
1

PRPs and PRFs

CS255: Winter 2024

Dan Boneh, Stanford University

Recap

Simple stream ciphers:
can only use key to encrypt one message

Next goal: ciphers where a single key can be
used to encrypt many messages

First, let’s introduce block ciphers.

2

Quick Recap

A block cipher is a pair of efficient algs. (E, D):

3

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:
1. AES: n=128 bits, k = 128, 192, 256 bits
2. 3DES: n= 64 bits, k = 168 bits (historical)

Block Ciphers Built by Iteration

R(k,m) is called a round function

3DES: n=48, AES128: n=10, AES256: n=14

key k

key expansion

k1 k2 k3 kn

R
(k

1,
×)

R
(k

2,
×)

R
(k

3,
×)

R
(k

n,
×)m c

AES: an iterated Even-Mansour cipher

input ⨁

𝑘2

⋯

𝑘!"#

⨁𝜋 ⨁
𝑘1

⨁

𝑘0

output

⨁

𝑘𝑑

key key expansion:

invertible

𝜋 𝜋

𝜋:	{0,1}𝑛	 ⇾ 	 {0,1}𝑛	 invertible function

single round EM

AES256: 14 rounds of EM

input

4

4

14 rounds

(1) ByteSub
(2) ShiftRow
(3) MixColumn ⨁

k2

⋯

k13

⨁

(1) ByteSub
(2) ShiftRow
(3) MixColumn

⨁
k1

⨁

k0

(1) ByteSub
(2) ShiftRow

output

4

4

⨁

k14

key
32 bytes

key expansion:

invertible

16 bytes ⟶240 bytes

last
round

16-byes 16-bytes

The permutation 𝜋
(1) ByteSub: a 1 byte S-box. 256 byte table. (invertible)

(2) ShiftRows:

(3) MixColumns:

Recall the AES pledge

8

I promise that I will not implement AES myself
in production code, even though it might be

fun. This agreement will remain in effect until
I learn all about side-channel attacks and

countermeasures to the point where I lose all
interest in implementing AES myself.

Performance (no HW acceleration)

Cipher Block/key size Speed (MB/sec)

ChaCha20 - / 256 643

3DES 64 / 168 30
AES128 128 / 128 163

AES256 128 / 256 115

block

AES-NI: AES hardware instructions

AES instructions (Intel, AMD, ARM, …)

• aesenc, aesenclast: do one round of AES

128-bit registers: xmm1=state, xmm2=round key

aesenc xmm1, xmm2 ; puts result in xmm1

• aesdec, aesdeclast: one round of AES-1

• aeskeygenassist: performs AES key expansion

Claim 1: 20 x speed-up over OpenSSL on same hardware

Claim 2: constant time execution

AES-NI: Encrypting one block (AES256)

step 0: aeskeygenassist(256-bit key) ⟶
round keys in xmm2, xmm3, …, xmm16

step 1: load plaintext block into xmm1 (128-bit block)

step 2: xor xmm1, xmm2
aesenc xmm1, xmm3
aesenc xmm1, xmm4
aesenc xmm1, xmm5

…

aesenclast xmm1, xmm16

15 instructions

AES-NI: parallelism and pipelining

• Intel Skylake (old): 4 cycles for one aesenc
• fully pipelined: can issue one instruction every cycle

• Intel Icelake (2019): vectorized aesenc (vaesenc)
• vaesenc: compute aesenc on four blocks in parallel
• fully pipelined

Implications:

• AES256 encrypt a single block takes 56 cycles (14 rounds)

• AES256 encrypt 16 blocks on Icelake takes 59 cycles

12

AES256 encrypt on Icelake

To encrypt 16 blocks do: m0, …, m15 ∈ {0,1}128

13cycles

(4 cycles)

… finish all 14 rounds after 59 cycles

m0 m1 m2 m3 (vaesenc -- 512 bit register zmm1)

m4 m5 m6 m7 (vaesenc)

m8 m9 m10 m11 (vaesenc)

m12 m13 m14 m15 (vaesenc)

m0' m1’ m2’ m3’ (vaesenc)

m4’ m5’ m6’ m7’ (vaesenc)

