Spring 2014

```
Assignment #2
```

Due: Tuesday, June 3, 2014.

Problem 1: Consider the following ElGamal-like encryption system in a group \mathbb{G} of prime order q: the public key is $g, h \in \mathbb{G}$ and an encryption of message $m \in \{0, 1\}$ is $(g^r, h^r g^m)$ where rchosen at random in \mathbb{Z}_q . Your goal is to devise an honest-verifier zero-knowledge proof for proving that an ElGamal ciphertext is an encryption of 0 or 1. That is, the proof system should recognize the language

$$\left\{ (g,h, g^r, h^r) \right\}_{r \in \mathbb{Z}_q} \bigcup \left\{ (g,h, g^r, h^r g) \right\}_{r \in \mathbb{Z}_q} \subseteq \mathbb{G}^2$$

Remember to prove completeness, soundness, and zero-knowledge.

Hint: start from the Chaum-Pedersen protocol for proving equality of discrete-log. Generalize the protocol into an OR proof as we did in class. If you get stuck, this paper might help: www.win.tue.nl/~berry/papers/crypto94.pdf

- **Extra credit:** Design an efficient zero-knowledge proof that a 4-tuple is not a Diffie-Hellman tuple. That is, the protocol should recognize the language $\{(g, h, g^r, h^s) : r \neq s\}$.
- **Problem 2:** In this problem we consider a candidate construction for Identity Based Encryption based on the discrete-log problem in a group \mathbb{G} of prime order q with generator g. The group \mathbb{G} need not have a pairing.

The setup algorithm generates a random $a, b, c \in \mathbb{Z}_q$ and outputs the public parameters $pp = (g, g_1 := g^a, g_2 := g^b, g_3 = g^c)$ and master key mk = (a, b, c). Let $H : \{0, 1\}^* \to \mathbb{Z}_q$ be a hash function and define the secret key for identity id as $sk_{id} := (pp, \alpha, \beta)$ where $\alpha, \beta \in \mathbb{Z}_q$ is a random pair satisfying $(a + H(id))\alpha + b\beta = c$ in \mathbb{Z}_q . To encrypt a message $m \in \mathbb{G}$ to identity id the encryption algorithm chooses a random $r \in \mathbb{Z}_q$ and outputs the ciphertext $ct := ((g^{H(id)}g_1)^r, g_2^r, m \cdot g_3^r)$.

- a. Explain how the key generation algorithm, KeyGen(mk, id), and decryption algorithm, $Dec(sk_{id}, ct)$, work.
- b. Show that if an attacker obtains the secret keys of any three identities id_1, id_2, id_3 (where $H(id_1), H(id_2), H(id_3)$ are distinct) he can completely break the system. That is, he can decrypt all ciphertexts, even those not intended for identities id_1, id_2, id_3 .

Problem 3: Aggregate signatures. Let \mathbb{G} be a pairing group of order q where $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ denotes the pairing in \mathbb{G} . Let $g \in \mathbb{G}$ be a generator. In class we defined the BLS signature scheme: the public key is $\mathsf{vk} = g^{\alpha}$ and a signature on a message $m \in \{0,1\}^*$ is defined as $\sigma := H(\mathsf{vk}, m)^{\alpha}$ where $H : \mathbb{G} \times \{0,1\}^* \to \mathbb{G}$ is a hash function.

Suppose we have *n* public keys $\mathsf{vk}_1 = g^{\alpha_1}, \ldots, \mathsf{vk}_n = g^{\alpha_n}$ and *n* messages $m_1, \ldots, m_n \in \{0, 1\}^*$. We are given *n* signatures $\sigma_i := H(\mathsf{vk}_i, m_i)^{\alpha_i}$ for $i = 1, \ldots, n$. We wish to aggregate all the signatures $\sigma_1, \ldots, \sigma_n$ into a single signature σ that will serve as a signature validating the fact that user *i* signed m_i for all $i = 1, \ldots, n$.

Let us define $\sigma := \prod_{i=1}^{n} \sigma_i$. This σ is called an *aggregate signature*. Show how a verifier, given $(\mathsf{vk}_1, m_1), \ldots, (\mathsf{vk}_n, m_n)$ and σ , can verify that indeed user *i* signed m_i for all $i = 1, \ldots, n$.

Note: this construction can be used to compress all the signatures in a certificate chain into a single signature. The construction can be proven secure under standard assumptions in bilinear groups.