Problem 1. (a) We have $e_{eve}d_{eve} = 1 \pmod{\varphi(N)}$. Thus, $\varphi(N)$ divides $e_{eve}d_{eve} - 1$.

(b) First, suppose e_{bob} is relatively prime to V. Using the extended Euclidean algorithm, Eve can find an integer d such that $d = e_{bob}^{-1} \pmod{V}$, where $V = e_{eve}d_{eve} - 1$ is the multiple of $\varphi(N)$ from part (a). Since $\varphi(N)$ divides V, we have that $e_{bob}d = 1 \pmod{\varphi(N)}$, and so
\[e^d = (x^e)^d = x^{e_{bob}d} \pmod{\varphi(N)} = x \pmod{V}. \]

Suppose $a = \gcd(e_{bob}, V) \neq 1$. Additionally, write $V = k \cdot \varphi(N)$, where for some integer k. Since $\gcd(e_{bob}, \varphi(N)) = 1$, we have that $\gcd(e_{bob}, V) = \gcd(e_{bob}, k)$.

Thus, $V/a = \varphi(N) \cdot k/a$ is still a multiple of $\varphi(N)$. We can replace V with V/a, and repeat this process until we obtain a value V where $\gcd(V, e_{bob}) = 1$. Then, we can directly apply the algorithm for the case when $\gcd(V, \varphi(N)) = 1$.

Important Note: It is not always the case that $\gcd(e_{bob}, k/a) = 1$. For a counter-example, take $e_{bob} = 3$ and $k = 9$ (in which case $a = \gcd(e_{bob}, k) = 3$). Note though that we will only repeat this process logarithmically many times (each iteration, we reduce V by a factor of two) before obtaining a multiple of $\varphi(N)$ that is relatively prime to e_{bob}.

Problem 2. Let $t = |X|/B$ as in the hint. We describe our procedure for constructing the table T. First, we mark all the elements in X as unprocessed. Then, while there exists an unprocessed element $z \in X$, we repeatedly apply f to z until we have a complete cycle $(z, f(z), f^2(z), \ldots, f^n(z))$. In particular, this means that $f^{(n+1)}(z) = z$. The cycle exists because f is a permutation on a finite range. We mark all elements $(z, f(z), \ldots, f^n(z))$ as processed. If $n \geq t$, we add the ordered-tuple $(z, f^t(z), f^{2t}(z), \ldots, f^{(n/t)}(z))$ to T. By construction, there are at most $B = |X|/t$ entries in our table.\footnote{This could be off by a factor of two but if instead, we store every 2t elements in each cycle, inversion still runs in $O(t)$ time using a table with at most B entries. For simplicity, we will present the algorithm without this extra caveat.}

Next, we describe how to invert an input $y \in X$ in time $O(t)$. Given an element y, we repeatedly apply f to y until we obtain an element $f^{(i)}(y)$ that is contained in T, or is equal to y. There are two possibilities:

- Suppose y is an element in a cycle with length less than t. Then, for some $1 \leq i < t$, $f^{(i)}(y) = y$. The pre-image of y is thus $f^{(i-1)}(y)$, which we have computed with $i - 1 < t$ invocations of f.

- Suppose y is an element in a cycle with length at least t. In our construction of T, we have stored every tth element in this cycle. Thus, for some $0 \leq i < t$, $f^{(i)}(y) \in T$. Take the element in T that immediately precede $f^{(i)}(y)$. Denote it x. By construction of the table, we have that $f^{(i)}(x) = f^{(i)}(y)$, and so, we have $f^{(t-i-1)}(x)$ is the pre-image of y. Thus, we can invert y with exactly $t - 1$ invocations of f.

Thus, we have demonstrated that we can invert f on any input using at most $t = O(|X|/B)$ invocations of f.

Problem 3. (a) We first show that g and h generate the same subgroup G of order q. Briefly, let γ be a generator of \mathbb{Z}_p^*, and let $g = \gamma^a$ and $h = \gamma^b$. Let $c = \gcd(a, b)$. By the extended Euclidean algorithm, $c = ax + by$
for some x, y, so that $\eta = \gamma^x$ is in the subgroup G generated by g, h. But by the definition of gcd, a/c and b/c are integers, so that $g = \eta^{a/c}$ and $h = \eta^{b/c}$ are generated by η. Therefore every element of G is generated by η. But η has order q, because g and h do, and so $|G| = q$. We conclude that g and h both generate G.

