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Abstract

We provide evidence that breaking low-exponent rsa cannot be equivalent to factoring integers.
We show that an algebraic reduction from factoring to breaking low-exponent rsa can be converted
into an e�cient factoring algorithm. Thus, in e�ect an oracle for breaking rsa does not help
in factoring integers. Our result suggests an explanation for the lack of progress in proving that
breaking rsa is equivalent to factoring. We emphasize that our results do not expose any speci�c
weakness in the rsa system.
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1 Introduction

Two longstanding open problems in cryptography are to prove or disprove that breaking the rsa

system [10] is as hard as factoring integers and that breaking the Di�e-Hellman protocol [3] is as hard
as computing discrete log. Although some recent progress has been made on the second problem [8, 9, 1]
very little progress has been made on the �rst. A harder version of the �rst problem asks whether
breaking low exponent rsa (le{rsa) is as hard as factoring. Such reductions are desirable since they
prove that the security of the rsa system follows from the intractability of factoring integers. In this
paper we take a step towards disproving the equivalence of factoring and breaking low exponent rsa.

One way of disproving the equivalence is to present an algorithm for breaking le{rsa that does
not seem to provide a factoring algorithm. This is not our approach. Instead, we wish to show that
if one could give an e�cient reduction from factoring to breaking le{rsa then the reduction can
be converted into an actual e�cient factoring algorithm. This proves that unless factoring is easy,
the two problems cannot be equivalent. We make progress towards achieving this goal by showing
that any e�cient algebraic reduction from factoring to breaking le{rsa can be converted into an
e�cient factoring algorithm. Thus, breaking le{rsa cannot be equivalent to factoring under algebraic
reductions (unless factoring is easy). Essentially, algebraic reductions are restricted to only perform
arithmetic operations. They are not allowed to aggressively manipulate bits, e.g. given x; y 2 ZN they
cannot compute x� y. A precise de�nition of this notion is presented in Section 3.

To give a more concrete description of our results we consider the problem of breaking rsa when
the public exponent is e = 3. In the body of the paper we allow any low public exponent (i.e. less
than some �xed constant). Let N = pq be a product of two large primes with gcd('(N); 3) = 1. The
encryption of a plain-text x 2 ZN is x3 mod N . Breaking the system amounts to computing cube
roots modulo N . To prove that breaking this system is equivalent to factoring one has to present a
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polynomial time oracle algorithm A that given N = pq and a cube root oracle modulo N , factors
N . We show that any such algebraic oracle algorithm A, that does not make too many oracle calls,
can be converted into a non-oracle algorithm B that factors the same set of integers as A. In other
words, if one can prove that taking cube roots modulo N is as hard as factoring N then the proof
will provide a \real" factoring algorithm (that does not make use of an oracle). Hence, under these
conditions a cube root oracle does not help in factoring N . We note that when gcd('(N); 3) 6= 1 it is
well known that taking cube roots is as hard as factoring. However, in this case 3 cannot be used as
an rsa encryption exponent. For this reason, throughout the paper we only concern ourselves with
the case where gcd('(N); e) = 1.

Our results apply to large e as well { they apply whenever e is a smooth integer. We discuss this
extension at the end of the paper.

Understanding our result

We emphasize that our result does not point to any weakness of the rsa system. Instead, it provides
some evidence that breaking le{rsa may be easier than factoring. Even if breaking le{rsa is indeed
easier than factoring, nothing in this work contests that it is likely to be intractable.

The class of algebraic reductions is not overly restrictive. For example, it encompasses some number
theoretic and factoring algorithms. These are often simply polynomials evaluated modulo N at various
inputs. A factorization is obtained once the polynomial evaluates to a non-zero non-invertible element
modulo N (if 0 6= x 2 ZN is not invertible then gcd(N;x) gives a non-trivial factor of N). Both
Pollard's p� 1 factoring [6] and Elliptic curve factoring [7] can be viewed as such (one evaluates the
polynomial xB � 1 for some smooth integer B, the other evaluates the B'th division polynomial of
a random elliptic curve at a random point). It is natural to ask whether an oracle for breaking low
exponent rsa can aid this type of factoring algorithms? Our results show that the answer is no as
long as the algorithm does not make too many oracle calls.

