
Remote Timing Attacks are Practical

David Brumley Dan Boneh
Stanford University Stanford University

dbrumley@cs.stanford.edu dabo@cs.stanford.edu

Abstract

Timing attacks are usually used to attack weak comput-
ing devices such as smartcards. We show that timing
attacks apply to general software systems. Specifically,
we devise a timing attack against OpenSSL. Our exper-
iments show that we can extract private keys from an
OpenSSL-based web server running on a machine in the
local network. Our results demonstrate that timing at-
tacks against network servers are practical and therefore
security systems should defend against them.

1 Introduction

Timing attacks enable an attacker to extract secrets
maintained in a security system by observing the time
it takes the system to respond to various queries. For
example, Kocher [10] designed a timing attack to ex-
pose secret keys used for RSA decryption. Until now,
these attacks were only applied in the context of hard-
ware security tokens such as smartcards [4, 10, 18]. It
is generally believed that timing attacks cannot be used
to attack general purpose servers, such as web servers,
since decryption times are masked by many concurrent
processes running on the system. It is also believed that
common implementations of RSA (using Chinese Re-
mainder and Montgomery reductions) are not vulnerable
to timing attacks.

We challenge both assumptions by developing a remote
timing attack against OpenSSL [15], an SSL library
commonly used in web servers and other SSL applica-
tions. Our attack client measures the time an OpenSSL
server takes to respond to decryption queries. The client
is able to extract the private key stored on the server. The
attack applies in several environments.

Network. We successfully mounted our timing attack
between two machines on our campus network.

The attacking machine and the server were in
different buildings with three routers and multi-
ple switches between them. With this setup we
were able to extract the SSL private key from
common SSL applications such as a web server
(Apache+mod SSL) and a SSL-tunnel.

Interprocess. We successfully mounted the attack be-
tween two processes running on the same machine.
A hosting center that hosts two domains on the
same machine might give management access to
the admins of each domain. Since both domain are
hosted on the same machine, one admin could use
the attack to extract the secret key belonging to the
other domain.

Virtual Machines. A Virtual Machine Monitor (VMM)
is often used to enforce isolation between two Vir-
tual Machines (VM) running on the same proces-
sor. One could protect an RSA private key by stor-
ing it in one VM and enabling other VM’s to make
decryption queries. For example, a web server
could run in one VM while the private key is stored
in a separate VM. This is a natural way of protect-
ing secret keys since a break-in into the web server
VM does not expose the private key. Our results
show that when using OpenSSL the network server
VM can extract the RSA private key from the se-
cure VM, thus invalidating the isolation provided
by the VMM. This is especially relevant to VMM
projects such as Microsoft’s NGSCB architecture
(formerly Palladium). We also note that NGSCB
enables an application to ask the VMM (aka Nexus)
to decrypt (aka unseal) application data. The appli-
cation could expose the VMM’s secret key by mea-
suring the time the VMM takes to respond to such
requests.

Many crypto libraries completely ignore the timing at-
tack and have no defenses implemented to prevent it. For
example, libgcrypt [14] (used in GNUTLS and GPG)
and Cryptlib [5] do not defend against timing attacks.
OpenSSL 0.9.7 implements a defense against the tim-
ing attack as an option. However, common applications
such as mod SSL, the Apache SSL module, do not en-

able this option and are therefore vulnerable to the at-
tack. These examples show that timing attacks are a
largely ignored vulnerability in many crypto implemen-
tations. We hope the results of this paper will help con-
vince developers to implement proper defenses (see Sec-
tion 6). Interestingly, Mozilla’s NSS crypto library prop-
erly defends against the timing attack. We note that
most crypto acceleration cards also implement defenses
against the timing attack. Consequently, network servers
using these accelerator cards are not vulnerable.

We chose to tailor our timing attack to OpenSSL since
it is the most widely used open source SSL library.
The OpenSSL implementation of RSA is highly op-
timized using Chinese Remainder, Sliding Windows,
Montgomery multiplication, and Karatsuba’s algorithm.
These optimizations cause both known timing attacks on
RSA [10, 18] to fail in practice. Consequently, we had to
devise a new timing attack based on [18, 19, 20, 21, 22]
that is able to extract the private key from an OpenSSL-
based server. As we will see, the performance of our
attack varies with the exact environment in which it is
applied. Even the exact compiler optimizations used to
compile OpenSSL can make a big difference.

In Sections 2 and 3 we describe OpenSSL’s implemen-
tation of RSA and the timing attack on OpenSSL. In
Section 4 we discuss how these attacks apply to SSL.
In Section 5 we describe the actual experiments we car-
ried out. We show that using about a million queries we
can remotely extract a 1024-bit RSA private key from an
OpenSSL 0.9.7 server. The attack takes about two hours.

Timing attacks are related to a class of attacks called
side-channel attacks. These include power analysis [9]
and attacks based on electromagnetic radiation [16]. Un-
like the timing attack, these extended side channel at-
tacks require special equipment and physical access to
the machine. In this paper we only focus on the timing
attack. We also note that our attack targets the imple-
mentation of RSA decryption in OpenSSL. Our timing
attack does not depend upon the RSA padding used in
SSL and TLS.

2 OpenSSL’s Implementation of RSA

We begin by reviewing how OpenSSL implements RSA
decryption. We only review the details needed for our
attack. OpenSSL closely follows algorithms described
in the Handbook of Applied Cryptography [11], where
more information is available.

2.1 OpenSSL Decryption

At the heart of RSA decryption is a modular exponen-
tiation m = cd mod N where N = pq is the RSA
modulus, d is the private decryption exponent, and c
is the ciphertext being decrypted. OpenSSL uses the
Chinese Remainder Theorem (CRT) to perform this ex-
ponentiation. With Chinese remaindering, the function
m = cd mod N is computed in two steps. First, evalu-
ate m1 = cd1 mod p and m2 = cd2 mod q (here d1 and
d2 are precomputed from d). Then, combine m1 and m2

using CRT to yield m.

