
Short Signatures Without Random Oracles and the

SDH Assumption in Bilinear Groups ∗

Dan Boneh † Xavier Boyen ‡

August 26, 2014

Abstract

We describe a short signature scheme that is strongly existentially unforgeable under an
adaptive chosen message attack in the standard security model. Our construction works in
groups equipped with an efficient bilinear map, or, more generally, an algorithm for the Decision
Diffie-Hellman problem. The security of our scheme depends on a new intractability assumption
we call Strong Diffie-Hellman (SDH), by analogy to the Strong RSA assumption with which it
shares many properties. Signature generation in our system is fast and the resulting signatures
are as short as DSA signatures for comparable security. We give a tight reduction proving that
our scheme is secure in any group in which the SDH assumption holds, without relying on the
random oracle model. We also show that SDH is implied by a conceptually simpler assumption
and therefore all our constructions are also proven secure under this simpler assumption.

1 Introduction

Short signatures have always been desirable in applications with constrained space or bandwidth,
such as those with printed material or a human typist in the loop. Although several approaches
have been proposed over the years, it has remained a challenge to construct short signatures with
generic provable security guarantees, especially without the use of random oracles. Towards this
goal, Boneh, Lynn, and Shacham (BLS) [11] proposed a short digital signature scheme where
signatures are about half the size of DSA signatures with the same level of security. The BLS
scheme is shown to be existentially unforgeable under an adaptive chosen message attack in the
random oracle model; its security is based on the Computational Diffie-Hellman (CDH) assumption
on certain elliptic curves equipped with a bilinear map that effectively renders the Decisional Diffie-
Hellman (DDH) problem easy.

In this paper we describe a signature scheme in a similar setting, but whose security does not
require random oracles. In addition, our signatures can be made as short as BLS signatures, and
are much more efficient. We prove security of our scheme using a complexity assumption we call
the Strong Diffie-Hellman assumption, or SDH for short. Roughly speaking, for some parameter q,
the SDH assumption in a group G of prime order p states that the following problem is intractable:

Given g, gx, g(x
2), . . . , g(x

q) ∈ G as input, output a pair (c, g1/(x+c)) where c ∈ Zp.

∗An extended abstract entitled “Short Signatures Without Random Oracles” [9] appears in Eurocrypt 2004.
†Stanford University; supported by NSF and the Packard Foundation — dabo@cs.stanford.edu
‡Voltage, Palo Alto — xb@boyen.org
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Asymptotically, we say that the SDH assumption holds in some infinite family of groups, if the
q-SDH problem above is hard for any function q that is polynomially bounded in the security
parameter, where the group size p grows exponentially with the security parameter. Using this
assumption, we construct a signature scheme that is existentially unforgeable under an adaptive
chosen message attack, without relying on the random oracle methodology.1 In Section 3.3 we
show that the SDH assumption is implied by a conceptually simpler assumption and therefore all
our constructions are also proven secure under this simpler assumption.

Currently, the most practical signature schemes secure without random oracles, such as [23, 18],
are based on the Strong RSA assumption. It states that, given an RSA modulus N and s ∈ Z×N ,
it is difficult to construct a non-trivial pair (c, s1/c) where c ∈ Z. Roughly speaking, what makes
Strong RSA useful for constructing secure signature schemes is the following property: given a
problem instance (N, s) it is possible to construct a new instance (N, s′) with some number q of
known solutions (ci, (s

′)1/ci), such that learning any additional solution (c, (s′)1/c) makes it possible
to solve the original problem instance. This property provides a way to prove security against an
adaptive chosen message attack.

In this paper, we exploit a similar property of the q-SDH problem as a foundation for our
constructions, albeit in a vastly different algebraic setting. Hence, the SDH assumption may be
viewed as a discrete logarithm analogue of the Strong RSA assumption. We believe that the
properties of SDH make it a useful tool for constructing cryptographic systems, and we expect to
see many other systems based on it in the future. Some examples can already be found in [10, 19].
We remark that Mitsunari, Sakai, and Kasahara [36] previously used a weaker assumption related to
SDH to construct a traitor tracing scheme (see also [48] for an analysis of the system). Complexity
assumptions and their properties are discussed in Section 3.