0:

1:

2:

3:

4:

5:

14

Abstract view of a block cipher:

PRPs and PRFs

Topics:

1. Abstract block ciphers: PRPs and PRFs

2. Security models for encryption

3. Analysis of CBC and counter mode

15

PRPs and PRFs
• Pseudo Random Function (PRF) defined over (K,X,Y):

F: K ´ X ® Y

such that exists “efficient” algorithm to evaluate F(k,x)

• Pseudo Random Permutation (PRP) defined over (K,X):

E: K ´ X ® X
such that:

1. Exists “efficient” algorithm to evaluate E(k,x)

2. The function E(k, ×) is one-to-one
3. Exists “efficient” inversion algorithm D(k,x)

16

Running example

• Example PRPs: 3DES, AES, …

AES128: K ´ X ® X where K = X = {0,1}128

DES: K ´ X ® X where X = {0,1}64 , K = {0,1}56

3DES: K ´ X ® X where X = {0,1}64 , K = {0,1}168

• Functionally, any PRP is also a PRF.
– A PRP is a PRF where X=Y and is efficiently invertible

– A PRP is sometimes called a block cipher

17

Secure PRFs
• Let F: K ´ X ® Y be a PRF

Funs[X,Y]: the set of all functions from X to Y

SF = { F(k,×) s.t. k Î K } Í Funs[X,Y]

• Intuition: a PRF is secure if
a random function in Funs[X,Y] is indistinguishable from
a random function in SF

SF

Size |K|

Funs[X,Y]

Size |Y||X|

Secure PRFs
• Let F: K ´ X ® Y be a PRF

Funs[X,Y]: the set of all functions from X to Y

SF = { F(k,×) s.t. k Î K } Í Funs[X,Y]

• Intuition: a PRF is secure if
a random function in Funs[X,Y] is indistinguishable from
a random function in SF

k ¬ K

f ¬ Funs[X,Y]
x Î X

f(x) or F(k,x) ?

???

19

Secure PRF: defintion
• For b=0,1 define experiment EXP(b) as:

• Def: F is a secure PRF if for all “efficient” 𝒜 :
AdvPRF[𝒜,F] = |Pr[EXP(0) = 1] – Pr[EXP(1) = 1] |

is “negligible.”

Chal.

b

Adv. 𝒜b=0: k¬K, f ¬F(k,×)
b=1: f¬Funs[X,Y]

xi Î X
f(xi)

b’ Î {0,1}

An example
Let K = X = {0,1}n .
Consider the PRF: F(k, x) = k ⊕ x defined over (K, X, X)

Let’s show that F is insecure:
Adversary 𝒜 : (1) choose arbitrary x0 ≠ x1 ∈ X

(2) query for y0 = f(x0) and y1 = f(x1)
(3) output `0’ if y0 ⊕ y1 = x0 ⊕ x1 , else `1’

20

⟹ AdvPRF[𝒜,F] = 1	 −	(1/2𝑛)	 (not negligible)

Pr[EXP(0) = 0] = 1 Pr[EXP(1) = 0] = 1/2n

21

Secure PRP
• For b=0,1 define experiment EXP(b) as:

• Def: E is a secure PRP if for all “efficient” 𝒜 :
AdvPRP[𝒜,E] = |Pr[EXP(0) = 1] – Pr[EXP(1) = 1] |

is “negligible.”

Chal.

b

Adv. 𝒜b=0: k¬K, f ¬E(k,×)
b=1: f¬Perms[X]

xi Î X
f(xi)

b’ Î {0,1}

22

Example secure PRPs

• Example secure PRPs: 3DES, AES, …

AES256: K ´ X ® X where X = {0,1}128

• AES256 PRP Assumption (example) :

For all 𝒜 s.t. time(𝒜) < 280 : AdvPRP[𝒜, AES256] < 2-40

K = {0,1}256

23

The PRP-PRF Switching Lemma

Any secure PRP is also a secure PRF.