RSA decryption with CRT gives up to a factor of four
speedup, making it essential for competitive RSA imple-
mentations. RSA with CRT is not vulnerable to Kocher’s
original timing attack [10]. Nevertheless, since RSA
with CRT uses the factors of N , a timing attack can ex-
pose these factors. Once the factorization of N is re-
vealed it is easy to obtain the decryption key by comput-
ing d = e−1 mod (p − 1)(q − 1).

2.2 Exponentiation

During an RSA decryption with CRT, OpenSSL com-
putes cd1 mod p and cd2 mod q. Both computations are
done using the same code. For simplicity we describe
how OpenSSL computes gd mod q for some g, d, and q.

The simplest algorithm for computing gd mod q is
square and multiply. The algorithm squares g approx-
imately log2 d times, and performs approximately log

2
d

2
additional multiplications by g. After each step, the
product is reduced modulo q.

OpenSSL uses an optimization of square and multiply
called sliding windows exponentiation. When using slid-
ing windows a block of bits (window) of d are pro-
cessed at each iteration, where as simple square-and-
multiply processes only one bit of d per iteration. Slid-
ing windows requires pre-computing a multiplication ta-
ble, which takes time proportional to 2w−1+1 for a win-
dow of size w. Hence, there is an optimal window size
that balances the time spent during precomputation vs.
actual exponentiation. For a 1024-bit modulus OpenSSL
uses a window size of five so that about five bits of the
exponent d are processed in every iteration.

For our attack, the key fact about sliding windows is that
during the algorithm there are many multiplications by
g, where g is the input ciphertext. By querying on many

inputs g the attacker can expose information about bits
of the factor q. We note that a timing attack on sliding
windows is much harder than a timing attack on square-
and-multiply since there are far fewer multiplications by
g in sliding windows. As we will see, we had to adapt
our techniques to handle sliding windows exponentia-
tion used in OpenSSL.

2.3 Montgomery Reduction

The sliding windows exponentiation algorithm performs
a modular multiplication at every step. Given two inte-
gers x, y, computing xy mod q is done by first multiply-
ing the integers x ∗ y and then reducing the result mod-
ulo q. Later we will see each reduction also requires a
few additional multiplications. We first briefly describe
OpenSSL’s modular reduction method and then describe
its integer multiplication algorithm.

Naively, a reduction modulo q is done via multi-
precision division and returning the remainder. This is
quite expensive. In 1985 Peter Montgomery discovered
a method for implementing a reduction modulo q us-
ing a series of operations efficient in hardware and soft-
ware [13].

Montgomery reduction transforms a reduction modulo
q into a reduction modulo some power of 2 denoted by
R. A reduction modulo a power of 2 is faster than a
reduction modulo q as many arithmetic operations can
be implemented directly in hardware. However, in order
to use Montgomery reduction all variables must first be
put into Montgomery form. The Montgomery form of
number x is simply xR mod q. To multiply two num-
bers a and b in Montgomery form we do the following.
First, compute their product as integers: aR∗bR = cR2.
Then, use the fast Montgomery reduction algorithm to
compute cR2 ∗ R−1 = cR mod q. Note that the result
cR mod q is in Montgomery form, and thus can be di-
rectly used in subsequent Montgomery operations. At
the end of the exponentiation algorithm the output is put
back into standard (non-Montgomery) form by multiply-
ing it by R−1 mod q. For our attack, it is equivalent to
use R and R−1 mod N , which are public.

Hence, for the small penalty of converting the input g to
Montgomery form, a large gain is achieved during mod-
ular reduction. With typical RSA parameters the gain
from Montgomery reduction outweighs the cost of ini-
tially putting numbers in Montgomery form and convert-
ing back at the end of the algorithm.

q 2q 3q p 4q 5q

of

 e
xt

ra
 r

ed
uc

tio
ns

 in
 M

on
tg

er
y’

s
al

go
rit

hm

values g between 0 and 6q

discontinuity when
g mod q = 0

discontinuity when
g mod p = 0

Figure 1: Number of extra reductions in a Montgomery
reduction as a function (equation 1) of the input g.

The key relevant fact about a Montgomery reduction is
at the end of the reduction one checks if the output cR
is greater than q. If so, one subtracts q from the out-
put, to ensure that the output cR is in the range [0, q).
This extra step is called an extra reduction and causes a
timing difference for different inputs. Schindler noticed
that the probability of an extra reduction during an ex-
ponentiation gd mod q is proportional to how close g is
to q [18]. Schindler showed that the probability for an
extra reduction is:

Pr[Extra Reduction] =
g mod q

2R
(1)

Consequently, as g approaches either factor p or q from
below, the number of extra reductions during the expo-
nentiation algorithm greatly increases. At exact mul-
tiples of p or q, the number of extra reductions drops
dramatically. Figure 1 shows this relationship, with the
discontinuities appearing at multiples of p and q. By de-
tecting timing differences that result from extra reduc-
tions we can tell how close g is to a multiple of one of
the factors.

2.4 Multiplication Routines

RSA operations, including those using Montgomery’s
method, must make use of a multi-precision integer mul-
tiplication routine. OpenSSL implements two multipli-
cation routines: Karatsuba (sometimes called recursive)
and “normal”. Multi-precision libraries represent large
integers as a sequence of words. OpenSSL uses Karat-
suba multiplication when multiplying two numbers with
an equal number of words. Karatsuba multiplication
takes time O(nlog

2
3) which is O(n1.58). OpenSSL uses

normal multiplication, which runs in time O(nm), when
multiplying two numbers with an unequal number of
words of size n and m. Hence, for numbers that are ap-
proximately the same size (i.e. n is close to m) normal
multiplication takes quadratic time.

Thus, OpenSSL’s integer multiplication routine leaks
important timing information. Since Karatsuba is typ-
ically faster, multiplication of two unequal size words
takes longer than multiplication of two equal size words.
Time measurements will reveal how frequently the
operands given to the multiplication routine have the
same length. We use this fact in the timing attack on
OpenSSL.

