Assignment \#2

Due: Tuesday, June 3, 2014.

Problem 1: Consider the following ElGamal-like encryption system in a group \mathbb{G} of prime order q : the public key is $g, h \in \mathbb{G}$ and an encryption of message $m \in\{0,1\}$ is $\left(g^{r}, h^{r} g^{m}\right)$ where r chosen at random in \mathbb{Z}_{q}. Your goal is to devise an honest-verifier zero-knowledge proof for proving that an ElGamal ciphertext is an encryption of 0 or 1 . That is, the proof system should recognize the language

$$
\left\{\left(g, h, g^{r}, h^{r}\right)\right\}_{r \in \mathbb{Z}_{q}} \bigcup\left\{\left(g, h, g^{r}, h^{r} g\right)\right\}_{r \in \mathbb{Z}_{q}} \subseteq \mathbb{G}^{2}
$$

Remember to prove completeness, soundness, and zero-knowledge.
Hint: start from the Chaum-Pedersen protocol for proving equality of discrete-log. Generalize the protocol into an OR proof as we did in class. If you get stuck, this paper might help: www.win.tue.nl/~berry/papers/crypto94.pdf

Extra credit: Design an efficient zero-knowledge proof that a 4 -tuple is not a Diffie-Hellman tuple.
That is, the protocol should recognize the language $\left\{\left(g, h, g^{r}, h^{s}\right): r \neq s\right\}$.

Problem 2: In this problem we consider a candidate construction for Identity Based Encryption based on the discrete-log problem in a group \mathbb{G} of prime order q with generator g. The group \mathbb{G} need not have a pairing.
The setup algorithm generates a random $a, b, c \in \mathbb{Z}_{q}$ and outputs the public parameters $\mathrm{pp}=\left(g, g_{1}:=g^{a}, g_{2}:=g^{b}, g_{3}=g^{c}\right)$ and master key $\mathrm{mk}=(a, b, c)$. Let $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$ be a hash function and define the secret key for identity id as $\mathrm{sk}_{\mathrm{id}}:=(\mathrm{pp}, \alpha, \beta)$ where $\alpha, \beta \in \mathbb{Z}_{q}$ is a random pair satisfying $(a+H(\mathrm{id})) \alpha+b \beta=c$ in \mathbb{Z}_{q}. To encrypt a message $m \in \mathbb{G}$ to identity id the encryption algorithm chooses a random $r \in \mathbb{Z}_{q}$ and outputs the ciphertext ct $:=\left(\left(g^{H(\mathrm{id})} g_{1}\right)^{r}, g_{2}^{r}, m \cdot g_{3}^{r}\right)$.
a. Explain how the key generation algorithm, KeyGen(mk, id), and decryption algorithm, $\operatorname{Dec}\left(\mathrm{sk}_{\mathrm{id}}, \mathrm{ct}\right)$, work.
b. Show that if an attacker obtains the secret keys of any three identities $\mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}$ (where $H\left(\mathrm{id}_{1}\right), H\left(\mathrm{id}_{2}\right), H\left(\mathrm{id}_{3}\right)$ are distinct) he can completely break the system. That is, he can decrypt all ciphertexts, even those not intended for identities $\mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}$.

Problem 3: Aggregate signatures. Let \mathbb{G} be a pairing group of order q where $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$ denotes the pairing in \mathbb{G}. Let $g \in \mathbb{G}$ be a generator. In class we defined the BLS signature scheme: the public key is $v k=g^{\alpha}$ and a signature on a message $m \in\{0,1\}^{*}$ is defined as $\sigma:=H(\mathrm{vk}, m)^{\alpha}$ where $H: \mathbb{G} \times\{0,1\}^{*} \rightarrow \mathbb{G}$ is a hash function.
Suppose we have n public keys $\mathrm{vk}_{1}=g^{\alpha_{1}}, \ldots, \mathrm{vk}_{n}=g^{\alpha_{n}}$ and n messages $m_{1}, \ldots, m_{n} \in\{0,1\}^{*}$. We are given n signatures $\sigma_{i}:=H\left(\mathrm{vk}_{i}, m_{i}\right)^{\alpha_{i}}$ for $i=1, \ldots, n$. We wish to aggregate all the signatures $\sigma_{1}, \ldots, \sigma_{n}$ into a single signature σ that will serve as a signature validating the fact that user i signed m_{i} for all $i=1, \ldots, n$.

Let us define $\sigma:=\prod_{i=1}^{n} \sigma_{i}$. This σ is called an aggregate signature. Show how a verifier, given $\left(\mathrm{vk}_{1}, m_{1}\right), \ldots,\left(\mathrm{vk}_{n}, m_{n}\right)$ and σ, can verify that indeed user i signed m_{i} for all $i=1, \ldots, n$.

Note: this construction can be used to compress all the signatures in a certificate chain into a single signature. The construction can be proven secure under standard assumptions in bilinear groups.