Our methods leave it open that reductions using bit manipulations (i.e. non-algebraic operations
as described in Section 3) on the outputs of an rsa oracle may reduce factoring to breaking rsa.
However, we note that current attacks on low public exponent rsa [4, 2] decrypt a message without
factoring the modulus. Our results suggest that this is no accident, since breaking le{rsa may be
easier than factoring.

2 Straight line programs

Our results make use of straight line programs for polynomials. In this section we de�ne this notion
and prove some properties of it. Throughout the section we let R be a ring with a cyclic additive
group. The reader should think of R as the �eld Fp or the ring ZN for an rsa composite N = pq.

De�nition 2.1 A straight line program (slp) for a polynomial f 2 R[x1; : : : ; xk] is a sequence of

polynomials f0; f1; f2; : : : ; fm 2 R[x1; : : : ; xk] such that fm = f and for all i = 1; : : : ;m the polynomial

fi is either the constant 1, a variable xj or gi = gk � gl where k; l < i and � 2 f+;�; �g.
Examples of polynomials with low straight line complexity are univariate sparse polynomials (i.e.

polynomials whose degree is much larger than the number of their terms). An slp of length L for
a polynomial f de�nes a method for evaluating f using exactly L arithmetic operations. An slp is
represented as a sequence of triplets (i; �; j) where � 2 f+;�; �g. The k'th such triplet implies that fk,
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the k'th polynomial in the program, is equal to fi�fj. An slp can compute more than one polynomial:
we say that an slp computes the polynomials g1; : : : ; gr if these polynomials appear in the last r steps
of the slp.

We note that one may view slp's as algebraic circuits (circuits whose gates compute +;�; �).
The di�erence between the two notions is that the complexity of an slp is measured by its size. An
algebraic circuit is measured by both its size and depth. Since in this paper we ignore circuit depth
we restrict our attention to slp's.

2.1 Euclid's algorithm and slp's

We next prove some properties of straight line programs. The reader may skip to Section 3 and return
to the following lemmas when referenced.

Let f; g be two polynomials in ZN[x] where N = pq. Let dp be the degree of gcd(f; g) when f and
g are reduced modulo p and let dq be the degree of the gcd when they are reduced modulo q. Suppose
dq 6= dp. Then when one tries to apply Euclid's algorithm to f and g in ZN the factorization of N
is leaked since at some point Euclid's algorithm must generate a polynomial whose leading coe�cient
is not invertible modulo N . This coe�cient must have a non-trivial gcd with N , thus leaking the
factorization. Note that since ZN is not an integral domain Euclid's algorithm is not well de�ned
in ZN[x]. In fact, the notation f mod g is not well de�ned. When the leading coe�cient of g is in
Z

�
N we de�ne the polynomial f mod g as the output of the standard polynomial division algorithm.

Otherwise we say that f mod g is unde�ned. When f mod g is unde�ned, the leading coe�cient of g
reveals the factorization of N .

Now, suppose f and g are given as slp's in the variables x; z1; : : : ; zk. We view both f and g as
polynomials in x whose coe�cients are polynomials in the zi's. We ask whether it is still possible to
carry out Euclid's algorithm and obtain an analogous result to the one discussed above. The next
lemma provides a positive answer to this question provided the degree of g in x is small. We use the
following notation: given a polynomial f 2 ZN[x] we denote by fp the polynomial f reduced modulo
p where p is a prime factor of N .

Lemma 2.1 Let N = pq and f 2 ZN [x; z1; : : : ; zk] be a polynomial given as an slp of length L. Let

g(x; z1; : : : ; zk) = xm � h(z1; : : : ; zk) where h is given as an slp of length L. Both polynomials f and

g are regarded as polynomials in x with coe�cients in ZN[z1; : : : ; zk]. Then there exists a polynomial
time algorithm (in L and 2m) that given f; g outputs 2m slp's in z1; : : : ; zk satisfying the following:

1. The length of each slp is bounded by 2m2L+m3.

2. For any �c = (c1; : : : ; ck) 2 Z
k
N satisfying

deg

�
gcd (fp(x; �c); gp(x; �c))

�
6= deg

�
gcd (fq(x; �c); gq(x; �c))

�

at least one of the 2m programs on input c1; : : : ; ck produces a non-zero non-invertible element

of ZN.

