
1

CPA Security:
How to use a key multiple times

CS255: Winter 2024

Dan Boneh, Stanford University

Quick Recap
A block cipher is a pair of efficient algs. (E, D):

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:
• AES: n=128 bits, k = 128, 192, 256 bits
 (hardware support for many blocks in parallel)

• 3DES: n= 64 bits, k = 168 bits (historical)

Abstract block ciphers: PRFs and PRPs

PRF: an efficiently computable 𝐹: 𝐾 ´ 𝑋 ® 𝑌

PRP: (a.k.a block cipher) 𝐸: 𝐾 ´ 𝑋 ® 𝑋
is a PRF, such that
• for all 𝑘 ∊ 𝐾: the function 𝐸(𝑘, ×) is one-to-one,
• there is an “efficient” inversion algorithm 𝐷(𝑘, 𝑥).

Secure PRF (resp. PRP):
the uniform distribution on 𝑆! ≔ { 𝐹(𝑘, ×) ∶ 𝑘 ∊ 𝐾 }

is indistinguishable by queries from
the uniform distribution on Funs 𝑋, 𝑌 (resp. Perms 𝑋).

4

ECB: Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:
– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

5

Modes of Operation for
One-time Use Key

Example application:

Encrypted email. New key for every message.

How to use a block cipher?

6

Semantic Security for a one-time key
• E = (E,D) a cipher defined over (K,M,C)
• For b=0,1 define EXP(b) as:

• Def: E is sem. sec. for one-time key if for all “efficient” 𝒜 :

AdvSS[𝒜,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] |
is “negligible.”

Chal.

b

Adv. 𝒜

k¬K m0 , m1 Î M : |m0| = |m1|

c ¬ E(k, mb)

b’ Î {0,1}

7

A Semantically Secure Scheme

EDETCTR (k,m) =

⇒ Stream cipher built from PRF (e.g. AES)

m[0] m[1] …

F(k,0) F(k,1) …

m[L]

F(k,L)
Å

c[0] c[1] … c[L]

indist. from
a OTP

Deterministic counter mode from a PRF

 𝐹: 	 𝐾	×	 0,1, … , 𝐿 	⇾ 0,1 #

8

Modes of Operation for
Many-time Key

Example applications:

1. File systems: Same AES key used to encrypt many files.

2. IPsec: Same AES key used to encrypt many packets.

How to use a block cipher?

Semantic Security for many-time key (CPA security)

Cipher E = (E,D) defined over (K,M,C).
For b=0,1 define EXP(b) as:

Def: E is sem. sec. under CPA if for all “efficient” 𝒜 :
AdvCPA [𝒜,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] |

is “negligible.”

Chal. Adv. 𝒜

k¬K

b’ Î {0,1}

mi,0 , mi,1 Î M : |mi,0| = |mi,1|

ci ¬ E(k, mi,b)

if adv. wants c = E(k, m) it queries with mj,0= mj,1=m

for i=1,…,q: b ∈ {0,1}

10

Security for many-time key
Fact: stream ciphers are insecure under CPA.

– More generally: if E(k,m) always produces same
ciphertext, then cipher is insecure under CPA.

If secret key is to be used multiple times Þ
given the same plaintext message twice,
the encryption alg. must produce different outputs.

Chal. Adv.

k¬K

m0 , m1 Î M

c ¬ E(k, mb)

m0 , m0 Î M
c0 ¬E(k, m0)

output 0
if c = c0

Nonce-based Encryption

nonce n: a value that changes from msg to msg
(k,n) pair never used more than once

• method 1: encryptor chooses a random nonce, n ¬ N

• method 2: nonce is a counter (e.g. packet counter)
– used when encryptor keeps state from msg to msg
– if decryptor has same state, need not send nonce with CT

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3]IV

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

13

CBC: CPA Analysis

CBC Theorem: For any L>0,
If E is a secure PRP over (K,X) then
ECBC is a sem. sec. under CPA over (K, XL, XL+1).

In particular, for a q-query adversary A attacking ECBC

there exists a PRP adversary B s.t.:

AdvCPA[A, ECBC] £ 2×AdvPRP[B, E] + 2 q2 L2 / |X|

Note: CBC is only secure as long as q2⋅L2 ≪ |X|

messages enc. with key max msg length

14

Construction 1’: CBC with unique nonce

Cipher block chaining with unique IV (IV = nonce)

E(k1,×) E(k1,×) E(k1,×)

m[0] m[1] m[2] m[3]

Å ÅÅ

E(k1,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

IV

E(k2,×)

IV′

unique IV means: (key,IV) pair is used for only one message

included only if unknown to decryptor

A CBC technicality: padding

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3] ll pad

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

IV

E(k1,×)

IV′

TLS 1.0: if need n-byte pad, n>0, use:
 if no pad needed, add a dummy block

n-1 n-1 ⋯ n-1
pad is
removed
during
decryption

16

Construction 2: rand ctr-mode

m[0] m[1] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)
Å

c[0] c[1] … c[L]

IV

IV

IV - chosen at random for every message

note: parallelizable (unlike CBC)

msg

ciphertext

F: PRF defined over (K,X,Y) where X = {0,1, … , 2𝑛-1}	and Y = {0,1}𝑛

(counter counts mod 2!)

