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Quick Recap
A block cipher is a pair of efficient algs. (E, D):

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:
• AES:     n=128 bits,   k = 128, 192, 256 bits
  (hardware support for many blocks in parallel)

• 3DES:   n= 64 bits,    k = 168 bits    (historical)



Abstract block ciphers:  PRFs and PRPs

PRF:   an efficiently computable 𝐹: 𝐾 ´ 𝑋 ® 𝑌

PRP:   (a.k.a block cipher) 𝐸: 𝐾 ´ 𝑋 ® 𝑋
is a PRF, such that 
• for all 𝑘 ∊ 𝐾:   the function   𝐸(𝑘, × ) is  one-to-one, 
• there is an “efficient” inversion algorithm 𝐷(𝑘, 𝑥).

Secure PRF (resp. PRP):   
the uniform distribution on   𝑆! ≔ { 𝐹(𝑘, × ) ∶ 𝑘 ∊ 𝐾 }

is indistinguishable by queries from
the uniform distribution on Funs 𝑋, 𝑌 (resp. Perms 𝑋 ).
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ECB:  Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:   
– if    m1=m2 then   c1=c2

PT:

CT:

m1 m2

c1 c2
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Modes of Operation for 
One-time Use Key

Example application:    

Encrypted email.    New key for every message.

How to use a block cipher?
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Semantic Security for a one-time key
• E = (E,D)   a cipher defined over  (K,M,C)
• For   b=0,1   define EXP(b)  as:

• Def: E is sem. sec. for one-time key if for all “efficient” 𝒜 :

AdvSS[𝒜,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |
is “negligible.”

Chal.

b

Adv. 𝒜

k¬K m0 , m1  Î M :    |m0| = |m1|

c ¬ E(k, mb)

b’ Î {0,1}
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A Semantically Secure Scheme

EDETCTR (k,m)  = 

⇒ Stream cipher built from PRF   (e.g.  AES)

m[0] m[1] …

F(k,0) F(k,1) …

m[L]

F(k,L)
Å

c[0] c[1] … c[L]

indist. from
a OTP

Deterministic counter mode from a PRF  

   𝐹: 	 𝐾	×	 0,1, … , 𝐿 	⇾ 0,1 #
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Modes of Operation for 
Many-time Key

Example applications:    

1.  File systems:    Same AES key used to encrypt many files.

2.  IPsec:   Same AES key used to encrypt many packets.

How to use a block cipher?



Semantic Security for many-time key   (CPA security)

Cipher E = (E,D)  defined over  (K,M,C).    
For   b=0,1   define EXP(b)  as:

Def: E is sem. sec. under CPA if for all “efficient” 𝒜 :
AdvCPA [𝒜,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |    

is “negligible.”

Chal. Adv. 𝒜

k¬K

b’ Î {0,1}

mi,0 , mi,1  Î M :    |mi,0| = |mi,1|

ci ¬ E(k, mi,b)

if adv. wants  c = E(k, m)  it queries with  mj,0= mj,1=m 

for i=1,…,q:  b ∈ {0,1}
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Security for many-time key
Fact: stream ciphers are insecure under CPA.

– More generally:    if  E(k,m)  always produces same 
ciphertext, then cipher is insecure under CPA.

If secret key is to be used multiple times   Þ
given the same plaintext message twice, 
the encryption alg. must produce different outputs.

Chal. Adv.

k¬K

m0 , m1  Î M 

c ¬ E(k, mb)

m0 , m0  Î M
c0 ¬E(k, m0)

output 0
if  c = c0



Nonce-based Encryption

nonce  n:    a value that changes from msg to msg
(k,n)  pair never used more than once

• method 1:   encryptor chooses a random nonce,   n ¬ N

• method 2:   nonce is a counter   (e.g. packet counter)
– used when encryptor keeps state from msg to msg
– if decryptor has same state, need not send nonce with CT

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce



Construction 1:   CBC with random nonce

Cipher block chaining with a random IV        (IV = nonce)

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3]IV

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

note:   CBC where attacker can predict the IV is not CPA-secure.  HW.
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CBC:    CPA Analysis

CBC Theorem:     For any L>0,
If E is a secure PRP over (K,X) then 
ECBC is a sem. sec. under CPA over (K, XL, XL+1).