The proof of the lemma is a bit tedious. Essentially we apply Euclid's algorithm to the polynomials
f and g. The 2m programs generated in the lemma correspond to coe�cients of polynomials generated
during the execution of Euclid's algorithm. Note that all these coe�cients are polynomials in z1; : : : ; zk.
When evaluated at appropriate values c1; : : : ; ck (namely the ones satisfying condition two of the
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lemma) one of these coe�cients must evaluate to a non-zero and non-invertible element in ZN. The
�rst step is to build the polynomial f 0 = f mod g. The following lemma shows how to build an slp

that computes the coe�cients of f 0 (each of these coe�cients is a polynomial in z1; : : : ; zk). The lemma
is quite easy. For completeness we sketch its proof in the appendix.

Lemma 2.2 Let f and g be polynomials as in Lemma 2.1. Then there exists a polynomial time

algorithm (in L and m) that outputs an slp of length at most 2m2L in which the last m steps are the

coe�cients of f mod g.

We can now complete the proof of Lemma 2.1.

Proof of Lemma 2.1 Having built an slp for the coe�cients of f 0 = f mod g we need to continue
Euclid's algorithm and compute g mod f 0. Since each of them coe�cients of f 0 is itself a polynomial in
z1; : : : ; zk we cannot determine the exact degree of f 0 (for di�erent settings of z1; : : : ; zk the polynomial
f 0 will have di�erent degrees). We cannot build an slp for the coe�cients of g mod f 0 without knowing
the degree of f 0. To solve this problem we build an slp for each of the possible m values for the degree
of f 0. Thus, for each r = 0; : : : ;m� 1 we obtain a program that computes the coe�cients of g mod f 0

assuming the degree of f 0 is r. By allowing the programs to generate an invertible constant multiple
of g mod f 0 we can avoid the use of division. We iterate this process until the Euclidean algorithm is
completed. At each stage of the algorithm, when computing f (j�1) mod f (j) all possible values for the
degree of f (j) are explored.

Recall that our objective is to create an slp for the leading coe�cient of all polynomials generated
by Euclid's algorithm during the computation of gcd(f; g). Normally there would only be m such
polynomials. However, since we try all possible degree values for intermediate polynomials we end
up with at most 2m slp's for leading coe�cients. We prove that at most 2m slp's are generated by
induction on m. For m = 1 (i.e. g linear in x) the claim is trivial. If the claim holds for all r � m� 1
then the number of programs generated when g has degree m in x is at most

Pm�1
r=1 2r < 2m (each of

the m values r = 0; : : : ;m � 1 for the degree of f 0 generates at most 2r programs). Hence, Euclid's
algorithm with symbolic coe�cients generates at most 2m programs. Each program has length at most
2m2L+m3 as required. �

2.2 Eliminating division from straight line programs

Our de�nition of straight line programs does not allow for division. The reason is that division can
be avoided altogether. Division turns out to be problematic for what we have in mind; the ability
to avoid it is very helpful. We say that the evaluation of a division-slp at a point �x 2 F

k
p completes

successfully if there are no divisions by zero along the way.

Lemma 2.3 Let f 2 Fp [x1; : : : ; xk] be a polynomial given as a division{slp of length L. Then in linear

time in L one can generate two slp's g and h each of length 4L such that f = g=h. Furthermore, let

�x 2 F
k
p be an input for which the evaluation of f completes successfully. Then �x is a root of f if and

only if it is a root of g.

We include a proof of the lemma in the �nal version of the paper. The lemma shows that we can
always convert a division-slp into a division free slp while maintaining the same roots. Hence, if a
division-slp can be used to factor, it can be converted into a division free slp that can also be used
to factor.
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3 Main results

Our method of transforming a \factoring to rsa" reduction into a real factoring algorithm applies
whenever the reduction algorithm belongs to a certain \natural" class of algorithms. In this section
we precisely de�ne our notion of \natural" and prove our results. We begin by showing how to
transform a straight line reduction into a factoring algorithm and then in Section 3.2 describe our full
result.