Our short signatures necessitate a special kind of group in which the Diffie-Hellman problem can
be decided efficiently. The only well-known examples of this are (sub)groups of points on certain
algebraic curves equipped with a bilinear map such as the Weil pairing. For concreteness, we shall
thus describe our constructions in terms of bilinear pairings, although it should be noted that any
efficient method for testing the Diffie-Hellman property can be substituted in all our constructions.
We provide some background on secure signatures and bilinear maps in Section 2.

We construct our main secure signature scheme from bilinear pairings, and prove its security
against existential forgery under adaptive chosen message attack in the standard model. Our full
signatures are as short as DSA signatures, but are provably secure in the absence of random oracles.
They support efficient off-line/on-line signing, and a limited form of message recovery which makes
it possible to further reduce the total length of the signed message by embedding a few bits of the
message in the signature itself. We present all these constructions in Section 4.

We further show that with random oracles, the SDH assumption gives even shorter signatures.
We do so using a generalization of the Katz-Wang construction [30]. The resulting scheme produces
signatures whose length is about the same as BLS signatures, but which can be verified twice as fast,
and created five to ten times faster. A related system using random oracles has been independently
described by Zhang et al. [49]. These random oracle signatures are discussed in Section 5.

To gain some confidence in the SDH assumption in the presence of bilinear maps, we provide
a lower bound on the computational complexity of solving the q-SDH problem in a generic group
model [46]. This shows that, even with the help of pairings, no generic attack on the SDH assump-
tion is possible. In other words, any system provably reducible to SDH can only be defeated in

1We mention that the SDH assumption studied in this article is slightly weaker and more general than the original
assumption proposed in the Eurocrypt 2004 extended abstract [9].
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the mathematical sense by considering the structure of the particular groups in which it is imple-
mented. Any attack on SDH in the elliptic curve bilinear groups used in practice would have to
expose heretofore unknown structural properties of these curves. Our lower bound shows that the
time to break q-SDH in a generic group of size p is at least Ω(

√
p/q) provided that q < O( 3

√
p).

Brown and Gallant [12] and Cheon [14] presented a matching generic upper bound: when q is
approximately 3

√
p, they gave generic group algorithms that can solve the q-SDH problem in time

Õ(
√
p/q) under certain conditions. We prove our generic lower bound in Section 6.

We refer to [11] for applications of short signatures. We merely mention that short digital
signatures are needed in environments with stringent bandwidth constraints, such as bar-coded
digital signatures on postage stamps [38, 42]. In fact, our short signatures with limited message
recovery in the standard model are particularly well-suited for these types of applications where the
message itself is very compact, such as a serial number. Other short signature systems, proposed
by Patarin et al. [40, 17], are based on the Hidden Field Equation (HFE) problem.

2 Preliminaries

Before presenting our results we briefly review two notions of security for signature schemes and
give a succinct refresher on groups equipped with a bilinear map.

2.1 Secure Signature Schemes

A signature scheme is made up of three algorithms, KeyGen, Sign, and Verify, for generating keys,
signing, and verifying signatures, respectively. For a fixed security parameter, these algorithms
work as follows:

KeyGen outputs a random key pair (PK,SK);

Sign takes a private key SK and a message M from some set M, and returns a signature σ;

Verify takes a public key PK and a signed message (M,σ), and returns valid or invalid.

The signature scheme is said to be correct, or consistent, if it satisfies the following property:
∀M ∈M, ∀(PK,SK)← KeyGen(), ∀σ ← Sign(SK,M) : Pr[Verify(PK,M, σ) = valid] = 1.

Strong Existential Unforgeability

The standard notion of security for a signature scheme is called existential unforgeability under
an adaptive chosen message attack [26]. We consider a slightly stronger notion of security, called
strong existential unforgeability [1], which is defined using the following game between a challenger
and an adversary A:

Setup: The challenger runs algorithm KeyGen to obtain a public key PK and a private
key SK. The adversary is given PK.

Queries: Proceeding adaptively, the adversary requests signatures on at most qS messages
of its choice M1, . . . ,Mqs ∈ {0, 1}?, under PK. The challenger responds to each query
with a signature σi ← Sign(SK,Mi).