To prove the main claim, let G be the subgroup generated by g and h. Since $b = g^x h^y$, $b \in G$. Now, if we fix b, then for every $x \in \mathbb{Z}_q$, there is a unique $y \in G$ such that $g^x y = b$, namely $y = bg^{-x}$. Finally, since h generates G, this means that there is a unique $r \in \mathbb{Z}_q$ such that $h^r = y$. Thus, we conclude that for a fixed commitment b, for every value $x \in \mathbb{Z}_q$, there exists a unique randomizer $r \in \mathbb{Z}_q$ such that $g^x h^r = b$.

Thus, the commitment scheme is perfectly hiding.

(b) Suppose that given g and h, Alice can construct a commitment b that she can open as x and also as x'. That is, she can produce $x \neq x', r, r'$ such that

$$g^x h^r = b = g^{x'} h^{r'}$$

Dividing through, $g^{x-x'} = h^{r-r'}$. Since $x \neq x'$, $g^{x-x'} \neq 1$ and so $r \neq r'$. Then, since q is prime, we can compute $(r' - r)^{-1} \pmod q$. Raising both sides of the above equation to this power, we have

$$g^{(x-x')(r'-r)^{-1}} = h,$$

so we see that $(x - x')(r' - r)^{-1} \in \mathbb{Z}_q$ is the discrete log of h base g.

Problem 4. (a) Let (x_1, y_1) and (x_2, y_2) be the collision given by A on inputs u, v. Thus, $x_1^u \cdot y_1^v = x_2^u \cdot y_2^v \pmod n$. Or equivalently, $(x_1/x_2)^u = y_1^v \cdot y_2^{-v} \pmod n$. Note that $1/x_2$ is well defined as $x_2 \in \mathbb{Z}_n^*$. As $0 \leq y_1, y_2 < e$, it implies $|y_1 - y_2| < e$. Next, if $y_1 = y_2$, then we get $x_1 = x_2 \pmod n$, which implies $x_1 = x_2$. The last fact follows from the fact that the RSA function with exponent e, RSA$(x) = x^e \pmod n$ is a permutation. If $y_1 = y_2$, then $x_1 = x_2$ and the tuples given are not a valid collision. Thus $y_1 \neq y_2$, or equivalently, $|y_1 - y_2| > 0$. Thus, algorithm B simply runs algorithm A on u, n and then outputs $a = x_1 x_2^{-1} \pmod n$ and $b = y_1 - y_2$.

(b) Using the hint, consider h, s, e, t such that $hs + et = 1$. Consider $\alpha = a^s u^t$. We get $a^b = a^s u^{bt}$. However, $u^b = a^e$, which implies $u^{bt} = a^{et}$. Thus $a^b = a^{et} = a^1 = a$. Hence $\alpha = a^{1/b}$. Note that all operations are performed in \mathbb{Z}_n.

(c) One possible collision is (u, e) and $(u^2, 0)$. $H(u, e) = u^e \cdot u^e = u^{2e} = (u^2)^e \cdot u^0 = H(u^2, 0)$.

Problem 5. (a) With overwhelming probability, $x \neq 0$, so it suffices to just consider cases where $x \neq 0$. The signature is computed as

$$s = (y - m) \cdot x^{-1} \pmod q$$

where $x^{-1} \in \mathbb{Z}_q$. To verify that this works, observe that

$$g^m h^s = g^m h^{(y-m)x^{-1}} = g^m g^{(y-m)x^{-1}} = g^m g^{y-m} = g^y = u.$$
5. If \mathcal{A} outputs a forgery (m^*, s^*), \mathcal{B} computes and outputs $x = (m - m^*)(s^* - s)^{-1} \in \mathbb{Z}_q$.