Since we are mostly interested in factoring numbers that are a product of two large primes we
de�ne the following set:

Z(2)(n) = fN j N < 2n ; N = pq ; p > q > 2n=4 ; p; q primeg
We say that an algorithm A factors a non-negligible fractions of the integers in Z(2)(n) if there exists
a constant c such that in�nitely often A factors 1=nc of the integers in Z(2)(n).

3.1 Removing an RSA oracle from straight line programs

Factoring algorithms are often simply straight line programs evaluated modulo N at various inputs.
A factorization is obtained once the straight line program outputs a non-zero non-invertible element
modulo N . Both Pollard's p� 1 factoring [6] and Elliptic curve factoring [7] can be viewed as straight
line factoring algorithms. In this section we show that an oracle for breaking low exponent rsa cannot
aid straight line factoring algorithms as long as the algorithm doesn't make too many oracle calls.
The following de�nition captures the notion of an slp combined with an oracle for breaking le{rsa.
We denote the maximum allowable encryption exponent by ! and regard it as an absolute constant.

De�nition 3.1 Let ! be a �xed constant.

� A straight line rsa program (rsa{slp) P is a sequence of algebraic expressions 1; c1; c2; : : : ; cm
such that for all i = 1; : : : ;m the expression ci is either ci = ck � cl for some k; l < i and

� 2 f+;�; �g or ci = e

p
ck for some k < i and e < !.

� The program can be successfully evaluated modulo N if all steps of the form ci = e

p
ck with k < i

satisfy gcd('(N); e) = 1. We refer to these steps of the program as radical steps.

An rsa{slp is an algebraic circuit in which gates perform arithmetic operations as well as take e'th
roots (for small e). Next, we de�ne the notion of a straight line reduction from factoring to breaking
le{rsa. Essentially, the reduction must factor elements of Z(2)(n) only using rsa{slp's.

De�nition 3.2

� An rsa{slp P is said to factor N if it can be successfully evaluated modulo N and it evaluates to

a non-zero non-invertible element. A set of rsa{slp's is said to factor N if one of the programs
in the set factors N .

� A straight line reduction is a randomized algorithm A that on input n outputs a set of rsa{slp's

fP1; : : : ; Pkg. Denote the output set by A(n). For a non-negligible fraction of the N 2 Z(2)(n)

the set A(n) must factor N (with probability at least 1
2 over the random bits of A).

An expected polynomial time straight line reduction A would prove that breaking low exponent
rsa is as hard as factoring. The main result of this section shows that such a reduction can be
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converted into a real polynomial time factoring algorithm. Hence, an rsa breaking oracle does not
help a straight line factoring algorithm. Alternatively, factoring is not reducible to breaking le{rsa

using straight line reductions, unless factoring is easy.

Theorem 3.1 Suppose there exists a straight line reduction A whose running time is T (n). Further

suppose that each of the rsa{slp's generated by A on input N 2 Z(2)(n) contains at most O(log T (n))

radical steps. Then there is a real factoring algorithm B whose running time is T (n)O(1) and factors

all N 2 Z(2)(n) that A does.

The main tool used in the proof of Theorem 3.1 is presented in the next lemma. The statement of
the lemma requires that we precisely de�ne the degree of a polynomial g(x) =

Pd
i=0 aix

i 2 Fp [x]. The
polynomial has degree d if d > 0 and ad 6= 0. A non-zero constant polynomial is said to have degree
0. The zero polynomial is said to have degree �1.
Lemma 3.2 Let f 2 Fp [x] be some polynomial and m a positive integer satisfying gcd(m; p� 1) = 1.
Then for any constant 0 6= c 2 Fp the polynomial gcd(f(x); xm � cm) has odd degree if and only if x
is a root of f(x).