Output: Eventually, the adversary outputs a pair (M,σ) and wins the game if:
1. (M,σ) is not any of (M1, σ1), . . . , (Mqs , σqs); and
2. Verify(PK,M, σ) = valid.
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We define SigAdvA to be the probability that the adversary A wins in the above game, taken over
the coin tosses made by A and the challenger.

Definition 1. A forger A is said to (t, qS, ε)-break a signature scheme if A runs in time at most t,
A makes at most qS signature queries, and SigAdvA is at least ε. A signature scheme is (t, qS, ε)-
strongly existentially unforgeable under an adaptive chosen message attack if there exists no forger
that (t, qS, ε)-breaks it.

When discussing security in the random oracle model, we add a fourth parameter qH to denote
an upper bound on the number of queries that the adversary A makes to the random oracle.

We note that the definition above captures a stronger version of existential unforgeability than
the standard one, as it requires that the adversary cannot even generate a new signature on a
previously signed message. This property is required for some applications [1, 43, 13]. All our
signature schemes satisfy this stronger security notion.

Weak Chosen Message Attacks

We will also use a less stringent notion of security which we call existential unforgeability under
a weak chosen message attack (this is sometimes called a generic chosen message attack). In a
weak chosen message attack, we require that the adversary submit all signature queries before
seeing the public key. This notion is defined using the following game between a challenger and an
adversary A:

Query: The adversary sends to the challenger a list of qS messages M1, . . . ,Mqs ∈ {0, 1}?.
Response: The challenger runs algorithm KeyGen to generate a public key PK and a private

key SK. Next, the challenger generates signatures σi ← Sign(SK,Mi) for i = 1, . . . , qS.
The challenger then gives to the adversary the public key PK and the qS signatures
σ1, . . . , σqs .

Output: The adversary outputs a pair (M,σ) and wins the game if:
1. (M,σ) is not any of (M1, σ1), . . . , (Mqs , σqs); and
2. Verify(PK,M, σ) = valid.

We define W-SigAdvA to be the probability that the adversary A wins in the above game, taken
over the coin tosses made by A and the challenger.

Definition 2. A forger A (t, qS, ε)-weakly breaks a signature scheme if A runs in time at most t, A
makes at most qS signature queries, and W-SigAdvA is at least ε. A signature scheme is (t, qS, ε)-
existentially unforgeable under a weak chosen message attack if there exists no forger that (t, qS, ε)-
weakly breaks it.

2.2 Bilinear Groups

Signature verification in our scheme requires a decision procedure for the Diffie-Hellman problem,
which can be implemented using a bilinear map. We briefly review the necessary facts about
bilinear maps and groups, in the notation of [11]:

• (G1, ∗), (G2, ∗), and (GT , ∗) are three cyclic groups of prime order p;
• g1 is a generator of G1 and g2 is a generator of G2;
• e is a bilinear pairing e : G1 ×G2 → GT , i.e., a map satisfying the following properties:

Bilinearity: ∀u ∈ G1, ∀v ∈ G2, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab;

4



Non-degeneracy: e(g1, g2) 6= 1 and is thus a generator of GT .

All group operations and the bilinear map must be efficiently computable. Formally, one defines a
bilinear group generation algorithm G that takes as input a security parameter λ ∈ Z+ and outputs
the description of groups G1,G2,GT and a bilinear map e : G1 × G2 → GT . We then require the
existence of probabilistic polynomial time algorithms (in λ) for computing the group operation in
G1,G2,GT and the bilinear map e.

For simplicity one can set G1 = G2. However, as in [11], we consider the more general case
where G1 6= G2; this allows us to take advantage of certain families of algebraic curves in order to
obtain the shortest possible signatures. Specifically, when G1 and G2 are realized as (sub)groups
of points on certain elliptic curves over a finite field F, the coordinates of the points in G1 may live
in the ground field F, whereas those of the points in G2 may live in an extension of F. Since the
elements in G1 may have a shorter representation than those of G2, it is useful for us to distinguish
the two.

Several papers that use a bilinear map where G1 6= G2 also assume the existence of a homomor-
phism ψ from G2 to G1. Such a homomorphism, known as the trace map, often exists when G1 and
G2 are subgroups of an elliptic curve. However there are several cases, called type 3 groups [22],
where this homomorphism is degenerate. In this paper we will not need a homomorphism ψ from
G2 to G1 or its inverse. This enables our signatures to operate with any bilinear group construction
currently known.

