CS255: Winter 2024

CPA Security:
How to use a key multiple times

Dan Boneh, Stanford University

Quick Recap

A block cipher is a pair of efficient algs. (E, D):

n bits

PT Block

Key

Canonical examples:

« AES: n=128 bits,

n bits
CT Block

k bits

k =128, 192, 256 bits

(hardware support for many blocks in parallel)

- 3DES: n= 64 bits,

k = 168 bits (historical)

Abstract block ciphers: PRFs and PRPs

PRF: an efficiently computable F: KxX —> Y

PRP: (a.k.a block cipher) E:KxX > X
Is a PRF, such that

« forall k € K: the function E(k,-) is one-to-one,

* there is an “efficient” inversion algorithm D (k, x).

Secure PRF (resp. PRP):
the uniform distributionon Sp ={F(k,-): ke K}
is indistinguishable by queries from

the uniform distribution on Funs|[X,Y] (resp. Perms|X]).

ECB: Incorrect use of a PRP

Electronic Code Book (ECB):

PT: mj m, .
CT: C; C, S
Problem:

—if my=m, then c4=c,

How to use a block cipher?

Modes of Operation for
One-time Use Key

Example application:

Encrypted email. New key for every message.

Semantic Security for a one-time key

- E=(E,D) acipherdefined over (K,M,C)
« For b=0,1 define EXP(b) as:

\b

'

Chal. Adv. A

k<K . Mo,M € M: |mg| =|my|

C < E(k, mb)

|
b’ {0,1}

« Def: E is sem. sec. for one-time key if for all “efficient” A :
Advgs[A,E] = |PrEXP(0)=1] - PrEXP(1)=1] |

is “negligible.”

A Semantically Secure Scheme

Deterministic counter mode from a PRF

F: Kx {01,..,L} - {0,1}"

Epererr (Km) =

mo] | m] | ... | m[]
D
F(k,0) | F(k1) | ... |F(kL)
indist. from /
a OTP
o] | o] | ... | oL

= Stream cipher built from PRF (e.g. AES)

How to use a block cipher?

Modes of Operation for
Many-time Key

Example applications:

1. File systems: Same AES key used to encrypt many files.

2. IPsec: Same AES key used to encrypt many packets.

Semantic Security for many-time key (cpa security)

Cipher E = (E,D) defined over (K,M,C).
For b=0,1 define EXP(b) as:

fori=1,..., :
be{01}| cChal d Adv. A

—_—»

ke—K Mg, Mg € M: |mig| = [m4]

Ci < E(k, mi,b)

b’ €/{0,1}

—>

if adv. wants ¢ = E(k, m) it queries with m; ;= m; ;=m

Def: E is sem. sec. under CPA if for all “efficient” A :

AdVcpa [A,E] = |PHEXP(0)=1] — PHEXP(1)=1] |
is “negligible.”

Security for many-time key

Fact: stream ciphers are insecure under CPA.

— More generally: if E(k,m) always produces same
ciphertext, then cipher is insecure under CPA.

Chal. |, mp,. Mg € M Adv.
ke_K Co (—E(k, mo)
My, My € M
output O
c « E(k, mp) R if c=cy

If secret key is to be used multiple times =

given the same plaintext message twice,
the encryption alg. must produce different outputs.

10

Nonce-based Encryption

nonce
Alice ﬁ j Bob
=4 é

m, n E(k,m,N)=c ‘g‘é\ ¢, n 5 D(k,c,n)jm

— T E

| !

k

nonce n: a value that changes from msg to msg
(k,n) pair never used more than once

 method 1: encryptor chooses a random nonce, n « N

« method 2. nonce is a counter (e.g. packet counter)
— used when encryptor keeps state from msg to msg
— if decryptor has same state, need not send nonce with CT

Construction 1:

CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)
\Y m[0] m[1] m[2] m[3]
>? >?_> :i_B >?_>
\Y c[0] c[1] c[2] c[:;]
—
ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

CBC:. CPA Analysis

CBC Theorem: For any L>0,

If E is a secure PRP over (K,X) then

Ecgc is a sem. sec. under CPA over (K, Xt, Xt*1),

In particular, for a g-query adversary A attacking Eqg¢
there exists a PRP adversary B s.t.:

AdvcpalA, Ecgcl £ 2-Advpge[B, E] +(2 g% L2/ [X]

Note: CBC is only secure as longas @g%L? « [X]

/

\

messages enc. with key

max msg length

13

Construction 1": CBC with unique nonce

Cipher block chaining with unique IV (IV = nonce)

unique IV means: (key,IV) pairis used for only one message

\Y m[O] m[1] m[2] m[3]

Yo e o [

E(kz,-) E(ki,:) E(ki,:) E(ki,:) E(ki,:)

IV c;'[O] c[;] c[2v] c[C‘S]

*

\ ciphertext
included only if unknown to decryptor

A CBC technicality: padding

\Y; m[0] m[1] m2] (m[3] i pb

l N — e

P 49 %) Y
E(k’) -

E(k1,°) E(k,)

IV c[O] c[1] c[2] C[é]

pad is
TLS 1.0: if need n-byte pad, n>0, use: |n-1|n-1}+¢n-1| removed
dur
if no pad needed, add a dummy block diﬂfygpﬁon