Proof We know(see [5]) that when c 6= 0:

xm � cm =
Y
djm

c'(d) �d(
x

c
) (mod p)

where �d(x) is the d'th cyclotomic polynomial. It's degree is '(d) and it is irreducible over Fp . Ob-
serve that '(d) is even for all odd integers d > 1. Since m is odd all its divisors are odd and hence all
irreducible factors of xm � cm except x� c have even degree. It follows that if c is not a root of f(x)
then x� c does not divide the gcd implying that the gcd must have even degree. Conversely, if c is a
root of f(x) then x� c does divide the gcd and hence its degree must be odd. �

Corollary 3.3 Let m 2 Z be a positive integer and let N 2 Z(2)(n) satisfy gcd('(N);m) = 1. Let
f 2 ZN[x] be a polynomial and let fp; fq be the reduction of f modulo p and q respectively where

N = pq. Then for any constant c 2 Z
�
N [ f0g if f(c) is a non-zero non-invertible element of ZN then

deg ( gcd(fp; x
m � cm)) 6= deg ( gcd(fq; x

m � cm))

Proof Since f(c) is non-zero non-invertible we know that c is a root of f modulo exactly one of the
primes p; q. When c = 0 the corollary is trivial. When c 2 Z

�
N the previous lemma implies that one

gcd has odd degree while the other has even degree. �

The above corollary shows that if f 2 ZN[x] is a polynomial such that f(c) is non-zero non-
invertible element of ZN then gcd(f; xm � cm) behaves modulo p di�erently than it does modulo q.
The di�erence in behavior enables one to factor N (simply apply Euclid's algorithm in ZN to f and
xm � cm). Thus, the corollary shows that if f(c) reveals the factorization of N then one can factor N
given only cm mod N (and f).

Proof of Theorem 3.1 Given an integer N 2 Z(2)(n) algorithm B factors it by �rst running algorithm
A to produce k rsa{slp's P1; : : : ; Pk. We know that when evaluated moduloN (using the rsa breaking
oracle) one of these programs produces a non-zero non-invertible element of ZN. Call this program
P . We show how algorithm B can use the program P to generate a non-zero non-invertible element
without using an rsa breaking oracle. Note that since B does not know which of the k programs is
the right one, it tries them all.
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To emphasize the steps in which P uses the rsa breaking oracle we write P as follows:

�1 = e1

p
f0(1)

�2 = e2

p
f1(�1)

�3 = e3

p
f2(�2; �1)

...

�r = er

p
fr�1(�r�1; : : : ; �1)

�r+1 = fr(�r; : : : ; �1)

where for all i; �i 2 ZN and �r+1 is non-zero non-invertible. The polynomials f0; : : : ; fr all have
straight line complexity smaller than the length of P . Note that the polynomial fi may only depend
on some of the �j; j < i. Every line in the above list corresponds to one application of the rsa oracle.
Recall that by assumption all the ei are less than some absolute constant !. Also, by assumption
r < O(log T (n)). We may assume �r 2 ZN [ f0g since otherwise �err is a non-zero non-invertible
element of ZN and the program may as well end there.

Consider the polynomial fr as a polynomial in the variables x and z1; : : : ; zr�1. Setting x = �r
and zi = �i for i = 1; : : : ; r � 1 causes fr to evaluate to a non-zero non-invertible element of ZN. Let
g(x) = fr(x; �r�1; : : : ; �1) 2 ZN[x]. Then by Lemma 3.3, the degree of gcd(g; xer � �err ) modulo p
is di�erent from its degree modulo q. We intend to apply Euclid's algorithm to g(x) and xer � �err
to reveal the factorization of N . The point is that �err can now be expressed as a polynomial in
�1; : : : ; �r�1.

Unfortunately at this point the values �1; : : : ; �r�1 are still unknown. So, we treat them as
indeterminates z1; : : : ; zr�1. Working symbolically, we must apply Euclid's algorithm (with respect to
x) to the polynomials fr and xer � fr�1. We do so using Lemma 2.1. The lemma produces 2m slp's
over z1; : : : ; zr�1 whose length is at most len(P )e3r . The lemma guarantees that when evaluated at
z1 = �1; : : : ; zr�1 = �r�1 at least one of these programs must evaluate to a non-zero non-invertible
element of ZN. Let P

0 be this program. Algorithm B does not know which is the right one and so it
tries them all. Let h(z1; : : : ; zr�1) be the polynomial computed by P 0. Then the following rsa{slp

factors N :

�1 = e1

p
f0(1)

�2 = e2

p
f1(�1)

�3 = e3

p
f2(�2; �1)

...

