CS355: Topics in cryptography

Spring 2014

Assignment #1

Due: Tuesday, May. 13, 2014.

Problem 1: Baby Goldreich-Levin. Let $f : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ be a one-way permutation. Suppose that for an $x \in \mathbb{Z}_2^n$ we have an algorithm \mathcal{A}_x such that $\Pr[\mathcal{A}_x(r) = \langle x, r \rangle]$ is at least $\frac{3}{4} + \epsilon$ for some $\epsilon > 0$. The probability is over the choice of uniform r in \mathbb{Z}_2^n and $\langle x, r \rangle$ denotes the inner product of x and r over \mathbb{Z}_2^n . Show how to construct an algorithm \mathcal{B} that outputs x by calling \mathcal{A}_x about $O(n^2)$ times.

Hint: Your goal is to boost algorithm \mathcal{A}_x to an algorithm such that $\Pr[\mathcal{A}_x(r) = \langle x, r \rangle]$ is close to 1, at which point finding x is easy by linear algebra. To evaluate $\langle x, r \rangle$ try choosing many random $s \in \mathbb{Z}_2^n$ and running $\mathcal{A}_x(s)$ and $\mathcal{A}_x(r \oplus s)$.

Problem 2: Let \mathbb{G} be a cyclic group of known odd order q with generator $g \in \mathbb{G}$. Consider the function $f : \mathbb{Z}_q \to \mathbb{G}$ defined as $f(x) = g^x$. Let $lsb : \mathbb{Z}_q \to \{0, 1\}$ be the function that outputs the least significant bit of $x \in \mathbb{Z}_q$ when x is treated as a number in $\{0, \ldots, q-1\}$. Show that lsb(x) is hard-core for f(x), assuming discrete-log in \mathbb{G} is hard.

Hint: first, suppose there is an algorithm \mathcal{A} that takes g^x as input and *always* outputs lsb(x). Show that \mathcal{A} can be used to compute discrete-log in \mathbb{G} . To do so, observe that $(g^x)^{(q+1)/2}$ is the square root of g^x . Second, one would need to show that an algorithm \mathcal{B} that given g^x outputs lsb(x) with probability $\frac{1}{2} + \epsilon$ can be boosted to an algorithm that outputs lsb(x) with probability close to 1 by calling \mathcal{B} about $O(1/\epsilon^2)$ times. Here there is no need for you to prove this second part: you may assume it is true. The proof is not hard, but is a little tedious.

- **Problem 3:** Commitments. Fix an RSA modulus N = pq, an RSA exponent e, and a random element $g \in \mathbb{Z}_N^*$. Prove that the following commitment scheme is secure: to commit to a message $m \in \{0, \ldots, e-1\}$ choose a random $r \in \mathbb{Z}_N^*$ and output $c \leftarrow g^m \cdot r^e \in Z_N^*$. To open the commitment send m and r to the receiver and the receiver accepts if $c = g^m \cdot r^e$. Prove that this commitment scheme is perfectly hiding. Prove that it is binding assuming that finding the e'th root of g is hard. Note that the factorization of N is not known to the sender.
- **Problem 4:** Private information Retrieval. In class we saw how to use the ϕ -hiding assumption to construct a PIR protocol. Show that this PIR can be used to lookup k bits in the database (for small k, e.g. $k \leq 5$) with no additional communication beyond what is needed to lookup one bit. You may assume that the size of the modulus N is unchanged, even after your modification to the protocol.
- **Problem 5:** Oblivious Transfer. Show that the Bellare-Micali OT protocol is insecure in a group where the Computational Diffie-Hellman problem is easy. That is, show that an algorithm \mathcal{A} for solving the Computational Diffie-Hellman problem in \mathbb{G} can be used to break one of recipient security or sender security.

- **Problem 6.** Offline signatures. One approach to speeding up signature generation is to perform the bulk of the work offline, before the message to sign is known. Then, once the message m is given, generating the signature on m should be very fast. Our goal is to design a signature system with this property (in class we showed how to do something similar for oblivious transfer).
 - a. We show that any signature system can be converted into a signature where the bulk of the signing work can be done offline. Let (KeyGen, Sign, Verify) be a secure signature system and let \mathbb{G} be a group of order q where discrete log is hard. Consider the following modified signature system (KeyGen', Sign', Verify'):
 - a. Algorithm KeyGen' runs algorithm KeyGen to obtain a signing key sk and verification vk. It also chooses a random group element $g \in \mathbb{G}$ and sets $h = g^{\alpha}$ for some random $\alpha \in \{1, \ldots, q\}$. It outputs the verification key vk' = (vk, g, h) and the signing key sk' = (vk', sk, α).
 - Algorithm Sign'(sk', m) first chooses a random $r \in \{1, \ldots, q\}$, computes $M = g^m h^r \in \mathbb{G}$, and then runs Sign(sk, M) to obtain a signature σ . It outputs the signature $\sigma' = (\sigma, r)$.
 - Algorithm Verify'(vk', m, σ'), where $\sigma' = (\sigma, r)$, computes $M = g^m h^r \in \mathbb{G}$ and outputs the result of Verify(vk, M, σ).

Show that the bulk of the work in algorithm Sign' can be done before the message m is given. Hint: Recall that α is part of sk'.

b. Prove that this modified signature scheme is secure. In other words, show that an existential forgery under a chosen message attack on the modified scheme gives an existential forgery under a chosen message attack on the underlying scheme. You may use the fact that $H(m, r) = g^m h^r$ is a collision resistant hash function.