Problem 1. Let’s explore why in the RSA trapdoor permutation every party has to be assigned a different modulus \(n = pq \). Suppose we try to use the same modulus \(n = pq \) for everyone. Every party is assigned a public exponent \(e_i \in \mathbb{Z} \) and a private exponent \(d_i \in \mathbb{Z} \) such that \(e_i \cdot d_i = 1 \mod \varphi(n) \). At first this appears to work fine: to sign a message \(m \in M \), Alice would publish the signature \(\sigma_a \leftarrow H(m)^{d_a} \in \mathbb{Z}_n \) where \(H : M \rightarrow \mathbb{Z}_n^* \) is a hash function. Similarly, Bob would publish the signature \(\sigma_b \leftarrow H(m)^{d_b} \in \mathbb{Z}_n \). Since Alice is the only one who knows \(d_a \in \mathbb{Z} \) and Bob is the only one who knows \(d_b \in \mathbb{Z} \), this seems fine.

Let’s show that this is completely insecure: Bob can use his secret key \(d_b \) to sign messages on behalf of Alice.

a. Show that Bob can use his public-private key pair \((e_b, d_b)\) to obtain a multiple of \(\varphi(n) \). Let us denote that integer by \(V \).

b. Now, suppose Bob knows Alice’s public key \(e_a \). Show that for any message \(m \in M \), Bob can compute \(\sigma \leftarrow H(m)^{1/e_a} \in \mathbb{Z}_n \). In other words, Bob can invert Alice’s trapdoor permutation and obtain her signature on \(m \).

Hint: First, suppose \(e_a \) is relatively prime to \(V \). Then Bob can find an integer \(d \) such that \(d \cdot e_a = 1 \mod V \). Show that \(d \) can be used to efficiently compute \(\sigma \). Next, show how to make your algorithm work even if \(e_a \) is not relatively prime to \(V \).

Note: In fact, one can show that Bob can completely factor the global modulus \(n \).

Problem 2. Consider again the RSA-FDH signature scheme. The public key is a pair \((N, e)\) where \(N \) is an RSA modulus, and a signature on a message \(m \in M \) is defined as \(\sigma := H(m)^{1/e} \in \mathbb{Z}_N \), where \(H : M \rightarrow \mathbb{Z}_N \) is a hash function. Suppose the adversary could find three messages \(m_1, m_2, m_3 \in M \) such that \(H(m_1) \cdot H(m_2) = H(m_3) \) in \(\mathbb{Z}_N \). Show that the resulting RSA-FDH signature scheme is no longer existentially unforgeable under a chosen message attack.

More generally, your attack shows that for security of the signature scheme, it should be difficult to find a set of inputs to \(H \) where the corresponding outputs have a known algebraic relation in \(\mathbb{Z}_N \). One can show that this is indeed the case for a random function \(H : M \rightarrow \mathbb{Z}_N \), which is what we assumed when proving security of RSA-FDH.
Problem 3. A bad choice of primes for RSA. Let’s see why when choosing an RSA modulus $n = pq$ it is important to choose the two primes p and q independently at random. Suppose n is generated by choosing the prime p at random, and then choosing the prime q dependent on p. In particular, suppose that p and q are close, namely $|p - q| < n^{1/4}$. Let’s show that the resulting n can be easily factored.

a. Let $A = (p + q)/2$ be the arithmetic mean of p and q. Recall that \sqrt{n} is the geometric mean of p and q. Show that when $|p - q| < n^{1/4}$ we have that
\[A - \sqrt{n} < 1. \]

Hint: one way to prove this is by multiplying both sides by $A + \sqrt{n}$ and then using the fact that $A \geq \sqrt{n}$ by the AGM inequality.

b. Because p and q are odd primes, we know that A is an integer. Then by part (a) we can deduce that $A = \lceil \sqrt{n} \rceil$, and therefore it is easy to calculate A from n. Show that using A and n it is easy to factor n.

As an optional, more challenging question, show how to efficiently factor $n = pq$ when you are told that $|p - 2q| < n^{1/4}/4$.