�r�1 = e
r�1

p
fr�2(�r�2; : : : ; �1)

�r = h(�r�1; : : : ; �1)

We obtained an rsa{slp making one less oracle call than the original program. The total length of
the rsa{slp went up by at most !3 and it is one of k2! rsa{slp's that algorithm B must evaluate.
We can iterate this process of removing oracle calls until �nally we obtain a collection of rsa{slp's
that never use radicals; they can all be evaluated without the use of an oracle. One of them yields the
factorization of N . The total number of these slp's is at most k(2!)r and the length of each one is at
most len(P )(!3)r. Since ! is a constant, r < O(log T (n)) and len(P ) < T (n) the total running time
of algorithm B is bounded by T (n)O(1). It factors all integers that algorithm A factors and makes no
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use of an oracle breaking le{rsa. �

The result we just proved is a bit stronger than stated in the theorem. All the steps of the program
P up until the �rst use of the rsa breaking oracle can be arbitrary. That is, our conversion process
works even if f0(1) is computed using non-algebraic operations. This is an important observation since
some factoring algorithms based on sieving fall into this category.

3.2 Removing an RSA oracle from an algebraic reduction

In this section we show how to convert a \factoring to rsa" reduction to a real factoring algorithm
for a more general class of reductions. We refer to these as algebraic reductions. Unlike the straight
line reductions of the previous section, algebraic reductions may include branches (decisions) based
on values returned by the rsa oracle. Hence, algebraic reductions appear to be more general.

De�nition 3.3 An algebraic reduction A factors an element N 2 Z(2)(n) with the help of a special

oracle O. From time to time A stops and presents an rsa{slp to O. The oracle then says \yes" or

\no" according on whether the rsa{slp evaluates to zero in ZN. Eventually A stops and outputs a

set of rsa{slp's fP1; : : : ; Pkg one of which factors N with probability at least 1
2 (over the random bits

of A).

If a polynomial time algebraic reduction exists then breaking low exponent rsa is as hard as
factoring. As in the previous section we suggest that this is unlikely since an algebraic reduction (with
a bounded number of oracle calls) can be converted into a real factoring algorithm.

Theorem 3.4 Suppose there exists an algebraic factoring algorithm A whose running time is T (n).
Further suppose that each of the rsa{slp's generated by A on input N 2 Z(2)(n) contains at most

O(log T (n)) radical steps. Then there is a real factoring algorithm B whose running time is T (n)O(1)

and factors all N 2 Z(2)(n) that A does.

The di�culty here is in answering A's queries to the oracle O. We show how given an rsa{slp

P it is possible to test if P evaluates to zero in ZN without the help of an rsa breaking oracle. In
the following lemma we use the same notion of gcd in Zn[x] as the one discussed in the beginning of
Section 2.1. The following lemma shows that to determine if c 2 ZN is a root of f 2 ZN[x] it su�ces
to observe the degree of gcd(f; xm � cm).

Lemma 3.5 Let m 2 Z be a positive integer and let N 2 Z(2)(n) satisfy gcd('(N);m) = 1. Let

f 2 ZN[x] be a polynomial. Let c 2 ZN be a value for which h(x) = gcd(f(x); xm�cm) is well de�ned.
Then c 6= 0 is a root of f(x) if and only if h(x) has odd degree. c = 0 is a root of f(x) if and only if

the degree of h(x) is greater than 0.

Proof When c = 0 the lemma is trivial. Assume c 6= 0. Let N = pq with p; q prime. Let fp be the
polynomial f reduced modulo p and fq the polynomial reduced modulo q. If c is a root of f (in ZN)
then it must also be a root of fp and fq. Hence, by Lemma 3.2, assuming h 2 ZN [x] is well de�ned,
its degree must be odd.