In both algorithms, multiplication is ultimately done on
individual words. The underlying word multiplication
algorithm dominates the total time for a decryption. For
example, in OpenSSL the underlying word multiplica-
tion routine typically takes 30% − 40% of the total run-
time. The time to multiply individual words depends on
the number of bits per word. As we will see in exper-
iment 3 the exact architecture on which OpenSSL runs
has an impact on timing measurements used for the at-
tack. In our experiments the word size was 32 bits.

2.5 Comparison of Timing Differences

So far we identified two algorithmic data dependencies
in OpenSSL that cause time variance in RSA decryption:
(1) Schindler’s observation on the number of extra re-
ductions in a Montgomery reduction, and (2) the timing
difference due to the choice of multiplication routine,
i.e. Karatsuba vs. normal. Unfortunately, the effects of
these optimizations counteract one another.

Consider a timing attack where we decrypt a ciphertext
g. As g approaches a multiple of the factor q from be-
low, equation (1) tells us that the number of extra reduc-
tions in a Montgomery reduction increases. When we
are just over a multiple of q, the number of extra reduc-
tions decreases dramatically. In other words, decryption
of g < q should be slower than decryption of g > q.

The choice of Karatsuba vs. normal multiplication has
the opposite effect. When g is just below a multiple
of q, then OpenSSL almost always uses fast Karatsuba
multiplication. When g is just over a multiple of q then
g mod q is small and consequently most multiplications
will be of integers with different lengths. In this case,
OpenSSL uses normal multiplication which is slower.
In other words, decryption of g < q should be faster

than decryption of g > q — the exact opposite of the
effect of extra reductions in Montgomery’s algorithm.
Which effect dominates is determined by the exact envi-
ronment. Our attack uses both effects, but each effect is
dominant at a different phase of the attack.

3 A Timing Attack on OpenSSL

Our attack exposes the factorization of the RSA modu-
lus. Let N = pq with q < p. We build approximations to
q that get progressively closer as the attack proceeds. We
call these approximations guesses. We refine our guess
by learning bits of q one at a time, from most signifi-
cant to least. Thus, our attack can be viewed as a binary
search for q. After recovering the half-most significant
bits of q, we can use Coppersmith’s algorithm [3] to re-
trieve the complete factorization.

Initially our guess g of q lies between 2512 (i.e.
2log

2
N/2) and 2511 (i.e. 2log

2
(N/2)−1). We then time the

decryption of all possible combinations of the top few
bits (typically 2-3). When plotted, the decryption times
will show two peaks: one for q and one for p. We pick
the values that bound the first peak, which in OpenSSL
will always be q.

Suppose we already recovered the top i−1 bits of q. Let
g be an integer that has the same top i − 1 bits as q and
the remaining bits of g are 0. Then g < q. At a high
level, we recover the i’th bit of q as follows:

• Step 1 - Let ghi be the same value as g, with the
i’th bit set to 1. If bit i of q is 1, then g < ghi < q.
Otherwise, g < q < ghi.

• Step 2 - Compute ug = gR−1 mod N and ughi
=

ghiR
−1 mod N . This step is needed because RSA

decryption with Montgomery reduction will calcu-
late ugR = g and ughi

R = ghi to put ug and ughi

in Montgomery form before exponentiation during
decryption.

• Step 3 We measure the time to decrypt both ug

and ughi
. Let t1 = DecryptTime(ug) and t2 =

DecryptTime(ughi
).

• Step 4 - We calculate the difference ∆ = |t1 − t2|.
If g < q < ghi then, by Section 2.5, the difference
∆ will be “large”, and bit i of q is 0. If g < ghi < q,
the difference ∆ will be “small”, and bit i of q is 1.
We use previous ∆ values to know what to consider
“large” and “small”. Thus we use the value |t1−t2|
as an indicator for the i’th bit of q.

When the i’th bit is 0, the “large” difference can ei-
ther be negative or positive. In this case, if t1 − t2 is
positive then DecryptTime(g) > DecryptTime(ghi), and
the Montgomery reductions dominated the time differ-
ence. If t1 − t2 is negative, then DecryptTime(g) <
DecryptTime(ghi), and the multi-precision multiplica-
tion dominated the time difference.

Formatting of RSA plaintext, e.g. PKCS 1, does not af-
fect this timing attack. We also do not need the value of
the decryption, only how long the decryption takes.

3.1 Exponentiation Revisited

We would like |tg1
−tg2

| � |tg3
−tg4

| when g1 < q < g2

and g3 < g4 < q. Time measurements that have this
property we call a strong indicator for bits of q, and those
that do not are a weak indicator for bits of q. Square and
multiply exponentiation results in a strong indicator be-
cause there are approximately log

2
d

2 multiplications by
g during decryption. However, in sliding windows with
window size w (w = 5 in OpenSSL) the expected num-
ber of multiplications by g is only:

E[# multiply by g] ≈
log2 d

2w−1(w + 1)

resulting in a weak indicator.

To overcome this we query at a neighborhood of values
g, g+1, g+2, ..., g+n, and use the result as the decrypt
time for g (and similarly for ghi). The total decryption
time for g or ghi is then:

Tg =

n∑

i=0

DecryptTime(g + i)

We define Tg as the time to compute g with sliding win-
dows when considering a neighborhood of values. As
n grows, |Tg − Tghi

| typically becomes a stronger indi-
cator for a bit of q (at the cost of additional decryption
queries).

4 Real-world scenarios

As mentioned in the introduction there are a number
of scenarios where the timing attack applies to net-
worked servers. We discuss an attack on SSL applica-
tions, such as stunnel [23] and an Apache web server

with mod SSL [12], and an attack on trusted comput-
ing projects such as Microsoft’s NGSCB (formerly Pal-
ladium).