Lemma: Let E be a PRP over (K, X).
Then for any q-query adversary 𝒜 :

| AdvPRF[𝒜,E] - AdvPRP[𝒜,E] | < q2 / 2|X|

Þ Suppose |X| is large so that q2 / 2|X| is “negligible”

Then AdvPRP[𝒜,E] “negligible” Þ AdvPRF[𝒜,E] “negligible”

24

Using PRPs and PRFs
• Goal: build “secure” encryption from a PRP.

• Security is always defined using two parameters:

1. What “power” does adversary have?
examples:
• Adv sees only one ciphertext (one-time key)
• Adv sees many PT/CT pairs (many-time key, CPA)

2. What “goal” is adversary trying to achieve?
examples:
• Fully decrypt a challenge ciphertext.
• Learn info about PT from CT (semantic security)

25

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:
– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

26

In pictures

(courtesy B. Preneel)

27

Modes of Operation for
One-time Use Key

Example application:

Encrypted email. New key for every message.

How to use a block cipher?

28

Semantic Security for one-time key
• E = (E,D) a cipher defined over (K,M,C)
• For b=0,1 define EXP(b) as:

• Def: E is sem. sec. for one-time key if for all “efficient” 𝒜 :

AdvSS[𝒜,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] |
is “negligible.”

Chal.

b

Adv. 𝒜

k¬K m0 , m1 Î M : |m0| = |m1|

c ¬ E(k, mb)

b’ Î {0,1}

29

Adv. B (us)

Semantic security (cont.)
Sem. Sec. Þ no “efficient” adversary learns “info” about PT

from a single CT.
Example: suppose efficient 𝒜 can deduce LSB of PT from CT.
Then E = (E,D) is not semantically secure.

Chal.

bÎ{0,1}

Adv. 𝒜
(given)

k¬K

c ¬ E(k, mb)

m0, LSB(m0)=0
m1, LSB(m1)=1

c

LSB(mb)=b

Then AdvSS[B, E] = 1 Þ E is not sem. sec.

30

Note: ECB is not Sem. Sec.

ECB is not semantically secure for messages that contain
two or more blocks.

Two blocks
Chal.

bÎ{0,1}

Adv. 𝒜

k¬K

(c1,c2) ¬ E(k, mb)

m0 = “Hello World”
m1 = “Hello Hello”

If c1=c2 output 1, else output 0
Then AdvSS[𝒜, ECB] = 1

31

Secure Constructions

Examples of sem. sec. systems:
1. AdvSS[𝒜, OTP] = 0 for all 𝒜

2. Deterministic counter mode from a PRF F :
• EDETCTR (k,m) =

• Stream cipher built from PRF (e.g. AES)

m[0] m[1] …

F(k,0) F(k,1) …

m[L]

F(k,L)
Å

c[0] c[1] … c[L]

32

Det. counter-mode security

Theorem: For any L>0.
If F is a secure PRF over (K,X,X) then
EDETCTR is sem. sec. cipher over (K,XL,XL).

In particular, for any adversary 𝒜 attacking EDETCTR

there exists a PRF adversary B s.t.:

AdvSS[𝒜, EDETCTR] = 2×AdvPRF[B, F]

AdvPRF[B, F] is negligible (since F is a secure PRF)

⇒ AdvSS[𝒜, EDETCTR] must be negligible.

33

Modes of Operation for
Many-time Key

Example applications:

1. File systems: Same AES key used to encrypt many files.

2. IPsec: Same AES key used to encrypt many packets.

Semantic Security for many-time key (CPA security)

Cipher E = (E,D) defined over (K,M,C).
For b=0,1 define EXP(b) as:

Def: E is sem. sec. under CPA if for all “efficient” 𝒜 :
AdvCPA [𝒜,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] |

is “negligible.”

Chal. Adv. 𝒜

k¬K

b’ Î {0,1}

mi,0 , mi,1 Î M : |mi,0| = |mi,1|

ci ¬ E(k, mi,b)

if adv. wants c = E(k, m) it queries with mj,0= mj,1=m

for i=1,…,q: b ∈ {0,1}

35

Security for many-time key
Fact: stream ciphers are insecure under CPA.