In particular,  for a q-query adversary A attacking ECBC

there exists a PRP adversary B  s.t.:

AdvCPA[A, ECBC] £ 2×AdvPRP[B, E]  +  2 q2 L2 / |X|

Note:    CBC is only secure as long as   q2⋅L2 ≪ |X|

# messages enc. with key max msg length
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Construction 1’:   CBC with unique nonce

Cipher block chaining with unique IV        (IV = nonce)

E(k1,×) E(k1,×) E(k1,×)

m[0] m[1] m[2] m[3]

Å ÅÅ

E(k1,×)

Å

c[0] c[1] c[2] c[3]IV

ciphertext

IV

E(k2,×)

IV′

unique IV means:    (key,IV)  pair is used for only one message

included only if unknown to decryptor



A CBC technicality:  padding

E(k,×) E(k,×) E(k,×)

m[0] m[1] m[2] m[3]  ll  pad

Å ÅÅ

E(k,×)

Å

c[0] c[1] c[2] c[3]IV

IV

E(k1,×)

IV′

TLS 1.0:  if need n-byte pad, n>0, use:
                if no pad needed, add a dummy block

n-1 n-1 ⋯ n-1 
pad is 
removed
during
decryption
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Construction 2:  rand ctr-mode

m[0] m[1] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)
Å

c[0] c[1] … c[L]

IV

IV

IV -  chosen at random for every message

note:  parallelizable (unlike CBC)

msg

ciphertext

F: PRF defined over (K,X,Y)  where X = {0,1, … , 2𝑛-1}	and Y = {0,1}𝑛

(counter counts mod 2!)

(e.g.,  n=128)



Why is this CPA secure?

CPA security holds as long as intervals do not intersect

• q msgs, L blocks each    ⇒ Pr[ intersection ] ≤  2 q2 L / |X| 
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the set X:  domain of PRF

msg1
IV1 IV1+1 ⋯ IV1+L

msg2
IV2 IV2+1 ⋯ IV2+L

msg3
IV3 IV3+1 ⋯ IV3+L

msg4

msg5

needs to be negligible
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rand ctr-mode:   CPA analysis
Randomized counter mode:   random IV.

Counter-mode Theorem:     For any L>0,
If F is a secure PRF over (K,X,X) then 
ECTR is a sem. sec. under CPA over (K,XL,XL+1).

In particular,  for a q-query adversary A attacking ECTR

there exists a PRF adversary B  s.t.:

AdvCPA[A, ECTR] £ 2×AdvPRF[B, F]  +  2 q2 L / |X|

Note:    ctr-mode only secure as long as   q2⋅L  ≪ |X|

Better then CBC !    



An example

q = # messages encrypted with k  ,    L = length of max msg

Suppose we want    AdvCPA[A, ECTR]   ≤   1/ 231

• Then need:   q2 L / |X|  ≤  1/ 232

• AES:     |X| = 2128 ⇒ q L1/2 < 248

So, after  232 CTs each of  len 232 , must change key

(total of 264 AES blocks)

AdvCPA [A, ECTR] £  2×AdvPRF[B, E]  +  2 q2 L / |X|



Construction 2’:  nonce ctr-mode

nonce
128 bits

0000000IV:
96 bits 32 bits

To ensure  F(k,x)  is never used more than once, choose IV as: 

starts at 0
for every msg

nonce 0000001IV+1:

nonce 0000002IV+2:



Comparison:  ctr vs. CBC
CBC ctr mode

required primitive PRP PRF

parallel processing No Yes

security q^2 L^2  << |X| q^2 L  << |X|

dummy padding block Yes* No

1 byte msgs
(nonce-based) 16x expansion no expansion

* for CBC, dummy padding block can be avoided using ciphertext stealing
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Summary

PRPs and PRFs:   a useful abstraction of block ciphers.