During a standard full SSL handshake the SSL server
performs an RSA decryption using its private key. The
SSL server decryption takes place after receiving the
CLIENT-KEY-EXCHANGE message from the SSL client.
The CLIENT-KEY-EXCHANGE message is composed on
the client by encrypting a PKCS 1 padded random bytes
with the server’s public key. The randomness encrypted
by the client is used by the client and server to compute
a shared master secret for end-to-end encryption.

Upon receiving a CLIENT-KEY-EXCHANGE message
from the client, the server first decrypts the message with
its private key and then checks the resulting plaintext for
proper PKCS 1 formatting. If the decrypted message
is properly formatted, the client and server can com-
pute a shared master secret. If the decrypted message
is not properly formatted, the server generates its own
random bytes for computing a master secret and con-
tinues the SSL protocol. Note that an improperly for-
matted CLIENT-KEY-EXCHANGE message prevents the
client and server from computing the same master secret,
ultimately leading the server to send an ALERT message
to the client indicating the SSL handshake has failed.

In our attack, the client substitutes a properly format-
ted CLIENT-KEY-EXCHANGE message with our guess
g. The server decrypts g as a normal CLIENT-KEY-
EXCHANGE message, and then checks the resulting
plaintext for proper PKCS 1 padding. Since the decryp-
tion of g will not be properly formatted, the server and
client will not compute the same master secret, and the
client will ultimately receive an ALERT message from
the server. The attacking client computes the time dif-
ference from sending g as the CLIENT-KEY-EXCHANGE

message to receiving the response message from the
server as the time to decrypt g. The client repeats this
process for each value of of g and ghi needed to calcu-
late Tg and Tghi

.

Our experiments are also relevant to trusted computing
efforts such as NGSCB. One goal of NGSCB is to pro-
vide sealed storage. Sealed storage allows an applica-
tion to encrypt data to disk using keys unavailable to the
user. The timing attack shows that by asking NGSCB
to decrypt data in sealed storage a user may learn the
secret application key. Therefore, it is essential that the
secure storage mechanism provided by projects such as
NGSCB defend against this timing attack.

As mentioned in the introduction, RSA applications (and
subsequently SSL applications using RSA for key ex-
change) using a hardware crypto accelerator are not vul-
nerable since most crypto accelerators implement de-
fenses against the timing attack. Our attack applies to
software based RSA implementations that do not defend
against timing attacks as discussed in section 6.

5 Experiments

We performed a series of experiments to demonstrate the
effectiveness of our attack on OpenSSL. In each case we
show the factorization of the RSA modulus N is vul-
nerable. We show that a number of factors affect the
efficiency of our timing attack.

Our experiments consisted of:

1. Test the effects of increasing the number of decryp-
tion requests, both for the same ciphertext and a
neighborhood of ciphertexts.

2. Compare the effectiveness of the attack based upon
different keys.

3. Compare the effectiveness of the attack based upon
machine architecture and common compile-time
optimizations.

4. Compare the effectiveness of the attack based upon
source-based optimizations.

5. Compare inter-process vs. local network attacks.
6. Compare the effectiveness of the attack against two

common SSL applications: an Apache web server
with mod SSL and stunnel.

The first four experiments were carried out inter-process
via TCP, and directly characterize the vulnerability of
OpenSSL’s RSA decryption routine. The fifth exper-
iment demonstrates our attack succeeds on the local
network. The last experiment demonstrates our attack
succeeds on the local network against common SSL-
enabled applications.

5.1 Experiment Setup

Our attack was performed against OpenSSL 0.9.7,
which does not blind RSA operations by default. All
tests were run under RedHat Linux 7.3 on a 2.4 GHz
Pentium 4 processor with 1 GB of RAM, using gcc
2.96 (RedHat). All keys were generated at random via
OpenSSL’s key generation routine.

For the first 5 experiments we implemented a simple
TCP server that read an ASCII string, converted the
string to OpenSSL’s internal multi-precision representa-
tion, then performed the RSA decryption. The server re-
turned 0 to signify the end of decryption. The TCP client
measured the time from writing the ciphertext over the
socket to receiving the reply.

Our timing attack requires a clock with fine resolution.
We use the Pentium cycle counter on the attacking ma-
chine as such a clock, giving us a time resolution of
2.4 billion ticks per second. The cycle counter incre-
ments once per clock tick, regardless of the actual in-
struction issued. Thus, the decryption time is the cycle
counter difference between sending the ciphertext to re-
ceiving the reply. The cycle counter is accessible via
the “rdtsc” instruction, which returns the 64-bit cycle
count since CPU initialization. The high 32 bits are re-
turned into the EDX register, and the low 32 bits into
the EAX register. As recommended in [7], we use the
“cpuid” instruction to serialize the processor to prevent
out-of-order execution from changing our timing mea-
surements. Note that cpuid and rdtsc are only used by
the attacking client, and that neither instruction is a priv-
ileged operation. Other architectures have a similar a
counter, such as the UltraSparc %tick register.

OpenSSL generates RSA moduli N = pq where q < p.
In each case we target the smaller factor, q. Once q is
known, the RSA modulus is factored and, consequently,
the server’s private key is exposed.

5.2 Experiment 1 - Number of Ciphertexts

This experiment explores the parameters that determine
the number of queries needed to expose a single bit of
an RSA factor. For any particular bit of q, the number
of queries for guess g is determined by two parameters:
neighborhood size and sample size.

Neighborhood size. For every bit of q we measure the
decryption time for a neighborhood of values g, g+
1, g+2, ..., g+n. We denote this neighborhood size
by n.

Sample size. For each value g + i in a neighborhood
we sample the decryption time multiple times and
compute the mean decryption time. The number of
times we query on each value g + i is called the
sample size and is denoted by s.

The total number of queries needed to compute Tg is
then s ∗ n.

