
CS355: Topics in cryptography Fall 2002

Proof of Yao’s XOR Lemma

Yao’s XOR lemma is a classic example of amplification of hardness. We give a short proof of
the lemma and refer to other surveys on the class web site for a full account.

Let f : {0, 1}n → {0, 1}n be a one-way permutation and let B̄ : {0, 1}n → {0, 1} be a (t, ε) weak
hard-core predicate of f . In other words, there is no t-time algorithm A for which

Pr[A(f(x)) = B̄(x) | x← {0, 1}n] > 1− ε

For m > 0 define B̄m(x1, . . . , xm) = B̄(x1) ⊕ · · · ⊕ B̄(xm). Yao’s XOR lemma shows that for
sufficiently large m the predicate B̄m is a hard core predicate of fm(x1, . . . , xm) = f(x1)‖ · · · ‖f(xm).
Of course, there are more much efficient ways for building hard core bits, as was discussed in class.
Neverthrless, the proof Yao’s XOR lemma is worth studying for its elegence. We note that Yao’s
XOR lemma also has applications to an area of learning theory called boosting: given a learning
algorithm that “weakly” learns a certain class of functions, the XOR lemma can boost the algorithm
to a “strong” learning algorithm for the same class of functions.
We first prove the lemma and then show how it can be used to amplify hardness. In what follows,
B : {0, 1}n → {0, 1} is some hard to compute predicate. For example, B(x) = B̄(f−1(x)).

Yao’s XOR lemma. Let B : {0, 1}n → {0, 1} and B2(x, y) = B(x) ⊕ B(y). Suppose A2 is a
probabilistic algorithm satisfying

Pr[A2(x, y) = B2(x, y) | x, y ← {0, 1}n] >
1

2
+ ε2 (1)

Then there is a probabilistic algorithm A whose running time is polynomial in A2’s running time
and satisfies:

Pr[A(f(y)) = B(y) | y ← {0, 1}n] >
1

2
+ ε

Proof Sketch. To simplify the notation in the proof we will assume that B is a function from
{0, 1}n to {1,−1} and that B2(x, y) = B(x) ·B(y). From equation 1 one can easily show that

Ex,y[A2(x, y) ·B2(x, y)] > (
1

2
+ ε2)

︸ ︷︷ ︸

Pr[A(x,y)=B2(x,y)]

− (
1

2
− ε2)

︸ ︷︷ ︸

Pr[A(x,y)6=B2(x,y)]

= 2ε2

where Ex,y[A(x, y) · B2(x, y)] is the expectation of A(x, y) · B2(x, y) where x, y are uniformly dis-
tributed in {0, 1}n. Note that Ex,y[A2(x, y) · B2(x, y)] is a measure of the correlation between A2

and B2.
For x ∈ {0, 1}n define Q(x) = Ey[B(y) · A2(x, y)].

Case 1: Suppose there exists x0 ∈ {0, 1}
n such that |Q(x0)| > 2ε. Then A(y)

def
= A2(x0, y)

satisfies |Ey[B(y) · A(y)]| > 2ε. Then either Ey[B(y) · A(y)] > 2ε or Ey[B(y) · A(y)] < −2ε.
If Ey[B(y) · A(y)] > 2ε then we have

Pr[A(y) = B(y) | y ← {0, 1}n] >
1

2
+ ε (2)

as required. If, Ey[B(y) · A(y)] < −2ε then A′(y)
def
= −A(y) will satisfy equation (2).

1

Case 2: Suppose that for all x ∈ {0, 1}n we have that |Q(x)| ≤ 2ε. Then define algorithm A(x)
as follows:

1. Evaluate Q(x) by sampling a few random x ∈ {0, 1}n.

2. Randomly output 1 or −1 so that the expectation of the output is Q(x)/2ε. In other
words, the algorithm tosses a random biased coin where the probability that the coin
falls on its head is 1

2 [1+ Q(x)
2ε

]. Indeed, since |Q(x)| < 2ε this value is in [0, 1] and is thus
a valid probability. If the coin falls on its head we output 1. Otherwise, we output −1.

Then we have:

E[A(x)·B(x)] = Ex[
Q(x)

2ε
·B(x)] = Ex,y[

B(y) · A2(x, y)

2ε
·B(x)] =

1

2ε
Ex,y[B2(x, y)·A2(x, y)] > ε

Therefore A satisfies Pr[A(y) = B(y) | y ← {0, 1}n] > 1
2 + ε as required �

To use the lemma, suppose there is no t-time algorithm A such that

Pr[A(f(x)) = B̄(x) | x← {0, 1}n] > 1− ε =
1

2
+ (

1

2
− ε)

The lemma shows that there is no algorithm A2 such that

Pr[A2(f(x), f(y)) = B̄2(x, y) | x, y ← {0, 1}n] >
1

2
+ (

1

2
− ε)2 =

3

4
− 2ε + ε2

and the running time of A2 is some fixed polynomial function of t. Thus, we get some aplification
of hardness (for small ε).

Let m = 2d1/εe. Then iterating the argument log2 m times we obtain that there is no algorithm
Am such that

Pr
[
Am (f(x1), . . . , f(xm)) = B̄m(x1, . . . , xm)

]
>

1

2
+ (

1

2
− ε)m

which shows that B̄m(x1, . . . , xm) is a (t′, ε) hard core bit of f(x1)‖ · · · ‖f(xm) as required, where
t′ is some fixed polynomial function of t.

2