Conversely, suppose the degree of h(x) is odd. Then, assuming the leading coe�cient of h is
invertible in ZN, the degree of h(x) when reduced modulo p must be odd and the same holds mod-
ulo q. Hence, by Lemma 3.2, c must be a root of both fp and fq. It follows that c is a root of f in ZN. �

Proof of Theorem 3.4 On input N 2 Z(2)(n) algorithm B runs algorithm A. If B could answer A's
oracle queries correctly then eventually A will generate a set of rsa{slp's fP1; : : : ; Pkg that factor N .
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Algorithm B could then use the result of Theorem 3.1 to convert these rsa{slp's into a real factoring
algorithm (that makes no oracle calls). Hence, we must only show how B can answer A's oracle queries
to O.

At some point during the execution of A it outputs an rsa{slp P and then stops and waits for
an answer to whether P evaluates to zero in ZN. As before we write the program P in a way that
emphasizes the oracle calls:

�1 = e1

p
f0(1)

�2 = e2

p
f1(�1)

�3 = e3

p
f2(�2; �1)

...

�r = er

p
fr�1(�r�1; : : : ; �1)

�r+1 = fr(�r; : : : ; �1)

P evaluates to �r+1 in ZN. We show how to test if �r+1 = 0 in ZN without the use of an oracle
for breaking le{rsa. Let g(x) = fr(x; �r�1; : : : ; �1) 2 ZN[x]. By Lemma 3.5 we know that if
gcd(g; xer ��err ) is well de�ned, its degree (in x) will tell us if g(�r) = 0. If the gcd is not well de�ned
then Euclid's algorithm must have encountered a polynomial whose leading coe�cient is not invertible
in ZN and hence the factorization of N is already revealed.

Since �r�1; : : : ; �1 are unknown at this point we treat them as indeterminates z1; : : : ; zr�1. The
computation of gcd(g; xer � �err ) reduces to computing the degree (in x) of

gcd
x

�
fr(x; zr�1; : : : ; z1); x

er � fr�1(zr�1; : : : ; z1)

�

Let g0 = xer � fr�1. We construct a recursive algorithm for this problem as follows:

1. By Lemma 2.2 we can build an slp for the coe�cients of g1 = fr mod g0. These coe�cients are
polynomials in the z's. Let P0; : : : ; Pm be the slp's for these coe�cients.

2. To determine the degree of g1 we must determine the largest i for which Pi(�r�1; : : : ; �1) is
non-zero in ZN. This is a zero-testing problem like the one we are trying to solve except that
the program Pi contains only r � 1 oracle calls. Hence, we can recursively solve this question
and determine the degree of g1. Note that the length of the program Pi is at most !3 times the
length of P .

3. To ensure that the gcd is well de�ned we must check that the leading coe�cient of g1 is in-
vertible in ZN. To do this we apply Theorem 3.1 to the leading coe�cient of g1, namely to
Pi(�r�1; : : : ; �1). If the leading coe�cient is not invertible, the factorization of N is found and
algorithm B terminates.

4. Next we compute an slp for the coe�cients of g2 = g0 mod g1. To avoid using division we
actually compute g2 multiplied by an invertible constant. We apply the same steps as before to
determine the degree of g2 and to ensure that its leading coe�cient is invertible in ZN.

5. We iterate this procedure until Euclid's algorithm terminates. At which time we �nd the degree
of x in gcd(g(x); xer � �err ). By Lemma 3.5 the degree determines whether g(�r) = 0 in ZN.
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The recursion depth is bounded by r, the number of oracle calls made by the rsa{slp P . Hence, the
total running time is O(len(P )(!3)r) = T (n)O(1) since r = O(log T (n)) and len(P ) < T (n). �

As in the case of Theorem 3.1 the theorem is slightly stronger than stated. In fact, we can allow
all the rsa{slp's produced by algorithm A to perform arbitrary operations (including aggressive bit
manipulations) up until the �rst time the rsa oracle is invoked. Once the rsa oracle is used the
programs must only use algebraic operations in ZN. The reason for this extra freedom is that it makes
no di�erence how f0(1) is calculated. All that matters is that it is an element of ZN which algorithm
B can construct.

4 Conclusions and open problems

Our main objective is to study the relationship between breaking low exponent rsa and factoring
integers. We show that under certain types of reductions (straight line reductions and algebraic
reductions with bounded oracle queries) the two problems cannot be equivalent, unless factoring
integers is easy.