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 2 4 6 8 10 12 14

T
im

e
va

ria
tio

n
in

 C
P

U
 c

yc
le

s

of samples for a particular ciphertext

Decryption time converges

(a) The time variance for decrypting a particular ciphertext
decreases as we increase the number of samples taken.

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 100 200 300 400 500 600 700 800 900 1000

T
im

e
di

ffe
re

nc
e

in
 C

P
U

 c
yc

le
s

Neighborhood size

zero-one gap

zero-one gap when a bit of q=0
zero-one gap when a bit of q=1

(b) By increasing the neighborhood size we increase the zero-
one gap between a bit of q that is 0 and a bit of q that is 1.

Figure 2: Parameters that affect the number of decryption queries of g needed to guess a bit of the RSA factor.

To overcome the effects of a multi-user environment, we
repeatedly sample g+k and use the median time value as
the effective decryption time. Figure 2(a) shows the dif-
ference between median values as sample size increases.
The number of samples required to reach a stable de-
cryption time is surprising small, requiring only 5 sam-
ples to give a variation of under 20000 cycles (approxi-
mately 8 microseconds), well under that needed to per-
form a successful attack.

We call the gap between when a bit of q is 0 and 1 the
zero-one gap. This gap is related to the difference |Tg −
Tghi

|, which we expect to be large when a bit of q is 0
and small otherwise. The larger the gap, the stronger the
indicator that bit i is 0, and the smaller chance of error.
Figure 2(b) shows that increasing the neighborhood size
increases the size of the zero-one gap when a bit of q is
0, but is steady when a bit of q is 1.

The total number of queries to recover a factor is 2ns ∗
log2 N/4, where N is the RSA public modulus. Unless
explicitly stated otherwise, we use a sample size of 7
and a neighborhood size of 400 on all subsequent exper-
iments, resulting in 1433600 total queries. With these
parameters a typical attack takes approximately 2 hours.
In practice, an effective attack may need far fewer sam-
ples, as the neighborhood size can be adjusted dynami-
cally to give a clear zero-one gap in the smallest number
of queries.

5.3 Experiment 2 - Different Keys

We attacked several 1024-bit keys, each randomly gen-
erated, to determine the ease of breaking different mod-
uli. In each case we were able to recover the factoriza-
tion of N . Figure 3(a) shows our results for 3 different
keys. For clarity, we include only bits of q that are 0,
as bits of q that are 1 are close to the x-axis. In all our
figures the time difference Tg −Tghi

is the zero-one gap.
When the zero-one gap for bit i is far from the x-axis we
can correctly deduce that bit i is 0.

With all keys the zero-one gap is positive for about the
first 32 bits due to Montgomery reductions, since both
g and ghi use Karatsuba multiplication. After bit 32,
the difference between Karatsuba and normal multipli-
cation dominate until overcome by the sheer size differ-
ence between log2(g mod q) − log2(ghi mod q). The
size difference alters the zero-one gaps because as bits
of q are guessed, ghi becomes smaller while g remains
≈ log2 q. The size difference counteracts the effects of
Karatsuba vs. normal multiplication. Normally the re-
sulting zero-one gap shift happens around multiples of
32 (224 for key 1, 191 for key 2 and 3), our machine
word size. Thus, an attacker should be aware that the
zero-one gap may flip signs when guessing bits that are
around multiples of the machine word size.

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 0 50 100 150 200 250

T
im

e
di

ffe
re

nc
e

in
 C

P
U

 c
yc

le
s

Bits guessed of factor q

key 1
key 2
key 3

(a) The zero-one gap Tg − Tghi
indicates that we can distin-

guish between bits that are 0 and 1 of the RSA factor q for 3
different randomly-generated keys. For clarity, bits of q that
are 1 are omitted, as the x-axis can be used for reference for
this case.

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 190 195 200 205 210 215 220

T
im

e
di

ffe
re

nc
e

in
 C

P
U

 c
yc

le
s

Bits guessed of factor q

increasing neigh. = larger zero-one gap

Neighborhood=800
Neighborhood=400

(b) When the neighborhood is 400, the zero-one gap is small
for some bits in key 3, making it difficult to distinguish be-
tween the 0 and 1 bits of q. By increasing the neighborhood
size to 800, the zero-one gap is increased and we can launch
a successful attack.

Figure 3: Breaking 3 RSA Keys by looking at the zero-one gap time difference

As discussed previously we can increase the size of the
neighborhood to increase |Tg − Tghi

|, giving a stronger
indicator. Figure 3(b) shows the effects of increasing the
neighborhood size from 400 to 800 to increase the zero-
one gap, resulting in a strong enough indicator to mount
a successful attack on bits 190-220 of q in key 3.

The results of this experiment show that the factorization
of each key is exposed by our timing attack by the zero-
one gap created by the difference when a bit of q is 0 or
1. The zero-one gap can be increased by increasing the
neighborhood size if hard-to-guess bits are encountered.

5.4 Experiment 3 - Architecture and Compile-
Time Effects

In this experiment we show how the computer archi-
tecture and common compile-time optimizations can af-
fect the zero-one gap in our attack. Previously, we have
shown how algorithmically the number of extra Mont-
gomery reductions and whether normal or Karatsuba
multiplication is used results in a timing attack. How-
ever, the exact architecture on which decryption is per-
formed can change the zero-one gap.

To show the effect of architecture on the timing at-
tack, we begin by showing the total number of instruc-
tions retired agrees with our algorithmic analysis of
OpenSSL’s decryption routines. An instruction is re-
tired when it completes and the results are written to the

destination [8]. However, programs with similar retire-
ment counts may have different execution profiles due
to different run-time factors such as branch predictions,
pipeline throughput, and the L1 and L2 cache behavior.

We show that minor changes in the code can change the
timing attack in two programs: “regular” and “extra-
inst”. Both programs time local calls to the OpenSSL
decryption routine, i.e. unlike other programs presented
“regular” and “extra-inst” are not network clients at-
tacking a network server. The “extra-inst” is identi-
cal to “regular” except 6 additional nop instructions in-
serted before timing decryptions. The nop’s only change
subsequent code offsets, including those in the linked
OpenSSL library.

