Problem 1: (ID protocols) Recall that in Schnorr’s ID protocol in a group \(G \) of order \(q \) the prover first chooses a random \(r \overset{R}{\leftarrow} \{1, \ldots, q\} \) and sends \(g^r \) to the verifier. To improve performance, suppose that the prover chooses \(r \overset{R}{\leftarrow} \{1, \ldots, t\} \) for some large \(t \) much smaller than \(q \) (say, \(q = 2^{256} \) but \(t = 2^{128} \)). Show that the resulting protocol is not honest verifier zero knowledge (HVZK). In particular, show that when \(t < q^{1/2} \), an honest verifier can recover the secret key after about two executions of the ID protocol.

Problem 2: (Key Exchange) Recall the EEBKE protocol discussed in class: in the first flow \(P \) generates a \((pk, sk)\) pair for a public-key encryption scheme. \(P \) sends \(pk \) to \(Q \) and receives back an encryption of a random session key \(k \). \(P \) uses \(sk \) to recover the session key and sends a signature back to \(Q \). The protocol works as follows:

\[
P P \quad Q Q
\]

\[
\begin{array}{c}
pk, \; Cert_P \\
\hline \hline
\quad c := E(pk, k), \; \sigma_1 := \text{Sig}_Q(pk, c, id_P), \; Cert_Q \\
\quad \sigma_2 := \text{Sig}_P(c, id_Q) \\
\end{array}
\]

a. Suppose \(Q \) does not sign \(c \) in \(\sigma_1 \). Describe an attack on the protocol.

b. Support \(Q \) does not sign \(pk \) in \(\sigma_1 \). Describe an attack on the protocol.

c. Suppose \(Q \) does not sign \(id_P \) in \(\sigma_1 \). Describe an identity-misbinding attack on the protocol.

d. Suppose \(P \) does not sign \(c \) in \(\sigma_2 \). Describe an attack on the protocol.

Problem 3: (PAKE) Recall the PAKE protocol discussed in class (a.k.a SPAKE). Suppose we take \(U = V \) in the public parameters.

a. Explain where the proof of security given in class fails.

b. Show that the protocol is secure if instead of using the CDH assumption we make a stronger assumption, namely that given \((g,g^x,g^y,g^z)\) it is difficult to compute \(g^{xy} \). It suffices to explain how this stronger assumption bypasses the stumbling block you identified in part (a).

The SPAKE protocol and its proof are described at:

http://www.di.ens.fr/~mabdalla/papers/AbPo05a-letter.pdf
Problem 4: (two party protocols) Let p be a prime. Suppose user A has an $x \in \mathbb{Z}_p$ and user B has a $y \in \mathbb{Z}_p$. They wish to compute the following function: $f(x, y) = 0$ when $x = y$ and $f(x, y) = 1$ when $x \neq y$, without revealing any other information about x or y. Your goal is to give an efficient solution to this problem in the honest-but-curious settings.

a. Estimate the amount of communication needed for this problem using Yao’s garbled circuits method. State your estimate asymptotically as a function of $\log_2 p$. You may assume that we use the Naor-Pinkas OT in (a subgroup) of \mathbb{Z}_p^*.

b. Suppose there is a third party who is willing to help. Give an efficient 3-party protocol for computing $f(x, y)$ so that nothing else is revealed to any single party (1-private). Prove 1-privacy by showing a simulator for each party’s view of the protocol (the simulator is given $f(x, y)$ and that party’s input).

c. Extra credit: can you suggest 1-private 2-party protocol that is more efficient than Yao’s garbled circuit method? Feel free to consult the web.