(e.g., n=128)

Why is this CPA secure?

CPA security holds as long as intervals do not intersect

• q msgs, L blocks each ⇒ Pr[intersection] ≤ 2 q2 L / |X|

17

the set X: domain of PRF

msg1
IV1 IV1+1 ⋯ IV1+L

msg2
IV2 IV2+1 ⋯ IV2+L

msg3
IV3 IV3+1 ⋯ IV3+L

msg4

msg5

needs to be negligible

18

rand ctr-mode: CPA analysis
Randomized counter mode: random IV.

Counter-mode Theorem: For any L>0,
If F is a secure PRF over (K,X,X) then
ECTR is a sem. sec. under CPA over (K,XL,XL+1).

In particular, for a q-query adversary A attacking ECTR

there exists a PRF adversary B s.t.:

AdvCPA[A, ECTR] £ 2×AdvPRF[B, F] + 2 q2 L / |X|

Note: ctr-mode only secure as long as q2⋅L ≪ |X|

Better then CBC !

An example

q = # messages encrypted with k , L = length of max msg

Suppose we want AdvCPA[A, ECTR] ≤ 1/ 231

• Then need: q2 L / |X| ≤ 1/ 232

• AES: |X| = 2128 ⇒ q L1/2 < 248

So, after 232 CTs each of len 232 , must change key

(total of 264 AES blocks)

AdvCPA [A, ECTR] £ 2×AdvPRF[B, E] + 2 q2 L / |X|

Construction 2’: nonce ctr-mode

nonce
128 bits

0000000IV:
96 bits 32 bits

To ensure F(k,x) is never used more than once, choose IV as:

starts at 0
for every msg

nonce 0000001IV+1:

nonce 0000002IV+2:

Comparison: ctr vs. CBC
CBC ctr mode

required primitive PRP PRF

parallel processing No Yes

security q^2 L^2 << |X| q^2 L << |X|

dummy padding block Yes* No

1 byte msgs
(nonce-based) 16x expansion no expansion

* for CBC, dummy padding block can be avoided using ciphertext stealing

22

Summary

PRPs and PRFs: a useful abstraction of block ciphers.

We examined two security notions:
1. Semantic security against one-time.
2. Semantic security against many-time CPA.
Note: neither mode ensures data integrity.

Stated security results summarized in the following table:

one-time key Many-time key
(CPA)

CPA and
CT integrity

Sem. Sec. steam-ciphers
det. ctr-mode

rand CBC
rand ctr-mode

later

Goal
Power

Attacks on block ciphers

Goal: distinguish block cipher from a random permutation

• if this can be done efficiently then block cipher is broken

Harder goal:
find key 𝑘 given many 𝑐𝑖 = 𝐸(𝑘,𝑚") for random 𝑚𝑖

23

(1) Linear and differential attacks
[BS’89,M’93]

Given many (𝑚", 𝑐") pairs, can recover key much faster than
exhaustive search

Linear cryptanalysis (overview) : let c = DES(k, m)

Suppose for random 𝑘,𝑚 :

Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + 𝜀

For some 𝜀.

For DES, this exists with 𝜀 = 1/221 ≈ 0.0000000477 !!

Linear attacks

Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + ε

Thm: given 1/ε2 random pairs (m, c=DES(k, m)) then

k[l1]⨁…⨁k[lu] = MAJ[m[i1]⨁…⨁m[ir] ⨁ c[jj]⨁…⨁c[jv]]
with prob. ≥ 97.7%

⇒ with 1/ε2 inp/out pairs can find k[l1]⨁…⨁k[lu] in time ≈1/ε2

Linear attacks

For DES, ε = 1/221 ⇒
with 242 inp/out pairs can find k[l1]⨁…⨁k[lu] in time 242

Roughly speaking: can find 14 key “bits” this way in time 242

Brute force remaining 56−14=42 bits in time 242

Attack time: ≈243 (≪ 256) with 242 random inp/out pairs

Lesson

A tiny bit of linearly leads to a 242 time attack.

⇒ don’t design ciphers yourself !!

(2) Side channel attacks on software AES

Attacker measures the time to compute AES128(k,m) for
many random blocks m.

– Suppose that the 256-byte S table is not in L1 cache at
the start of each invocation
⟹ time to encrypt reveals the order in which S entries

are accessed
⟹ leaks info. that can compromise entire key

Lesson: don’t implement AES yourself !

Mitigation: AES-NI or use vetted software (e.g., BoringSSL)

28

(3) Quantum attacks

Generic search problem:
Let 𝑓: 𝑋 ⟶ {0,1} be a function.
Goal: find 𝑥 ∈ 𝑋 s.t. 𝑓(𝑥) = 1.

Classical computer: best generic algorithm time = 𝑂(|𝑋|)

Quantum computer [Grover ’96] : time = 𝑂(𝑋 #/%)

(requires a long running quantum computation)

Quantum exhaustive search

Given m, c=E(k,m) define

Grover ⇒ quantum computer can find k in time O(|K|1/2)

AES128: quantum key recovery time ≈264

Adversary has access to a quantum computer ⟹

encrypt data using a cipher with 256-bit keys (AES256)

1 if E(k,m) = c

0 otherwise
𝑓(𝑘) 	=	

THE END

31