Table 1 shows the timing attack with both programs for
two bits of q. Montgomery reductions cause a positive
instruction retired difference for bit 30, as expected. The
difference between Karatsuba and normal multiplication
cause a negative instruction retired difference for bit 32,
again as expected. However, the difference Tg − Tghi

does not follow the instructions retired difference. On
bit 30, there is about a 4 million extra cycles difference
between the “regular” and “extra-inst” programs, even
though the instruction retired count decreases. For bit
32, the change is even more pronounced: the zero-one
gap changes sign between the “normal” and “extra-inst”
programs while the instructions retired are similar!

g − ghi retired Tg −Tghi
cycles

“regular”
bit 30

4579248
(0.009%)

6323188
(0.057%)

“extra-inst”
bit 30

7641653
(0.016%)

2392299
(0.022%)

“regular”
bit 32

-14275879
(-0.029%)

-5429545
(-0.049%)

“extra-inst”
bit 32

-13187257
(-0.027%)

1310809
(0.012%)

Table 1: Bit 30 of q for both “regular” and “extra-inst”
(which has a few additional nop’s) have a positive in-
structions retired difference due to Montgomery reduc-
tions. Similarly, bit 32 has a negative instruction differ-
ence due to normal vs. Karatsuba multiplication. How-
ever, the addition of a few nop instructions in the “extra-
instr” program changes the timing profile, most notably
for bit 32. The percentages given are the difference di-
vided by either the total of instructions retired or cycles
as appropriate.

Extensive profiling using Intel’s VTune [6] shows no
single cause for the timing differences. However, two
of the most prevalent factors were the L1 and L2 cache
behavior and the number of instructions speculatively
executed incorrectly. For example, while the “regular”
program suffers approximately 0.139% L1 and L2 cache
misses per load from memory on average, “extra-inst”
has approximately 0.151% L1 and L2 cache misses per
load. Additionally, the “regular” program speculatively
executed about 9 million micro-operations incorrectly.
Since the timing difference detected in our attack is only
about 0.05% of total execution time, we expect the run-
time factors to heavily affect the zero-one gap. However,
under normal circumstances some zero-one gap should
be present due to the input data dependencies during de-
cryption.

The total number of decryption queries required for a
successful attack also depends upon how OpenSSL is
compiled. The compile-time optimizations change both
the number of instructions, and how efficiently instruc-
tions are executed on the hardware. To test the effects
of compile-time optimizations, we compiled OpenSSL
three different ways:

• Optimized (-O3 -fomit-frame-pointer
-mcpu=pentium): The default OpenSSL flags for
Intel. -O3 is the optimization level,
-fomit-frame-pointer omits the frame pointer, thus
freeing up an extra register, and -mcpu=pentium
enables more sophisticated resource scheduling.

-2e+07

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0 50 100 150 200 250

T
im

e
va

ria
tio

n
in

 C
P

U
 c

yc
le

s

Bits guessed of factor q

Optimized
Optimized but w/o -mcpu

Unoptimized

Figure 4: Different compile-time flags can shift the zero-
one gap by changing the resulting code and how effi-
ciently it can be executed.

• No Pentium flag (-O3 -fomit-frame-pointer): The
same as the above, but without -mcpu sophisticated
resource scheduling is not done, and an i386 archi-
tecture is assumed.

• Unoptimized (-g): Enable debugging support.

Each different compile-time optimization changed the
zero-one gap. Figure 4 compares the results of each test.
For readability, we only show the difference Tg − Tghi

when bit i of q is 0 (g < q < ghi). The case where bit
i = 1 shows little variance based upon the optimizations,
and the x-axis can be used for reference.

Recall we expected Montgomery reductions to dominate
when guessing the first 32 bits (with a positive zero-one
gap), switching to Karatsuba vs. normal multiplication
(with a negative zero-one gap) thereafter. Surprisingly,
the unoptimized OpenSSL is unaffected by the Karat-
suba vs. normal multiplication. Another surprising dif-
ference is the zero-one gap is more erratic when the
-mcpu flag is omitted.

In these tests we again made about 1.4 million decryp-
tion queries. We note that without optimizations (-g),
separate tests allowed us to recover the factorization with
less than 359000 queries. This number could be reduced
further by dynamically reducing the neighborhood size
as bits of q are learned. Also, our tests of OpenSSL
0.9.6g were similar to the results of 0.9.7, suggesting
previous versions of OpenSSL are also vulnerable.

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 0 50 100 150 200 250

T
im

e
va

ria
tio

n
in

 C
P

U
 c

yc
le

s

Bits guessed of factor q

OpenSSL patched (bit=0)
OpenSSL patched (bit=1)

Unpatched (bit=0)
Unpatched (bit=1)

Figure 5: Minor source-based optimizations change the
zero-one gap as well. As a consequence, code that
doesn’t appear initially vulnerable may become so as the
source is patched.

One conclusion we draw is that users of binary crypto
libraries may find it hard to characterize their risk to our
attack without complete understanding of the compile-
time options and exact execution environment. Com-
mon flags such as enabling debugging support allow our
attack to recover the factors of a 1024-bit modulus in
about 1/3 million queries. We speculate that less com-
plex architectures will be less affected by minor code
changes, and have the zero-one gap as predicted by the
OpenSSL algorithm analysis.

5.5 Experiment 4 - Source-based Optimiza-
tions

Source-based optimizations can also change the zero-
one gap. RSA library developers may believe their code
is not vulnerable to the timing attack based upon test-
ing. However, subsequent patches may change the code
profile resulting in a timing vulnerability. To show that
minor source changes also affect our attack, we imple-
mented a minor patch that improves the efficiency of
the OpenSSL 0.9.7 CRT decryption check. Our patch
has been accepted for future incorporation to OpenSSL
(tracking ID 475).

