1. Abstract block ciphers: PRPs and PRFs,
2. Security models for encryption,
3. Analysis of CBC and counter mode
PRPs and PRFs

• Pseudo Random Function (PRF) defined over (K,X,Y):
 \[F: K \times X \rightarrow Y \]
 such that exists “efficient” algorithm to evaluate \(F(k,x) \)

• Pseudo Random Permutation (PRP) defined over (K,X):
 \[E: K \times X \rightarrow X \]
 such that:
 1. Exists “efficient” algorithm to evaluate \(E(k,x) \)
 2. The function \(E(k, \cdot) \) is one-to-one
 3. Exists “efficient” inversion algorithm \(D(k,x) \)
Running example

- **Example PRPs:** 3DES, AES, ...

 - **AES-128:** \(K \times X \rightarrow X \) where \(K = X = \{0,1\}^{128} \)

 - **DES:** \(K \times X \rightarrow X \) where \(X = \{0,1\}^{64}, K = \{0,1\}^{56} \)

 - **3DES:** \(K \times X \rightarrow X \) where \(X = \{0,1\}^{64}, K = \{0,1\}^{168} \)

- Functionally, any PRP is also a PRF.
 - A PRP is a PRF where \(X=Y \) and is efficiently invertible
 - A PRP is sometimes called a **block cipher**
Secure PRFs

- Let $F: K \times X \rightarrow Y$ be a PRF

 \[
 \begin{align*}
 \text{Funs}[X,Y]: & \quad \text{the set of all functions from } X \text{ to } Y \\
 S_F = & \{ F(k, \cdot) \text{ s.t. } k \in K \} \subseteq \text{Funs}[X,Y]
 \end{align*}
 \]

- **Intuition**: a PRF is **secure** if a random function in $\text{Funs}[X,Y]$ is indistinguishable from a random function in S_F
Secure PRFs

- Let \(F: K \times X \rightarrow Y \) be a PRF

\[
\begin{align*}
\text{Funs}[X,Y]: & \quad \text{the set of all functions from } X \text{ to } Y \\
S_F = \{ F(k,\cdot) \text{ s.t. } k \in K \} & \subseteq \text{Funs}[X,Y]
\end{align*}
\]

- **Intuition:** a PRF is **secure** if a random function in \(\text{Funs}[X,Y] \) is indistinguishable from a random function in \(S_F \)
Secure PRF: definition

- For \(b=0,1 \) define experiment \(EXP(b) \) as:

 \[\text{Def: } F \text{ is a secure PRF if for all “efficient” } A: \]

 \[
 Adv_{PRF}[A,F] = \left| \Pr[EXP(0)=1] - \Pr[EXP(1)=1] \right|
 \]

 is “negligible.”
Secure PRP

• For \(b=0,1 \) define experiment \(\text{EXP}(b) \) as:

\[
\text{Def: } E \text{ is a secure PRP if for all "efficient" } A: \\
\text{Adv}_{PRP}[A,E] = \left| \Pr[\text{EXP}(0)=1] - \Pr[\text{EXP}(1)=1] \right|
\]
is “negligible.”
Example secure PRPs

• **Example secure PRPs:** 3DES, AES, ...

 \(AES_{256} : K \times X \rightarrow X \) where \(X = \{0,1\}^{128} \)

 \(K = \{0,1\}^{256} \)

• **AES\textsubscript{256} PRP Assumption** (example):

 All explicit \(2^{80} \)-time algs A have \(\text{PRP Adv}[A, AES_{256}] < 2^{-40} \)
PRF Switching Lemma

Any secure PRP is also a secure PRF.

Lemma: Let E be a PRP over (K,X)
Then for any q-query adversary A:

$$\left| \text{Adv}_{\text{PRF}}[A,E] - \text{Adv}_{\text{PRP}}[A,E] \right| < \frac{q^2}{2|X|}$$

\Rightarrow Suppose $|X|$ is large so that $\frac{q^2}{2|X|}$ is “negligible”

Then $\text{Adv}_{\text{PRP}}[A,E]$ “negligible” \Rightarrow $\text{Adv}_{\text{PRF}}[A,E]$ “negligible”
Using PRPs and PRFs

- **Goal**: build “secure” encryption from a PRP.

