
CS255: Intro. to Cryptography Winter 2024

Assignment #2
Due: 11:59pm on Thu., Feb. 1, 2024, on Gradescope (each answer on a separate page)

Problem 1. The trouble with compression. Let (E,D) be a semantically secure cipher that operates
on messages in {0, 1}≤n (i.e. messages whose length is at most n bits). Suppose that the
ciphertext output by the encryption algorithm is exactly 128 bits longer than the input plaintext.
To reduce ciphertext size, there is a strong desire to combine encryption with lossless compression.
We can think of compression as a function from {0, 1}≤n to {0, 1}≤n where, for some messages,
the output is shorter than the input. As always, the compression algorithm is publicly known to
everyone.

a. Compress-then-encrypt: Suppose the encryptor compresses the plaintext message m before
passing it to the encryption algorithm E. Some n-bit messages compress well, while other
messages do not compress at all. Show that the resulting system is not semantically secure
by exhibiting a semantic security adversary that obtains advantage close to 1.

b. Encrypt-then-compress: Suppose that instead, the encryptor applies compression to the out-
put of algorithm E (here you may assume the compression algorithm takes messages of length
up to n + 128 bits as input). Explain why this proposal is of no use for reducing ciphertext
size.

Problem 2. The movie industry wants to protect digital content distributed on DVDs. Here is
one possible approach. Suppose there are at most a total of n DVD players in the world (e.g.
n = 232). We view these n players as the leaves of a binary tree of height log2 n. Every node
vj in this binary tree contains an AES key kj ∈ K. These keys are kept secret from consumers
and are fixed for all time. At manufacturing time every DVD player is assigned a serial number
i ∈ {0, . . . , n−1}. Let Si be the set of 1+log2 n nodes along the path from the root of the binary
tree to leaf number i. The manufacturer embeds in player number i the 1+log2 n keys associated
with the nodes in Si. In this way each DVD player ships with 1 + log2 n keys embedded in it,
and these keys are supposedly inaccessible to the end user. A DVD movie m is encrypted as

DVD := E(kroot, k)︸ ︷︷ ︸
header

∥∥∥∥ E(k,m)︸ ︷︷ ︸
body

,

where k ←R K is a fresh random key called a content key. Since all DVD players have the key kroot,
all players can decrypt the content m. We refer to E(kroot, k) as the header and E(k,m) as the
body. In what follows the DVD header may contain multiple ciphertexts where each ciphertext
is the encryption of the content key k under some key ki in the binary tree.

a. Suppose the 1 + log2 n keys embedded in DVD player number r are exposed by hackers and
published on the Internet. Show that when the movie industry is about to distribute a new
movie m, they can encrypt m using a header containing log2 n short ciphertexts, so that all
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DVD players can decrypt the movie except for player number r. In effect, the movie industry
disables player number r.
Hint: the header will contain log2 n ciphertexts where each ciphertext is the encryption of
the content key k under certain log2 n keys from the binary tree.

b. Next, suppose the keys embedded in s DVD players R = {r1, . . . , rs} are exposed by hackers,
where s > 1. Show that the movie industry can encrypt the contents of a new DVD using
a header containing O(s log n) short ciphertexts so that all players can decrypt the movie
except for the players in R. You have just shown that all hacked players can be disabled
without affecting other consumers.

Side note: the AACS system used to encrypt Blu-ray and HD-DVD disks uses a related system.
It was quickly discovered that hackers can expose player secret keys faster than the MPAA can
revoke them.

Problem 3. The purpose of this problem is to exercise the concept of advantage. Consider the
following two experiments EXP(0) and EXP(1) between a challenger and an adversary A:

• In EXP(0) the challenger choose a uniform random number x in the set {1, 2, . . . , 6}, and
sends x to the adversary A.

• In EXP(1) the challenger choose a uniform random number y in the set {1, 2, . . . , 10}, and
sends y to the adversary A.

The adversary’s goal is to distinguish these two experiments: at the end of each experiment the
adversary A outputs a bit 0 or 1 for its guess for which experiment it is in. For b = 0, 1 let Wb

be the event that in experiment b the adversary outputs 1. The adversary tries to maximize its
distinguishing advantage, namely the quantity

Adv[A] :=
∣∣∣Pr[W0]− Pr[W1]

∣∣∣ ∈ [0, 1] .

