prove using the Goldreich-Levin algorithm that \(F' \) is a \((t', \epsilon', q')\)-PRF for some \(t', \epsilon', q' \). Give the best parameters \(t', \epsilon', q' \) you can.
As a simple application for this result, note that your proof suggests one way for converting any deterministic MAC into a symmetric encryption scheme.
Problem 4: Let $H = \{h_k : \{0,1\}^N \rightarrow \{0,1\}^n\}$ be a family of hash functions such that
\[
\forall x \neq y \in \{0,1\}^N : \Pr_{h \leftarrow H}[h(x) = h(y)] < \epsilon'.
\]
Let $F : \{0,1\}^n \times \{0,1\}^s \rightarrow \{0,1\}^t$ be a (t,ϵ,q)-PRF.
Prove that $HF_{k_1,k_2}(M) = F_{k_1}(h_{k_2}(M))$ is a $(t,\epsilon+\epsilon',q)$ unpredictable function (UF).
This gives a simple construction for a MAC on large inputs from a PRF and a Universal Hash Function (UHF).

Problem 5: Let $\pi : \{0,1\}^n \times \{0,1\}^k \rightarrow \{0,1\}^n$ be a (t,ϵ,q) PRP. Given k, both $\pi_k(x)$ and $\pi_k^{-1}(x)$ can be efficiently computed. Show how to construct an SPRP out of π. Prove that your construction is a (t',ϵ',q) SPRP. Give the best values of t',ϵ' you can. Your solution suggests a way of converting any block cipher that is resistant to chosen PT attacks into a block cipher that resists both chosen PT and chosen CT attacks.

Problem 6: Let p be a prime and let $g \in \mathbb{Z}_p^*$ generate a subgroup of order q for some $q \equiv 3 \mod 4$.
Define $\text{lsb}_2(x) = 0$ if $x \mod 4$ is 0 or 1 and $\text{lsb}_2(x) = 1$ otherwise. Let $f : \{0,1,\ldots,q-1\} \rightarrow \mathbb{Z}_p^*$ be the function $f(x) = g^x \mod p$. Show that if $\text{lsb}(x)$ is a (t,ϵ) hard core bit of f then so is $\text{lsb}_2(x)$.