- Security is always defined using two parameters:

 1. **What “power” does adversary have?**
 - Adv sees only one ciphertext (one-time key)
 - Adv sees many PT/CT pairs (many-time key, CPA)

 2. **What “goal” is adversary trying to achieve?**
 - Fully decrypt a challenge ciphertext.
 - Learn info about PT from CT (semantic security)
Incorrect use of a PRP

Electronic Code Book (ECB):

PT: \[m_1 \quad m_2 \quad - \quad - \quad - \quad - \quad - \]

CT: \[c_1 \quad c_2 \quad - \quad - \quad - \quad - \quad - \]

Problem:

– if \(m_1 = m_2 \) then \(c_1 = c_2 \)
In pictures

An example plaintext

Encrypted with AES in ECB mode

(courtesy B. Preneel)
Modes of Operation for One-time Use Key

Example application:
- Encrypted email. New key for every message.
Semantic Security for one-time key

- $E = (E,D)$ a cipher defined over (K,M,C)
- For $b=0,1$ define $\text{EXP}(b)$ as:

```
Def: $E$ is sem. sec. for one-time key if for all “efficient” $A$:

$\text{Adv}_{SS}[A,E] = \left| \Pr[\text{EXP}(0)=1] - \Pr[\text{EXP}(1)=1] \right|$
```

is “negligible.”
Semantic security (cont.)

Sem. Sec. \(\Rightarrow\) no “efficient” adversary learns info about PT from a **single** CT.

Example: suppose efficient A can deduce LSB of PT from CT. Then \(E = (E,D)\) is not semantically secure.

Then \(\text{Adv}_{\text{SS}}[B, E] = 1\) \(\Rightarrow\) \(E\) is not sem. sec.
Note: ECB is not Sem. Sec.

ECB is not semantically secure for messages that contain two or more blocks.

If \(c_1 = c_2 \) output 0, else output 1

Then \(\text{Adv}_{SS}[A, \text{ECB}] = 1 \)
Secure Constructions

Examples of sem. sec. systems:

1. $\text{Adv}_{\text{SS}}[A, \text{OTP}] = 0$ for all A

2. Deterministic counter mode from a PRF F:
 - $E_{\text{DETCTR}}(k,m) =$
 - $m[0]$ $m[1]$ \ldots $m[L]$
 \oplus
 - $F(k,0)$ $F(k,1)$ \ldots $F(k,L)$
 $\underline{c[0]}$ $c[1]$ \ldots $c[L]$

 - Stream cipher built from PRF (e.g. AES, 3DES)
Det. counter-mode security

Theorem: For any \(L > 0 \).

If \(F \) is a secure PRF over \((K, X, X)\) then

\(E_{DETCTR} \) is sem. sec. cipher over \((K, X^L, X^L)\).

In particular, for any adversary \(A \) attacking \(E_{DETCTR} \) there exists a PRF adversary \(B \) s.t.:

\[
\text{Adv}_{SS}[A, E_{DETCTR}] = 2 \cdot \text{Adv}_{PRF}[B, F]
\]

\(\text{Adv}_{PRF}[B, F] \) is negligible (since \(F \) is a secure PRF)

\[\Rightarrow\] \(\text{Adv}_{SS}[A, E_{DETCTR}] \) must be negligible.
Modes of Operation for Many-time Key

Example applications:
1. File systems: Same AES key used to encrypt many files.
2. IPsec: Same AES key used to encrypt many packets.
Semantic Security for many-time key (CPA security)

Cipher $E = (E,D)$ defined over (K,M,C). For $b=0,1$ define $\text{EXP}(b)$ as:

- Chal.
 - $k \leftarrow K$
 - for $i=1,\ldots,q$:
 - $m_{i,0}, m_{i,1} \in M : |m_{i,0}| = |m_{i,1}|$
 - $c_i \leftarrow E(k, m_{i,b})$
 - $c = E(k, m)$
 - if adv. wants $c = E(k, m)$ it queries with $m_{j,0} = m_{j,1} = m$

- Adv.
 - $b' \in \{0,1\}$

Def: E is sem. sec. under CPA if for all “efficient” A:

$$\text{Adv}_{\text{CPA}}[A,E] = \left| \Pr[\text{EXP}(0)=1] - \Pr[\text{EXP}(1)=1] \right|$$

is “negligible.”
Security for many-time key

Fact: stream ciphers are insecure under CPA.

- More generally: if $E(k,m)$ always produces same ciphertext, then cipher is insecure under CPA.

If secret key is to be used multiple times \Rightarrow

given the same plaintext message twice, the encryption alg. must produce different outputs.
Nonce-based Encryption

nonce n: a value that changes from msg to msg. The (k,n) pair never used more than once.

- **method 1**: encryptor chooses a random nonce, $n \leftarrow \mathcal{N}$
- **method 2**: nonce is a counter (e.g. packet counter)
 - used when encryptor keeps state from msg to msg
 - if decryptor has same state, need not send nonce with CT
Construction 1: CBC with random nonce

Cipher block chaining with a random IV \((IV = \text{nonce}) \)

\[
\text{IV} \quad m[0] \quad m[1] \quad m[2] \quad m[3]
\]

\[
E(k, \cdot) \quad E(k, \cdot) \quad E(k, \cdot) \quad E(k, \cdot)
\]

\[
\text{IV} \quad c[0] \quad c[1] \quad c[2] \quad c[3]
\]

ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.
CBC: CPA Analysis

CBC Theorem: For any $L>0$,

If E is a secure PRP over (K,X) then E_{CBC} is a semi-secure under CPA over (K, X^L, X^{L+1}).