– More generally: if E(k,m) always produces same
ciphertext, then cipher is insecure under CPA.

If secret key is to be used multiple times Þ
given the same plaintext message twice,
the encryption alg. must produce different outputs.

Chal. Adv.

k¬K

m0 , m1 Î M

c ¬ E(k, mb)

m0 , m0 Î M
c0 ¬E(k, m0)

output 0
if c = c0

Nonce-based Encryption

nonce n: a value that changes from msg to msg
(k,n) pair never used more than once

• method 1: encryptor chooses a random nonce, n ¬ N

• method 2: nonce is a counter (e.g. packet counter)
– used when encryptor keeps state from msg to msg
– if decryptor has same state, need not send nonce with CT

36

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

37

Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3]IV

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

38

CBC: CPA Analysis

CBC Theorem: For any L>0,
If E is a secure PRP over (K,X) then
ECBC is a sem. sec. under CPA over (K, XL, XL+1).

In particular, for a q-query adversary A attacking ECBC

there exists a PRP adversary B s.t.:

AdvCPA[A, ECBC] £ 2×AdvPRP[B, E] + 2 q2 L2 / |X|

Note: CBC is only secure as long as q2⋅L2 ≪ |X|

messages enc. with key max msg length

39

Construction 1’: CBC with unique nonce

Cipher block chaining with unique IV (IV = nonce)

E(k1,×) E(k1,×) E(k1,×)

m[0] m[1] m[2] m[3]

Å ÅÅ

E(k1,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

IV

E(k2,×)

IV′

unique IV means: (key,IV) pair is used for only one message

included only if unknown to decryptor

A CBC technicality: padding

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3] ll pad

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

IV

E(k1,×)

IV′

TLS 1.0: if need n-byte pad, n>0, use:
 if no pad needed, add a dummy block

n-1 n-1 ⋯ n-1
pad is
removed
during
decryption

41

Construction 2: rand ctr-mode

m[0] m[1] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)
Å

c[0] c[1] … c[L]

IV

IV

IV - chosen at random for every message

note: parallelizable (unlike CBC)

msg

ciphertext

F: PRF defined over (K,X,Y) where X = {0,1, … , 2𝑛-1}	and Y = {0,1}𝑛

(counter counts mod 2!)

(e.g., n=128)

Why is this CPA secure?

CPA security holds as long as intervals do not intersect

• q msgs, L blocks each ⇒ Pr[intersection] ≤ 2 q2 L / |X|

42

the set X: domain of PRF

msg1
IV1 IV1+1 ⋯ IV1+L

msg2
IV2 IV2+1 ⋯ IV2+L

msg3
IV3 IV3+1 ⋯ IV3+L

msg4

msg5

needs to be negligible

43

rand ctr-mode: CPA analysis
Randomized counter mode: random IV.

Counter-mode Theorem: For any L>0,
If F is a secure PRF over (K,X,X) then
ECTR is a sem. sec. under CPA over (K,XL,XL+1).

In particular, for a q-query adversary A attacking ECTR

there exists a PRF adversary B s.t.:

AdvCPA[A, ECTR] £ 2×AdvPRF[B, F] + 2 q2 L / |X|

Note: ctr-mode only secure as long as q2⋅L ≪ |X|

Better then CBC !

An example

q = # messages encrypted with k , L = length of max msg

Suppose we want AdvCPA[A, ECTR] ≤ 1/ 231

• Then need: q2 L / |X| ≤ 1/ 232

• AES: |X| = 2128 ⇒ q L1/2 < 248

So, after 232 CTs each of len 232 , must change key

(total of 264 AES blocks)

AdvCPA [A, ECTR] £ 2×AdvPRF[B, E] + 2 q2 L / |X|

Construction 2’: nonce ctr-mode

nonce
128 bits

0000000IV:
96 bits 32 bits

To ensure F(k,x) is never used more than once, choose IV as:

starts at 0
for every msg

nonce 0000001IV+1:

nonce 0000002IV+2:

Comparison: ctr vs. CBC
CBC ctr mode

required primitive PRP PRF

parallel processing No Yes

security q^2 L^2 << |X| q^2 L << |X|

dummy padding block Yes* No

1 byte msgs
(nonce-based) 16x expansion no expansion

* for CBC, dummy padding block can be avoided using ciphertext stealing

47

Summary

PRPs and PRFs: a useful abstraction of block ciphers.