After a CRT decryption, OpenSSL re-encrypts the re-
sult (mod N) and verifies the result is identical to the
original ciphertext. This verification step prevents an in-
correct CRT decryption from revealing the factors of the
modulus [2]. By default, OpenSSL needlessly recalcu-
lates both Montgomery parameters R and R−1 mod N
on every decryption. Our minor patch allows OpenSSL

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 0 50 100 150 200 250

T
im

e
va

ria
tio

n
in

 C
P

U
 c

yc
le

s

Bits guessed of factor q

Internetwork (bit=0)
Internetwork (bit=1)

Interprocess bit of (bit=0)
Interprocess (bit=1)

Figure 6: The timing attack succeeds over a local net-
work. We contrast our results with the attack inter-
process.

to cache both values between decryptions with the same
key. Our patch does not affect any other aspect of the
RSA decryption other than caching these values. Fig-
ure 5 shows the results of an attack both with and with-
out the patch.

The zero-one gap is shifted because the resulting code
will have a different execution profile, as discussed in the
previous experiment. While our specific patch decreases
the size of the zero-one gap, other patches may increase
the zero-one gap. This shows the danger of assuming a
specific application is not vulnerable due to timing at-
tack tests, as even a small patch can change the run-time
profile and either increase or decrease the zero-one gap.
Developers should instead rely upon proper algorithmic
defenses as discussed in section 6.

5.6 Experiment 5 - Interprocess vs. Local Net-
work Attacks

To show that local network timing attacks are practical,
we connected two computers via a 10/100 Mb Hawk-
ing switch, and compared the results of the attack inter-
process vs. inter-network. Figure 6 shows that the net-
work does not seriously diminish the effectiveness of
the attack. The noise from the network is eliminated
by repeated sampling, giving a similar zero-one gap to
inter-process. We note that in our tests a zero-one gap
of approximately 1 millisecond is sufficient to receive
a strong indicator, enabling a successful attack. Thus,
networks with less than 1ms of variance are vulnerable.

-2e+07

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 0 50 100 150 200 250

T
im

e
va

ria
tio

n
in

 C
P

U
 c

yc
le

s

Bits guessed of factor q

Apache+modSSL
Stunnel

Simple RSA server

(a) The zero-one gaps when attacking Apache+mod SSL
and stunnel separated by one switch.

-2e+07

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0 50 100 150 200 250

T
im

e
va

ria
tio

n
in

 C
P

U
 c

yc
le

s

Bits guessed of factor q

Apache+mod_SSL - campus backbone
Apache+mod_SSL - one switch

(b) The zero-one gap when attacking Apache+mod SSL
separated by several routers and a network backbone.

Figure 7: Applications using OpenSSL 0.9.7 are vulnerable, even on a large network.

Inter-network attacks allow an attacker to also take ad-
vantage of faster CPU speeds for increasing the accu-
racy of timing measurements. Consider machine 1 with
a slower CPU than machine 2. Then if machine 2 at-
tacks machine 1, the faster clock cycle allows for finer
grained measurements of the decryption time on ma-
chine 1. Finer grained measurements should result in
fewer queries for the attacker, as the zero-one gap will
be more distinct.

5.7 Experiment 6 - Attacking SSL Applications
on the Local Network

We show that OpenSSL applications are vulnerable to
our attack from the network. We compiled Apache
1.3.27 + mod SSL 2.8.12 and stunnel 4.04 per the re-
spective “INSTALL” files accompanying the software.
Apache+mod SSL is a commonly used secure web
server. stunnel allows TCP/IP connections to be tun-
neled through SSL.

We begin by showing servers connected by a single
switch are vulnerable to our attack. This scenario is rel-
evant when the attacker has access to a machine near
the OpenSSL-based server. Figure 7(a) shows the result
of attacking stunnel and mod SSL where the attacking
client is separated by a single switch. For reference, we
also include the results for a similar attack against the
simple RSA decryption server from the previous experi-
ments.

Interestingly, the zero-one gap is larger for
Apache+mod SSL than either the simple RSA de-

cryption server or stunnel. As a result, successfully
attacking Apache+mod SSL requires fewer queries
than stunnel. Both applications have a sufficiently large
zero-one gap to be considered vulnerable.

To show our timing attacks can work on larger net-
works, we separated the attacking client from the
Apache+mod SSL server by our campus backbone. The
webserver was hosted in a separate building about a half
mile away, separated by three routers and a number of
switches on the network backbone. Figure 7(b) shows
the effectiveness of our attack against Apache+mod SSL
on this larger LAN, contrasted with our previous experi-
ment where the attacking client and server are separated
by only one switch.

This experiment highlights the difficulty in determining
the minimum number of queries for a successful attack.
Even though both stunnel and mod SSL use the exact
same OpenSSL libraries and use the same parameters for
negotiating the SSL handshake, the run-time differences
result in different zero-one gaps. More importantly, our
attack works even when the attacking client and applica-
tion are separated by a large network.

6 Defenses

We discuss three possible defenses. The most widely
accepted defense against timing attacks is to perform
RSA blinding. The RSA blinding operation calculates
x = reg mod N before decryption, where r is random,
e is the RSA encryption exponent, and g is the ciphertext

to be decrypted. x is then decrypted as normal, followed
by division by r, i.e. xe/r mod N . Since r is random,
x is random and timing the decryption should not reveal
information about the key. Note that r should be a new
random number for every decryption. According to [17]
the performance penalty is 2% − 10%, depending upon
implementation. Netscape/Mozilla’s NSS library uses
blinding. Blinding is available in OpenSSL, but not en-
abled by default in versions prior to 0.9.7b. Figure 8
shows that blinding in OpenSSL 0.9.7b defeats our at-
tack. We hope this paper demonstrates the necessity of
enabling this defense.