We claim that \mathcal{B} solves the discrete log in \mathbb{G} with advantage ε. First, we argue that \mathcal{B} correctly simulates the view for adversary \mathcal{A}. In the real scheme, the components h, u in the public key (g, h, u) are uniform and independent in \mathbb{G}. This is also the case in the public key \mathcal{B} constructs for \mathcal{A}: the challenge h from the discrete log challenger is uniform in \mathbb{G} and the value s is chosen uniformly and independently at random from \mathbb{Z}_q, so $g^{m^*}h^s$ is uniform in \mathbb{G} since h is a generator of \mathbb{G}. By construction, the signature s that the adversary receives is properly distributed (for each message m, there is only one valid signature s). Thus the view \mathcal{B} simulates for \mathcal{A} is identically distributed as the view \mathcal{A} expects when interacting with a challenger for the weak one-time signature game. Thus, with probability ε, (m^*, s^*) is a valid forgery, which means that $m \neq m^* \in \mathbb{Z}_q$ and moreover,

$$g^{m^*}h^s = u = g^{m^*}h^{s^*}.$$

Since $m \neq m^* \in \mathbb{Z}_q$, it follows that $s \neq s^* \in \mathbb{Z}_q$. But then, as in Problem 3, we have that

$$g^{(m-m^*)(s^*-s)^{-1}} = h,$$

or equivalently, $(m - m^*)(s^* - s)^{-1}$ is the discrete log of h base g. We conclude that \mathcal{B} wins the discrete log game in \mathbb{G} with advantage ε.

(c) Given two message/signature pairs $(m_0, s_0), (m_1, s_1)$ with $m_0 \neq m_0$, compute $x = (m_0 - m_1)(s_1 - s_0)^{-1} \in \mathbb{Z}_q$. A similar calculation as in part (b) shows that $g^x = h$. Then compute $y = m_0 + s_0x$. Notice that $g^y = g^{m_0}(g^x)^{s_0} = u$. Therefore, we have recovered the secret key (x, y). Thus, we can now sign arbitrary messages of our choosing.

(d) For the extra credit, let \mathcal{A} be an adversary for the one-time signature scheme. Let ε be the advantage of \mathcal{A}. We construct the following adversary \mathcal{B} for solving the discrete log in \mathbb{G}:

1. The discrete log challenger sends \mathcal{B} a tuple (g, h) where h is random in \mathbb{G}.

2. \mathcal{B} chooses random exponents $a_0, a_1, b_0, b_1, c_0, c_1 \overset{\$}{\leftarrow} \mathbb{Z}_q$. It then computes $h_0 \leftarrow g^{a_0}h^{a_1}$, $h_1 \leftarrow g^{b_0}h^{b_1}$, and $u \leftarrow g^{c_0}h^{c_1}$.

3. \mathcal{B} starts running \mathcal{A} and gives it the public key (g, h_0, h_1, u).

4. When \mathcal{A} issues a signing request for a message m, \mathcal{B} computes values $s_0, s_1 \in \mathbb{Z}_q$ such that $c_0 = m + a_0s_0 + b_0s_1$ and $c_1 = a_1s_0 + b_1s_1$. Adversary \mathcal{B} sends the signature (s_0, s_1) to \mathcal{A}.

5. If adversary \mathcal{A} outputs a forgery (m^*, s^*) for some message $m \neq m^*$, then \mathcal{B} outputs the value of $x \in \mathbb{Z}_q$ that satisfies

$$m^* - m = a_0(s_0^* - s_0) + b_0(s_1^* - s_1) = x[a_1(s_0^* - s_0^*) + b_1(s_1^* - s_1^*)]$$

We claim that \mathcal{B} simulates the correct view for adversary \mathcal{A}. First, since the exponents $a_0, a_1, b_0, b_1, c_0, c_1$ are all chosen uniformly and independently in \mathbb{Z}_q, the public key is properly distributed. Next, we note that (s_0, s_1) is a valid signature on the adversary’s message m:

$$g^{m^*}h_0^{s_0}h_1^{s_1} = g^{m+a_0s_0+b_0s_1}h_0^{a_1s_0+b_1s_1} = g^{c_0}h^{c_1}.$$

Moreover, the values s_0, s_1 exist with overwhelming probability since the exponents $a_0, a_1, b_0, b_1, c_0, c_1$ are drawn uniformly at random from \mathbb{Z}_q (and can be computed efficiently since we are solving a linear system in \mathbb{Z}_q). Finally, the fact that s_0 is uniform in \mathbb{Z}_q follows from the fact that c_0, c_1 are uniformly drawn from \mathbb{Z}_q. We conclude that \mathcal{B} properly simulates the view for \mathcal{A}, and so, with probability ε, \mathcal{A} outputs a pair (m^*, s^*) such that $m \neq m^*$ and $s^* = (s_0^*, s_1^*)$ is a valid signature on m^*. By definition then, $g^{m^*}h_0^{s_0^*}h_1^{s_1^*} = g^{m}h_0^{s_0}h_1^{s_1}$.