We examined two security notions:
1. Semantic security against one-time.
2. Semantic security against many-time CPA.
Note: neither mode ensures data integrity.

Stated security results summarized in the following table:

one-time key Many-time key
(CPA)

CPA and
CT integrity

Sem. Sec. steam-ciphers
det. ctr-mode

rand CBC
rand ctr-mode

later

Goal
Power

Attacks on block ciphers

Goal: distinguish block cipher from a random permutation

• if this can be done efficiently then block cipher is broken

Harder goal:
find key 𝑘 given many 𝑐𝑖 = 𝐸(𝑘,𝑚%) for random 𝑚𝑖

48

(1) Linear and differential attacks
[BS’89,M’93]

Given many (𝑚%, 𝑐%) pairs, can recover key much faster than
exhaustive search

Linear cryptanalysis (overview) : let c = DES(k, m)

Suppose for random 𝑘,𝑚 :

Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + 𝜀

For some 𝜀.

For DES, this exists with 𝜀 = 1/221 ≈ 0.0000000477 !!

Linear attacks

Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + ε

Thm: given 1/ε2 random pairs (m, c=DES(k, m)) then

k[l1]⨁…⨁k[lu] = MAJ[m[i1]⨁…⨁m[ir] ⨁ c[jj]⨁…⨁c[jv]]
with prob. ≥ 97.7%

⇒ with 1/ε2 inp/out pairs can find k[l1]⨁…⨁k[lu] in time ≈1/ε2

Linear attacks

For DES, ε = 1/221 ⇒
with 242 inp/out pairs can find k[l1]⨁…⨁k[lu] in time 242

Roughly speaking: can find 14 key “bits” this way in time 242

Brute force remaining 56−14=42 bits in time 242

Attack time: ≈243 (<< 256) with 242 random inp/out pairs

Lesson

A tiny bit of linearly leads to a 242 time attack.

⇒ don’t design ciphers yourself !!

(2) Side channel attacks on software AES

Attacker measures the time to compute AES128(k,m) for
many random blocks m.

– Suppose that the 256-byte S table is not in L1 cache at
the start of each invocation
⟹ time to encrypt reveals the order in which S entries

are accessed
⟹ leaks info. that can compromise entire key

Lesson: don’t implement AES yourself !

Mitigation: AES-NI or use vetted software (e.g., BoringSSL)

53

(3) Quantum attacks

Generic search problem:
Let f: X ⟶ {0,1} be a function.
Goal: find x∈X s.t. f(x)=1.

Classical computer: best generic algorithm time = O(|X|)

Quantum computer [Grover ’96] : time = O(|X|1/2)

(requires a long running quantum computation)

Quantum exhaustive search

Given m, c=E(k,m) define

Grover ⇒ quantum computer can find k in time O(|K|1/2)

AES128: quantum key recovery time ≈264

Adversary has access to a quantum computer ⟹

encrypt data using a cipher with 256-bit keys (AES256)

1 if E(k,m) = c

0 otherwise
f(k) =

THE END

56

Recap
Secure PRF: F: K × X ⇾ Y and

{f(x) = F(k,x) for k ⇽ K} is indist. from random f in Funs[X,Y]

Secure PRP: E: K × X ⇾ X , efficiently invertible, and

{𝜋(x) = E(k,x) for k ⇽ K} is indist. from random 𝜋 in Perms[X]

How to use a secure PRF and a secure PRP for encryption?

• One-time key (semantic security): det. CTR-mode

• Many-time key (CPA security):
nonce-based CBC, nonce-based CTR mode

57