The bilinear map e can be realized on Abelian varieties using variants of the Weil or Tate
pairing [41, 21]. On algebraic curves in particular, these are very efficiently computable using an
algorithm proposed in 1986 by Miller [35]. In the usual instantiations, the groups G1 and G2

are subgroups of order p of the groups, defined by a curve E over a finite field F, of points with
coordinates in F or in an extension of F. The target group GT is then the multiplicative subgroup
of order p in a large enough extension of F to contain all p-th roots of unity. Recent advances in
the area of bilinear pairings have produced new and more efficient variants of the Tate pairing,
known as “Eta” [2] and “Ate” [28]. All these pairings can be efficiently computed using variants of
the Miller algorithm on the appropriate curves. We note that in all known examples, GT is always
different from G1 and G2.

We define the general notion of bilinear group as follows.

Definition 3. We say that (G1,G2) are a bilinear group pair if there exists a group GT and a non-
degenerate bilinear map e : G1 × G2 → GT , such that the group order p = |G1| = |G2| = |GT | is
prime, and the pairing e and the group operations in G1, G2, and GT are all efficiently computable.

Joux and Nguyen [29] showed that an efficiently computable bilinear map provides an algorithm
for solving the Decision Diffie-Hellman (DDH) problem when G1 = G2. More generally, when
G1 6= G2, we can build from the bilinear map a predicate for a “cross-group” DDH relation between
pairs of elements of G1 and G2. The cross-group DDH problem is as follows:

Given g1, g
a
1 ∈ G1 and g2, g

b
2 ∈ G2, decide whether a = b (mod p).

This problem is easily solved by using the pairing to test whether e(ga1 , g2) = e(g1, g
b
2) in GT .

Pairings are merely used for that purpose in all of our constructions. For the sake of concreteness,
our exposition shall make explicit use of the bilinear map, although we emphasize that all our
results can be restated using a generic predicate (given as an oracle) for cross-group DDH in
(G1,G2), without the need for an explicit pairing.
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3 The Strong Diffie-Hellman Assumption

We now give a formal definition of the SDH computational complexity assumption. The definition
we propose presently is weaker and cleaner than in the Eurocrypt 2004 original paper [9], as it no
longer requires the existence of an efficiently computable group homomorphism ψ : G2 → G1.

We first define the concrete q-SDH problem, stated with respect to a specific bilinear group pair
(G1,G2) and a parameter q. We then give an asymptotic definition of the SDH assumption.

3.1 Concrete Formulation of SDH

Let G1 and G2 be two cyclic groups of prime order p, respectively generated by g1 and g2. In the
bilinear group pair (G1,G2), the q-SDH problem is stated as follows:

Given as input a (q + 3)-tuple of elements (g1, g
x
1 , g

(x2)
1 , . . . , g

(xq)
1 , g2, g

x
2 ) ∈ Gq+1

1 ×G2
2,

output a pair (c, g
1/(x+c)
1 ) ∈ Zp ×G1 for a freely chosen value c ∈ Zp \ {−x}.

Note that when G1 = G2 the pair (g2, g
x
2 ) is redundant since in that case (g2, g

x
2 ) can be generated

by raising (g1, g
x
1 ) to a random power. An algorithm A solves the q-SDH problem in the bilinear

group pair (G1,G2) with advantage ε if

SDHAdvq,A := Pr

[
A
(
g1, g

x
1 , . . . , g

(xq)
1 , g2, g

x
2

)
=
(
c, g

1
x+c

1

)]
≥ ε (1)

where the probability is over the random choice of generators g1 ∈ G1 and g2 ∈ G2, the random
choice of x ∈ Z×p , and the random bits consumed by A.

Definition 4. We say that the (q, t, ε)-SDH assumption holds in (G1,G2) if no t-time algorithm
has advantage at least ε in solving the q-SDH problem in (G1,G2).

The concrete security results we shall obtain are based on Definition 4 and will depend on four
parameters: p, q, t, ε. Occasionally we drop the t and ε and assume that the groups are understood
from context, and speak of the q-SDH problem and the SDH assumption.

3.2 Asymptotic Formulation of SDH

To formulate the SDH assumption asymptotically, we need a bilinear group generation algorithm G.