The advantage Adv captures the adversary’s ability to distinguish the two experiments. If the
advantage is 0 then the adversary behaves exactly the same in both experiments and therefore
does not distinguish between them. If the advantage is 1 then the adversary can tell perfectly
what experiment it is in. If the advantage is negligible for all efficient adversaries (as defined in
class) then we say that the two experiments are indistinguishable.

a. Consider the following adversary A0 that takes as input an integer z and outputs {0, 1}:

if z ∈ {1, . . . , 4}: output 0
else: output 1

What is the advantage Adv[A0] of this adversary in distinguishing the two experiments?

b. Describe an adversary A1 that achieves the highest advantage you can think of.
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Problem 4. Let F be a secure PRF defined over (K,X ,Y), where K = X = Y = {0, 1}n.

a. Show that F1

(
(k1, k2), (x1, x2)

)
:= F (k1, x1) ⊕ F (k2, x2) is not a secure PRF. That is, con-

struct a PRF adversary A1 that has non-negligible advantage in distinguishing F1(k, ·) from
a random function in Funs[X 2,Y]. Hint: your attacker will query F1 at four points.

b. Show that F2(k, x) := F (k, x) ∥ F (k, F (k, x)) is not a secure PRF. Here ∥ means the concate-
nation of the two outputs. Hint: your adversary A2 will query F2 at two inputs, where the
second query depends on the answer to the first query.

c. Prove that F3(k, x) := F (k, x) ⊕ x is a secure PRF. Do so by proving the contrapositive:
show that if an adversary A3 can distinguish F3(k, ·) from a random function then there is
adversary B (that is a wrapper around A3) that can distinguish F from a random function.
This B will play the role of challenger to A3, and attack F .

Problem 5. Let π : X → X be a fixed public one-to-one function, where X := {0, 1}n, and where
π and π−1 are efficiently computable. The Even-Mansour pseudorandom permutation (E,D)
derived from π, is defined as

E
(
(k0, k1), x

)
:= π(x⊕ k0)⊕ k1 and D

(
(k0, k1), c

)
:= π−1(c⊕ k1)⊕ k0.

This permutation corresponds to one round of AES, and can be shown to be a secure PRP
when π is chosen at random from Perms[X ], and when |X | is sufficiently large. Let’s look at
some broken variants of Even-Mansour.

a. Show that E1(k1, x) := π(x)⊕ k1 is not a secure PRP.

b. Show that E2(k0, x) := π(x⊕ k0) is not a secure PRP.

Problem 6. Exercising the definition of semantic security. Let (E,D) be a semantically secure cipher
defined over (K,M, C), where M = C = {0, 1}L. Which of the following encryption algorithms
yields a semantically secure scheme? Either give an attack or provide a security proof. To
prove security, prove the contrapositive, that is prove that a semantic security attacker A on the
proposed system gives a semantic security attacker B on (E,D), with the same advantage.

a. E1(k,m) := 0 ∥ E(k,m)

b. E2(k,m) := E(k,m) ∥ parity(m)

c. E3(k,m) := reverse(E(k,m))

d. E4(k,m) := E(k, reverse(m))

Here, for a bit string s, parity(s) is 1 if the number of 1’s in s is odd, and 0 otherwise; also,
reverse(s) is the string obtained by reversing the order of the bits in s, e.g., reverse(1011) = 1101.
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Problem 7. Let E = (E,D) be a cipher. Consider the cipher E2 = (E2, D2), where E2(k,m) =
E(k,E(k,m)). One might expect that if encrypting a message once with E is secure then
encrypting it twice as in E2 should be no less secure. However, that is not always true.

a. Show that there is a semantically secure cipher E such that E2 is not semantically secure.

b. Prove that for every CPA secure cipher E , the cipher E2 is also CPA secure. As usual prove
the contrapositive: for every CPA adversary A attacking E2 there is a CPA adversary B
attacking E with about the same advantage and running time as A. Adversary B uses A as
a black box – it plays the role of CPA challenger to A with respect to E2. It uses A to win
the CPA game against its own challenger with respect to E .
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