In particular, for a q-query adversary A attacking E_{CBC} there exists a PRP adversary B s.t.:

$$\text{Adv}_{\text{CPA}}[A, E_{CBC}] \leq 2 \cdot \text{Adv}_{\text{PRP}}[B, E] + 2 q^2 L^2 / |X|$$

Note: CBC is only secure as long as $q^2L^2 << |X|$
Construction 1’: CBC with **unique** nonce

Cipher block chaining with **unique** IV \((IV = \text{nonce}) \)

unique IV means: \((\text{key}, \text{IV}) \) pair is used for only one message

![Diagram of CBC with unique nonce](image-url)

- \(\text{IV} \)
- \(m[0] \)
- \(m[1] \)
- \(m[2] \)
- \(m[3] \)
- \(\oplus \)
- \(E(k_2, \cdot) \)
- \(E(k_1, \cdot) \)
- \(\oplus \)
- \(\oplus \)
- \(\oplus \)
- \(\text{IV}' \)
- \(\text{ciphertext} \)
- \(\oplus \)
- \(\oplus \)
- \(\oplus \)
- \(\oplus \)

Included only if unknown to decryptor
A CBC technicality: padding

TLS 1.0: for $n > 0$, $n+1$ byte pad is
if no pad needed, add a dummy block

removed during decryption
Construction 2: rand ctr-mode

IV - chosen at random for every message

note: parallelizable (unlike CBC)
Construction 2’: nonce ctr-mode

To ensure $F(K,x)$ is never used more than once, choose IV as:

IV:
- nonce: 96 bits
- counter: 32 bits

starts at 0 for every msg
rand ctr-mode: CPA analysis

Randomized counter mode: random IV.

Counter-mode Theorem: For any $L>0$,

 If F is a secure PRF over (K,X,X) then E_{CTR} is a sem. sec. under CPA over (K,X^L,X^{L+1}).

In particular, for a q-query adversary A attacking E_{CTR} there exists a PRF adversary B s.t.:

$$\text{Adv}_{\text{CPA}}[A, E_{CTR}] \leq 2 \cdot \text{Adv}_{\text{PRF}}[B, F] + 2 q^2 L / |X|$$

Note: ctr-mode only secure as long as $q^2L \ll |X|$

Better than CBC!
An example

\[
\text{Adv}_{\text{CPA}}[A, E_{\text{CTR}}] \leq 2 \cdot \text{Adv}_{\text{PRF}}[B, E] + 2 \frac{q^2 L}{|X|} \leq \frac{1}{2^{32}}
\]

q = \# messages encrypted with k, \quad L = \text{length of max msg}

Suppose we want \(\text{Adv}_{\text{CPA}}[A, E_{\text{CTR}}] \leq \frac{q^2 L}{|X|} \leq \frac{1}{2^{32}} \)

- AES: \(|X| = 2^{128} \Rightarrow q L^{1/2} < 2^{48} \)

 So, after \(2^{32} \) CTs each of len \(2^{32} \), must change key

 (total of \(2^{64} \) AES blocks)
Comparison: ctr vs. CBC

<table>
<thead>
<tr>
<th></th>
<th>CBC</th>
<th>ctr mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>uses</td>
<td>PRP</td>
<td>PRF</td>
</tr>
<tr>
<td>parallel processing</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Security of rand. enc.</td>
<td>$q^2 L^2 <<</td>
<td>X</td>
</tr>
<tr>
<td>dummy padding block</td>
<td>Yes*</td>
<td>No</td>
</tr>
<tr>
<td>1 byte msgs (nonce-based)</td>
<td>16x expansion</td>
<td>no expansion</td>
</tr>
</tbody>
</table>

* for CBC, dummy padding block can be avoided using *ciphertext stealing*
Summary

PRPs and PRFs: a useful abstraction of block ciphers.

We examined two security notions:

1. Semantic security against one-time CPA.
2. Semantic security against many-time CPA.

Note: neither mode ensures data integrity.

Stated security results summarized in the following table:

<table>
<thead>
<tr>
<th>Goal</th>
<th>Power</th>
<th>one-time key</th>
<th>Many-time key (CPA)</th>
<th>CPA and CT integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem. Sec.</td>
<td>steam-ciphers det. ctr-mode</td>
<td>rand CBC rand ctr-mode</td>
<td>later</td>
<td></td>
</tr>
</tbody>
</table>