Construction 2: rand ctr-mode

F: PRF defined over (K,X,Y) where X={0,1, ...,2"1}and Y = {0,1}"

(e.g., n=128)
msg
| B
D
F(k,IV) [F(k,IV+1) ... F(k,IV+L) (counter counts mod 2™)
vV c[0] c[1] . c[L]
ciphertext

IV - chosen at random for every message

note: parallelizable (unlike CBC)
16

Why is this CPA secure?

the set X;: domain of PRF

- e T =Tl
e vt o TiveeL] oo

msg1

| msgs |
e L et T
L e /

CPA security holds as long as intervals do not intersect

e gmsgs, Lblockseach = Pr[intersection]< 2qg?L/ |X]
\ J

needs to be negligible

17

rand ctr-mode: CPA analysis

Randomized counter mode: random IV.

Counter-mode Theorem: For any L>0,
If F is a secure PRF over (K, X,X) then
E-tr is a sem. sec. under CPA over (K, Xt XH1),

In particular, for a g-query adversary A attacking E-1g
there exists a PRF adversary B s.t.:

AdvcpalA, Ecrrl < 2-Advpge(B, F] + 292 L/ [X]

Note: ctr-mode only secure as longas gL <« |X]

Better then CBC !

18

An example

Advcpa [A, Ecrrl < 2-Advpge(B, E] + 2 g% L1/ [X]

g = # messages encrypted with k , L =length of max msg

Suppose we want AdvcpalA, Ectr] < 1/ 231
« Thenneed: q?L/|X]| < 1/232

« AES: |X|=218 = qL12<248

T~

So, after 232 CTs each of len 232, must change key

(total of 254 AES blocks)

Construction 2’: nonce ctr-mode

om0l | mit) | | m

msg

F(k,IV) [F(iIV+1)

F(k,IV+L)

@

c[o]

c[1]

clL]

ciphertext

To ensure F(k,x) is never used more than once, choose |V as:

V:

IV+1:

IV+2:

128 bits
nonce
96 bits 32 bits
nonce 0000001
nonce 0000002

ooooog\

starts at O
for every msg

Comparison: ctrvs. CBC

ctr mode
required primitive PRF
parallel processing Yes
security gh2 L << |X]
dummy padding block No
1 byte msgs . .
1Hx expansi no expansion

(nonce-based)

* for CBC, dummy padding block can be avoided using ciphertext stealing

Summary

PRPs and PRFs: a useful abstraction of block ciphers.

We examined two security notions:
1. Semantic security against one-time.
2. Semantic security against many-time CPA.

Note: neither mode ensures data integrity.

Stated security results summarized in the following table:

Power one-time ke Many-time key CPA and
Goal y (CPA) CT integrity
Sem. Sec. steam-ciphers rand CBC ater
det. ctr-mode rand ctr-mode

22

Attacks on block ciphers

Goal: distinguish block cipher from a random permutation

« if this can be done efficiently then block cipher is broken

Harder goal:
find key k given many c¢; = E(k,m;) for random m;

23

(1) Linear and differential attacks

[BS'89,M'93]

Given many (m;, c;) pairs, can recover key much faster than
exhaustive search

Linear cryptanalysis (overview) : let ¢ = DES(k, m)

Suppose for random k,m:

pr[mli] @mli,] @ cljl@-Dcli] = kil 1-®kll,] | =% +¢
For some «.

For DES, this exists with ¢ =1/22" = 0.0000000477 !

Linear attacks
pr[mlijJo--emli] @ cljje-ocl,] = killo--okl,] | =% +¢

Thm: given 1/¢2 random pairs (m, c=DES(K, m)) then

k[l{]®...®K[l,] = MAJ[m[is]®...em[i,] D cljjl®...aclj,]]
with prob. = 97.7%

= with 1/¢2 inp/out pairs can find k[l{]®...®k[l] intime =1/¢?

Linear attacks

For DES, £¢=1/221 =
with 242 inp/out pairs can find Kk[l,]@...®k[l] in time 242

Roughly speaking: can find 14 key “bits” this way in time 242

Brute force remaining 56-14=42 bits in time 242

Attack time: =243 (« 2%) with 242 random inp/out pairs

Lesson

A tiny bit of linearly leads to a 24?time attack.

= don’t design ciphers yourself !

(2) Side channel attacks on software AES

Attacker measures the time to compute AES128(k,m) for
many random blocks m.

— Suppose that the 256-byte S table is not in L1 cache at
the start of each invocation

—> time to encrypt reveals the order in which S entries
are accessed

— leaks info. that can compromise entire key

Lesson: don’t implement AES yourself !

Mitigation: AES-NI or use vetted software (e.g., BoringSSL)

28

(3) Quantum attacks

Generic search problem:
Let f: X — {0,1} be a function.
Goal: find xeX st f(x)=1.

Classical computer: best generic algorithm time = 0(|X|)

Quantum computer [Grover'96]: time = 0(|X|Y/?)

(requires a long running quantum computation)

Quantum exhaustive search

Given m, c=E(k,m) define 1 if E(km)=c
flk) =

0 otherwise

Grover = quantum computer can find k in time O(|K|"?)

AES128: quantum key recovery time =264

Adversary has access to a quantum computer =

encrypt data using a cipher with 256-bit keys (AES256)

THE END

31