Definition 5. A bilinear group generator G is a Probabilistic Polynomial Time (PPT) algorithm
that, on input 1λ, outputs the description of groups G1,G2,GT and a bilinear map e : G1×G2 → GT ,
so that (G1,G2) form a bilinear group pair.

We now define the asymptotic SDH assumption. In these settings, the quantity SDHAdvq,A
from Equation (1) becomes a function of λ. It is easy to interpret our results based on Definition 6.

Definition 6. Let G be a bilinear group generator. We say that the SDH assumption holds for G
if, for every PPT algorithm A and for every polynomially bounded function q : Z→ Z the function
SDHAdvq(λ),A(λ) is a negligible function in λ.

3.3 Properties of SDH and Related Assumptions

As we will see and exploit in the next section, the SDH problem shares with the Strong RSA
problem the very useful property of admitting a large number of solutions that are “insulated”
from each other. Therefore, we view the SDH assumption as a discrete logarithm analogue of the
Strong RSA assumption, even though the latter is based on the hardness of factoring.
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Random Self Reduction. We observe that the Strong Diffie-Hellman problem has a simple
random self-reduction. Consider an instance (g1, g

x
1 , . . . , g

xq
1 , g2, g

x
2 ) given as input. To reduce this

input to a random q-SDH instance in the same groups, we select random y, z1, z2 ∈ Z×p , define

g̃1 ← gz11 and g̃2 ← gz22 , and compute g̃
(xy)i

1 ← (gx
i

1 )y
iz1 for i = 1, . . . , q, and g̃xy2 ← (gx2 )yz2 .

Consequently, (g̃1, g̃
(xy)
1 , . . . , g̃

(xy)q

1 , g̃2, g̃
(xy)
2 ) is a random q-SDH instance, statistically independent

from the first. Then, given any valid solution (c̃, h̃) = (c̃, g̃
1/(xy+c̃)
1 ) to the second instance, we can

extract a solution (c, h) to the first by letting c← c̃/y (mod p) and h← (h̃)y/z1 = g
1/(x+c)
1 .

q-SDH is implied by the q-aBDH assumption. The q-aBDH problem in a bilinear group
pair (G1,G2) is the following: for g1 ∈ G1, g2, h2 ∈ G2 and x ∈ Zp, given the (q + 5)-tuple(

g1, g
x
1 , . . . , g

(xq)
1 , g2, g

x
2 , h2, h

(xq+2)
2

)
output e(g1, h2)

(xq+1) . (2)

When G1 = G2 the terms g2, g
x
2 can be dropped from the problem instance. The q-aBDH as-

sumption in (G1,G2) states that no efficient algorithm can solve this problem with non-negligible
probability when g1 is a random generator of G1, the elements g2, h2 are random generators of
G2, and x is uniform in Z×p . Unlike q-SDH, the q-aBDH assumption has a unique solution and is
conceptually simpler than q-SDH. The q-aBDH assumption also appears in [24] where it is called
truncated q-ABDHE.

We briefly show that the q-aBDH assumption implies q-SDH and therefore all our constructions
are proven secure whenever q-aBDH holds in (G1,G2). To see why, consider an instance of the q-

aBDH problem (2) and suppose that a q-SDH adversary is able to compute a solution (c, g
1/(x+c)
1 )

to the corresponding q-SDH instance for some c ∈ Zp. We show how to deduce the solution

e(g1, h2)
(xq+1) to the q-aBDH problem, thereby breaking q-aBDH. First, observe that the polynomial

Xq+2 − (−c)q+2 ∈ Fp[X] is divisible by the linear polynomial X + c. We can write the quotient
f(X) = (Xq+2 − (−c)q+2)/(X + c) as f(X) = Xq+1 + w(X) for some polynomial w ∈ Fp[X] of
degree at most q. Next, note that the quantity e(g1, h2)

w(x) can be easily computed using the

elements given in the q-aBDH instance. Therefore, given a q-SDH solution (c, g
1/(x+c)
1 ) we can

compute e(g1, h2)
(xq+1) using the right hand side of:

e(g1, h2)
(xq+1) = e(g1, h2)

f(x) · e(g1, h2)−w(x) = e
(
g
1/(x+c)
1 , h

(xq+2)
2 h

−(−c)q+2

2

)
· e(g1, h2)−w(x)

as required. It follows that if the q-aBDH assumption holds in (G1,G2) then so does q-SDH.