Writing $h = g^x$, and using the fact that g is a generator of \mathbb{Z}_q, this means that

$$m^* - m = a_0(s_0^* - s_0) + b_0(s_1^* - s_1) = x[a_1(s_0^* - s_0^*) + b_1(s_1^* - s_1^*)] \pmod{q}.$$

3
As long as \(a_1(s_0 - s_0^*) + b_1(s_1 - s_1^*) \neq 0 \) and \(a_0(s_0^* - s_0) + b_0(s_1^* - s_1) \neq m - m^* \), then \(\mathcal{B} \) can solve for \(x \in \mathbb{Z}_q \) efficiently, and thus win the discrete log game. We show that this holds with overwhelming probability. Consider the probability that \(a_1(s_0 - s_0^*) + b_1(s_1 - s_1^*) = 0 \). First, it cannot be the case that \(s_0 = s_0^* \) and \(s_1 = s_1^* \) and \((s_0^*, s_1^*)\) remains a valid signature on \(m^* \neq m \). Therefore, at least one of \(s_0 - s_0^* \) and \(s_1 - s_1^* \) is non-zero. Taken over the randomness in \(a_1, b_1 \), with overwhelming probability \(a_1(s_0 - s_0^*) + b_1(s_1 - s_1^*) \neq 0 \) (note that this holds even conditioned on the adversary’s knowledge of the public key \((g,h_0,h_1,u)\) and the tuple \((m,s_0,s_1)\)). A similar argument shows that with overwhelming probability \(a_0(s_0^* - s_0) + b_0(s_1^* - s_1) \neq m - m^* \), and so we conclude that with probability negligibly close to \(\varepsilon \), adversary \(\mathcal{B} \) wins the discrete log game in \(G \).

Problem 6. Given an 80-byte (640 bit) prefix \(B \), we show how to construct a 256-byte (2048 bit) value \(B^* \) such that the first 80 bytes of \(B^* \) is equal to \(B \), and where \(B^* \) is a perfect cube over the integers. Using the procedure described in the problem, this enables an adversary to forge signatures on arbitrary messages of its choosing. We construct the value \(B^* \) as follows:

1. Let \(y = 2^{1408}B + 2^{1408} - 1 \). Since \(B \) is a 640-bit value, \(y \) is a 2048-bit value whose first 640 bits are equal to \(B \) and whose last 1408 bits are all 1’s. In other words, \(y \) is the largest 2048-bit value whose prefix is \(B \).

2. Let \(x = \lfloor 3\sqrt[3]{y} \rfloor \) be the floor of the cube root of \(y \) (computed over the real numbers). Note that this can be computed efficiently (for instance, using binary search).

3. Output \(B^* = x^3 \).

By construction, \(B^* \) is a perfect cube over the integers. It suffices to show that the first 640-bits of \(B^* \) equals \(B \). This is equivalent to showing that \(2^{1408}B \leq B^* \leq y \), since all values in the interval \([2^{1408}B, y]\) share the same 640 most-significant bits. By construction, \(x^3 \leq y < (x + 1)^3 \). We can give a crude upper bound on the difference between \((x + 1)^3\) and \(x^3 \):

\[
(x + 1)^3 - x^3 = 3x^2 + 3x + 1 \leq 8x^2 \leq 8y^{2/3} \leq 2^{3+1366} = 2^{1369}.
\]

Since \(x^3 \leq y < (x + 1)^3 \), it follows that \(y - x^3 < (x + 1)^3 - x^3 \leq 2^{1369} < 2^{1408} \). We conclude that \(2^{1408}B \leq x^3 \leq y \). Since \(B^* = x^3 \), the claim follows.