Problem 4. A commitment scheme enables Alice to commit a value x to Bob. The scheme is hiding if the commitment does not reveal to Bob any information about the committed value x. At a later time Alice may open the commitment and convince Bob that the committed value is x. The commitment is binding if Alice cannot convince Bob that the committed value is some $x' \neq x$. Here is an example commitment scheme:

Public values: A group G of prime order q and two generators $g, h \in G$.

Commitment: To commit to an integer $x \in \mathbb{Z}_q$ Alice does the following: (1) she chooses a random $r \in \mathbb{Z}_q$, (2) she computes $b = g^x \cdot h^r \in G$, and (3) she sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that $b = g^x \cdot h^r$.

Show that this scheme is hiding and binding.

a. To prove the hiding property show that b reveals no information about x. In other words, show that given b, the committed value can be any element x' in \mathbb{Z}_q.

Hint: show that for any $x' \in \mathbb{Z}_q$ there exists a unique $r' \in \mathbb{Z}_q$ so that $b = g^{x'} h^{r'}$.

b. To prove the binding property show that if Alice can open the commitment as (x', r'), where $x \neq x'$, then Alice can compute the discrete log of h base g. In other words, show that if Alice can find an (x', r') such that $b = g^{x'} h^{r'}$ and $x \neq x'$ then she can find the discrete log of h base g. Recall that Alice also knows the (x, r) used to create b.

c. Show that the commitment is additively homomorphic: given a commitment to $x \in \mathbb{Z}_q$ and a commitment to $y \in \mathbb{Z}_q$, Bob can construct a commitment to $z = ax + by$, for any $a, b \in \mathbb{Z}_q$ of his choice.
Problem 5. Time-space tradeoff. Let $f : X \to X$ be a one-way permutation (i.e., a one-to-one function on X). Show that one can build a table T of size 2^B elements of X ($B \ll |X|$) that enables an attacker to invert f in time $O(|X|/B)$. More precisely, construct an $O(|X|/B)$-time deterministic algorithm A that takes as input the table T and a $y \in X$, and outputs an $x \in X$ satisfying $f(x) = y$. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point $z \in X$ and compute the sequence

$$z_0 := z, \quad z_1 := f(z), \quad z_2 := f(f(z)), \quad z_3 := f(f(f(z))), \ldots$$

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists some $j > 0$ such that $z_j = z$). We call the resulting sequence (z_0, z_1, \ldots, z_j) an f-cycle. Let $t := \lceil |X|/B \rceil$. Try storing $(z_0, z_t, z_{2t}, z_{3t}, \ldots)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time $O(t)$.

Discussion: Time-space tradeoffs of this nature can be used to attack unsalted hashed passwords, as discussed in class. Time-space tradeoffs also exist for general one-way functions (not just permutations), but their performance is not as good as your time-space tradeoff above. These algorithms are called *Hellman tables* and discussed in Section 18.7 in the book.

Problem 6. Recall that the S/key system discussed in lecture uses an iterated one-way function.

a. Let’s show that the iteration of a one-way function need not be one-way. To do so, let $f : \mathcal{X} \to \mathcal{X}$ be a one-way function, where $0 \in \mathcal{X}$. Let $\hat{f} : \mathcal{X}^2 \to \mathcal{X}^2$ be defined as:

$$\hat{f}(x, y) = \begin{cases} (0, 0) & \text{if } y = 0 \\ (f(x), 0) & \text{otherwise} \end{cases}$$

Show that \hat{f} is one-way, but $\hat{f}^{(2)}(x, y) := \hat{f}(\hat{f}(x, y))$ is not.

b. Let’s show that the iteration of a one-way permutation is also one-way (recall that a permutation is a one-to-one function). Suppose $f : \mathcal{X} \to \mathcal{X}$ is a one-way permutation. Show that $f^{(2)}(x) := f(f(x))$ is also one-way. As usual, prove the contrapositive.

c. Explain why your proof from part (b) does not apply to a one-way function. Where does the proof fail?