
CS355: Topics in cryptography Spring 2014

Assignment #2
Due: Tuesday, June 3, 2014.

Problem 1: Consider the following ElGamal-like encryption system in a group G of prime order q:
the public key is g, h ∈ G and an encryption of message m ∈ {0, 1} is (gr, hrgm) where r
chosen at random in Zq. Your goal is to devise an honest-verifier zero-knowledge proof for
proving that an ElGamal ciphertext is an encryption of 0 or 1. That is, the proof system
should recognize the language{

(g, h, gr, hr)
}
r∈Zq

⋃ {
(g, h, gr, hrg)

}
r∈Zq

⊆ G2 .

Remember to prove completeness, soundness, and zero-knowledge.
Hint: start from the Chaum-Pedersen protocol for proving equality of discrete-log. Generalize
the protocol into an OR proof as we did in class. If you get stuck, this paper might help:
www.win.tue.nl/~berry/papers/crypto94.pdf

Extra credit: Design an efficient zero-knowledge proof that a 4-tuple is not a Diffie-Hellman tuple.
That is, the protocol should recognize the language {(g, h, gr, hs) : r 6= s}.

Problem 2: In this problem we consider a candidate construction for Identity Based Encryption
based on the discrete-log problem in a group G of prime order q with generator g. The group
G need not have a pairing.

The setup algorithm generates a random a, b, c ∈ Zq and outputs the public parameters
pp = (g, g1 := ga, g2 := gb, g3 = gc) and master key mk = (a, b, c). Let H : {0, 1}∗ → Zq be
a hash function and define the secret key for identity id as skid := (pp, α, β) where α, β ∈ Zq
is a random pair satisfying (a + H(id))α + bβ = c in Zq. To encrypt a message m ∈ G to
identity id the encryption algorithm chooses a random r ∈ Zq and outputs the ciphertext
ct :=

(
(gH(id)g1)

r , gr2 , m · gr3
)
.

a. Explain how the key generation algorithm, KeyGen(mk, id), and decryption algorithm,
Dec(skid, ct), work.

b. Show that if an attacker obtains the secret keys of any three identities id1, id2, id3 (where
H(id1), H(id2), H(id3) are distinct) he can completely break the system. That is, he can
decrypt all ciphertexts, even those not intended for identities id1, id2, id3.

1



Problem 3: Aggregate signatures. Let G be a pairing group of order q where e : G × G → GT

denotes the pairing in G. Let g ∈ G be a generator. In class we defined the BLS signature
scheme: the public key is vk = gα and a signature on a message m ∈ {0, 1}∗ is defined as
σ := H(vk,m)α where H : G× {0, 1}∗ → G is a hash function.

Suppose we have n public keys vk1 = gα1 , . . . , vkn = gαn and n messages m1, . . . ,mn ∈ {0, 1}∗.
We are given n signatures σi := H(vki,mi)

αi for i = 1, . . . , n. We wish to aggregate all the
signatures σ1, . . . , σn into a single signature σ that will serve as a signature validating the
fact that user i signed mi for all i = 1, . . . , n.

Let us define σ :=
∏n
i=1 σi. This σ is called an aggregate signature. Show how a verifier, given

(vk1,m1), . . . , (vkn,mn) and σ, can verify that indeed user i signed mi for all i = 1, . . . , n.

Note: this construction can be used to compress all the signatures in a certificate chain into
a single signature. The construction can be proven secure under standard assumptions in
bilinear groups.

2