We examined two security notions:     
1. Semantic security against one-time.
2. Semantic security against many-time CPA.
Note:   neither mode ensures data integrity.

Stated security results summarized in the following table:

one-time key Many-time key 
(CPA)

CPA  and
CT integrity

Sem. Sec. steam-ciphers
det. ctr-mode

rand CBC
rand ctr-mode

later

Goal
Power



Attacks on block ciphers

Goal:   distinguish block cipher from a random permutation

• if this can be done efficiently then block cipher is broken

Harder goal:   
find key 𝑘 given many  𝑐𝑖 = 𝐸(𝑘,𝑚") for random 𝑚𝑖
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(1) Linear and differential attacks   
[BS’89,M’93] 

Given many (𝑚", 𝑐") pairs, can recover key much faster than 
exhaustive search

Linear cryptanalysis   (overview) :   let  c = DES(k, m)

Suppose for random  𝑘,𝑚 :

Pr[ m[i1]⨁⋯⨁m[ir]  ⨁ c[jj]⨁⋯⨁c[jv]  =  k[l1]⨁⋯⨁k[lu] ] = ½ + 𝜀

For some  𝜀.      

For DES, this exists with    𝜀 = 1/221  ≈  0.0000000477    !!



Linear attacks

Pr[m[i1]⨁⋯⨁m[ir]  ⨁ c[jj]⨁⋯⨁c[jv]  =  k[l1]⨁⋯⨁k[lu] ] = ½ + ε

Thm:  given  1/ε2  random pairs  (m, c=DES(k, m)) then

k[l1]⨁…⨁k[lu]  = MAJ[ m[i1]⨁…⨁m[ir] ⨁ c[jj]⨁…⨁c[jv] ]
with prob. ≥ 97.7%

⇒ with  1/ε2 inp/out pairs can find  k[l1]⨁…⨁k[lu]  in time  ≈1/ε2



Linear attacks

For DES,  ε = 1/221   ⇒
with  242 inp/out pairs can find  k[l1]⨁…⨁k[lu] in time 242

Roughly speaking: can find 14 key “bits” this way in time 242

Brute force remaining   56−14=42  bits in time 242

Attack time:   ≈243 (≪ 256 )   with  242 random inp/out pairs 



Lesson

A tiny bit of linearly leads to a 242 time attack.

⇒ don’t design ciphers yourself  !!



(2) Side channel attacks on software AES

Attacker measures the time to compute AES128(k,m) for 
many random blocks m.

– Suppose that the 256-byte S table is not in L1 cache at 
the start of each invocation
⟹ time to encrypt reveals the order in which S entries 

are accessed
⟹ leaks info. that can compromise entire key

Lesson:  don’t implement AES yourself !

Mitigation:  AES-NI  or  use vetted software (e.g., BoringSSL)
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(3) Quantum attacks

Generic search problem:
Let   𝑓: 𝑋 ⟶ {0,1} be a function.
Goal:    find  𝑥 ∈ 𝑋 s.t. 𝑓(𝑥) = 1.

Classical computer:  best generic algorithm time  =  𝑂(|𝑋|)

Quantum computer [Grover ’96] :      time = 𝑂( 𝑋 #/%)

(requires a long running quantum computation)



Quantum exhaustive search

Given   m,  c=E(k,m)    define

Grover   ⇒ quantum computer can find k in time   O( |K|1/2 )

AES128:   quantum key recovery time   ≈264

Adversary has access to a quantum computer    ⟹

encrypt data using a cipher with 256-bit keys (AES256)

1 if  E(k,m) = c

0    otherwise
𝑓(𝑘) 	=	



THE  END
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