-8e+06

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 3e+06

 0 50 100 150 200 250

T
im

e
di

ffe
re

nc
e

in
 C

P
U

 c
yc

le
s

Bits guessed of factor q

Apache with blinding (bit=0)
Apache with blinding (bit=1)

Figure 8: Our attack against Apache+mod SSL using
OpenSSL 0.9.7b is defeated because blinding is enabled
by default.

Two other possible defenses are suggested often, but are
a second choice to blinding. The first is to try and make
all RSA decryptions not dependent upon the input ci-
phertext. In OpenSSL one would use only one multipli-
cation routine and always carry out the extra reduction
in Montgomery’s algorithm, as proposed by Schindler
in [18]. If an extra reduction is not needed, we carry
out a “dummy” extra reduction and do not use the result.
Karatsuba multiplication can always be used by calcu-
lating c mod pi ∗ 2m, where c is the ciphertext, pi is one
of the RSA factors, and m = log2 pi − log2 (c mod pi).
After decryption, the result is divided by 2md mod q to
yield the plaintext. We believe it is harder to create and
maintain code where the decryption time is not depen-
dent upon the ciphertext. For example, since the result is
never used from a dummy extra reduction during Mont-
gomery reductions, it may inadvertently be optimized
away by the compiler.

Another alternative is to require all RSA computations
to be quantized, i.e. always take a multiple of some pre-
defined time quantum. Matt Blaze’s quantize library [1]
is an example of this approach. Note that all decryp-

tions must take the maximum time of any decryption,
otherwise, timing information can still be used to leak
information about the secret key.

Currently, the preferred method for protecting against
timing attacks is to use RSA blinding. The immedi-
ate drawbacks to this solution is that a good source of
randomness is needed to prevent attacks on the blinding
factor, as well as the small performance degradation. In
OpenSSL, neither drawback appears to be a significant
problem.

7 Conclusion

We devised and implemented a timing attack against
OpenSSL — a library commonly used in web servers
and other SSL applications. Our experiments show that,
counter to current belief, the timing attack is effective
when carried out between machines separated by multi-
ple routers. Similarly, the timing attack is effective be-
tween two processes on the same machine and two Vir-
tual Machines on the same computer. As a result of this
work, several crypto libraries, including OpenSSL, now
implement blinding by default as described in the previ-
ous section.

8 Acknowledgments

This material is based upon work supported in part
by the National Science Foundation under Grant No.
0121481 and the Packard Foundation. We thank the re-
viewers, Dr. Monica Lam, Ramesh Chandra, Constan-
tine Sapuntzakis, Wei Dai, Art Manion and CERT/CC,
and Dr. Werner Schindler for their comments while
preparing this paper. We also thank Nelson Bolyard, Ge-
off Thorpe, Ben Laurie, Dr. Stephen Henson, Richard
Levitte, and the rest of the OpenSSL, mod SSL, and
stunnel development teams for their help in preparing
patches to enable and use RSA blinding.

References

[1] Matt Blaze. Quantize wrapper library.
http://islab.oregonstate.edu/
documents/People/blaze.

[2] Dan Boneh, Richard A. DeMillo, and Richard J.
Lipton. On the importance of checking crypto-
graphic protocols for faults. Lecture Notes in Com-
puter Science, 1233:37–51, 1997.

[3] D. Coppersmith. Small solutions to polynomial
equations, and low exponent RSA vulnerabilities.
Journal of Cryptology, 10:233–260, 1997.

[4] Jean-Francois Dhem, Francois Koeune, Philippe-
Alexandre Leroux, Patrick Mestre, Jean-Jacques
Quisquater, and Jean-Louis Willems. A practical
implementation of the timing attack. In CARDIS,
pages 167–182, 1998.

[5] Peter Gutmann. Cryptlib. http://www.cs.
auckland.ac.nz/˜pgut001/cryptlib/.

[6] Intel. Vtune performance analyzer for linux
v1.1. http://www.intel.com/software/
products/vtune.

[7] Intel. Using the RDTSC instruction for perfor-
mance monitoring. Technical report, 1997.

[8] Intel. Ia-32 intel architecture optimization refer-
ence manual. Technical Report 248966-008, 2003.

[9] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis: Leaking secrets. In Crypto 99, pages
388–397, 1999.

[10] Paul Kocher. Timing attacks on implementations
of diffie-hellman, RSA, DSS, and other systems.
Advances in Cryptology, pages 104–113, 1996.

[11] Alfred Menezes, Paul Oorschot, and Scott Van-
stone. Handbook of Applied Cryptography. CRC
Press, October 1996.

[12] mod SSL Project. mod ssl. http://www.
modssl.org.

[13] Peter Montgomery. Modular multiplication with-
out trial division. Mathematics of Computation,
44(170):519–521, 1985.

[14] GNU Project. libgcrypt. http://www.gnu.
org/directory/security/libgcrypt.
html.

[15] OpenSSL Project. Openssl. http://www.
openssl.org.

[16] Rao, Josyula, Rohatgi, and Pankaj. Empowering
side-channel attacks. Technical Report 2001/037,
2001.

[17] RSA Press Release. http://www.otn.net/
onthenet/rsaqa.htm, 1995.

[18] Werner Schindler. A timing attack against RSA
with the chinese remainder theorem. In CHES
2000, pages 109–124, 2000.

[19] Werner Schindler. A combined timing and power
attack. Lecture Notes in Computer Science,
2274:263–279, 2002.

[20] Werner Schindler. Optimized timing attacks
against public key cryptosystems. Statistics and
Decisions, 20:191–210, 2002.

[21] Werner Schindler, Franois Koeune, and Jean-
Jacques Quisquater. Improving divide and conquer
attacks against cryptosystems by better error detec-
tion/correction strategies. Lecture Notes in Com-
puter Science, 2260:245–267, 2001.

[22] Werner Schindler, Franois Koeune, and Jean-
Jacques Quisquater. Unleashing the full power of
timing attack. Technical Report CG-2001/3, 2001.

[23] stunnel Project. stunnel. http://www.
stunnel.org.