Since our results may suggest that breaking le{rsa is not as hard as factoring it is interesting to
note that attacks on low public exponent rsa due to Hastad [4] and Coppersmith [2] break the rsa
system (i.e. decrypt messages without the private key) but do not factor the modulus. In conjunction
with our results this suggests further evidence that breaking le{rsa is easier than factoring. It is
important to keep in mind that even though it may be easier than factoring, breaking low exponent
rsa is still most likely to be intractable.

We note that both our main results, Theorems 3.1 and 3.4, are a bit stronger than stated. In both
cases the rsa{slp's produced by the reductions are allowed to perform arbitrary operations (including
aggressive bit manipulations) up until the �rst time the rsa oracle is invoked. Once the rsa oracle
is used the programs must only use algebraic operations in ZN. Hence, for instance, before invoking
the rsa oracle the reduction may perform arbitrary sieving. Our results are strong enough to convert
such reductions into real factoring algorithms.

There are still several open problems that remain to be solved until we have a complete proof that
rsa cannot be equivalent to factoring (unless factoring is easy). The �rst is to remove the restriction
that the reduction must be algebraic. That is, given a factoring algorithm presented as a boolean
circuit using rsa gates (i.e. gates breaking le{rsa) convert it into a real factoring algorithm. This
may be possible by �rst converting the boolean circuit into an arithmetic circuit (one using only
arithmetic gates) using standard techniques and then applying our method to the resulting arithmetic
circuit.

The second open problem is to strengthen our results regarding algebraic reductions. Currently
our conversion process works only when the given rsa{slp makes at most O(log T (n)) rsa oracle
queries, where T (n) is the running time of the reduction algorithm1. If we assume factoring cannot
be done in time L�(n) for some � > 0 then the reduction may take time L�(n) and consequently the
rsa{slp's it outputs may make n� oracle queries. It is an interesting open question to strengthen our
results and allow the algebraic reduction to make unrestricted oracle calls.

As a �nal note we point out that our results apply to smooth public exponents in some limited

1Since the reduction algorithm outputs a number of rsa{slp's, the total number of oracle queries is unbounded. The
only restriction is that each rsa{slp make at most O(log T (n)) queries.
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sense. When e is smooth, an oracle for taking e'th roots can be simulated using log e le{rsa oracle
calls. Hence, as long as e is smooth and e < n� our conversion process can be applied. Consequently,
any algebraic reduction using a costant number of e'th root oracle calls can be converted into a real
factoring algorithm. In this restricted sense, our results apply to more than just low exponent rsa.
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Appendix

Proof of Lemma 2.2 First, observe that since g is monic (as a polynomial in x) the gcd is well
de�ned in ZN. Let Pf be the slp for f . We prove the lemma by induction on L, the length of Pf .
When L = 1 the claim is trivial. We assume the claim for L� 1 and prove for a program of length L.
Suppose the last step of f applies one of f+;�; �g to the i'th and j'th steps. By induction, there exist
slp's Pi and Pj for the m coe�cients of fi mod g and fj mod g respectively (the last m steps of the
program Pi are the coe�cients of fi mod g and a similar condition holds for Pj). If the last step of Pf
takes the sum (or di�erence) of fi and fj then P 0

f (the program for the coe�cient of f mod g) includes
the programs for Pi and Pj and adds m more steps adding (or subtracting) the m last steps of Pi to
those of Pj . By induction, the length of the combined programs for Pi and Pj is at most 2m2(L� 1).
Hence, the total length for P 0

f is 2m2(L� 1) +m < 2m2L.
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If the last step takes the product of fi and fj then as before the program P 0
f includes Pi and Pj

and adds a number of steps to that. First P 0
f computes all 2m coe�cients of the product of fi mod g

and fj mod g. Then using the simplest division algorithm it reduces the product modulo g = xm � h.
Since xm � h is monic this step does not require any divisions. The last m steps of the reduction
contain the desired m coe�cients of f mod g. This procedure adds at most 2m2 steps. The total
length is now less than 2m2(L� 1) + 2m2 = 2m2L as required. �
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