Relation to the DHI assumption. A weaker version of the SDH assumption was previously
used by Mitsunari, Sakai, and Kasahara [36] to construct a traitor tracing system (see also [48]),
by Boneh and Boyen [8] to construct an identity-based encryption system, and by Dodis and
Yampolskiy [19] to construct a verifiable pseudo-random function.

Using our notation, this weaker assumption requires the solver to output g
1/(x+c)
1 for a prescribed

value of c provided as part of the problem instance. In SDH the solver may output any c of its
choice. The weaker assumption can be shown to be equivalent to the hardness of the following
problem (stated concretely in a single group G): given g, gx, g(x

2), . . . , g(x
q), output g1/x. This

problem is called the q-Diffie-Hellman Inversion problem or q-DHI for short. We note that each
instance of the DHI problem admits exactly one solution, whereas an SDH instance in a group of
order p admits p− 1 distinct solutions. Indeed, despite their superficial resemblance, the SDH and
DHI assumptions exhibit rather different properties.
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Generic Group Analysis. To provide further confidence in the SDH assumption, we gave in [9]
a lower bound on the complexity of solving the q-SDH problem for any suitably bounded q in a
generic group [46] of prime order p. In particular, we showed that any generic solver for the q-SDH
problem with q < O( 3

√
p) must run in expected time Ω(

√
p/q).

Analyses due to Brown and Gallant [12] and to Cheon [14] imply that for special p, the secret
exponent x in the q-SDH problem (and related problems such as q-DHI) can be recovered generically
in less time than needed to compute the discrete log. More precisely, Cheon shows that if either
p−1 or p+1 has a factor r ≤ q, then the secret x can be computed generically in time Õ(

√
p/r+

√
r)

or Õ(
√
p/r+ r) respectively, rather than O(

√
p) per the generic discrete log. For values of q ≈ 3

√
p,

Cheon’s method is most efficient when there is a large factor r ≈ q, in which case the time and
space complexity is O(log p · 3

√
p) = Õ(

√
p/q). Hence, these generic algorithms can be viewed as a

matching upper bound to our generic lower bound, showing that the lower bound is tight, at least
for certain p. We prove the generic lower bound for all primes p in Section 6.

4 Short Signatures Without Random Oracles

We now construct a fully secure short signature scheme in the standard model using the SDH
assumption. We consider this to be the main result of the paper. Recall that in Section 3.3 we
showed that the q-SDH assumption is implied by the conceptually simpler q-aBDH assumption and
therefore our signature scheme is also proven secure under this simpler assumption.

4.1 The Full Signature Scheme

Let (G1,G2) be bilinear groups where |G1| = |G2| = p for some prime p. For the moment we
assume that the messages m to be signed are elements in Zp, but as we mention in Section 4.7, the
domain can be extended to all of {0, 1}? using (target) collision resistant hashing.

Key Generation: Select random generators g1 ∈ G1 and g2 ∈ G2, and random integers x, y ∈ Z×p .
Compute u← gx2 ∈ G2 and v ← gy2 ∈ G2. Also compute z ← e(g1, g2) ∈ GT . The public key
is the tuple (g1, g2, u, v, z). The secret key is the triple (g1, x, y).

Signing: Given a secret key (g1, x, y) and a message m ∈ Zp, pick a random r ∈ Zp \ {−x+m
y } and

compute σ ← g
1/(x+m+yr)
1 ∈ G1. Here, the inverse 1/(x + m + yr) is computed modulo p.

The signature is the pair (σ, r).

Verification: Given a public key (g1, g2, u, v, z), a message m, and a signature (σ, r), verify that
(g1, g2, σ, g

m
2 v

ru) is a DDH tuple by testing whether e(σ, u · gm2 · vr) = z. If the equality
holds the signature is declared valid; otherwise it is declared invalid.

We note that including both g1 and z in the public key is redundant. It is convenient to carry
them both in the description of the system since g1 is needed for signing and z is used for fast
verification. In practice, g1 need not be included in the public key.

Theorem 7. The signature scheme is consistent.

Proof. We need to show that for all key pairs and all messages, any signature generated by the
signing procedure verifies as valid under the corresponding public key. Indeed, we have

e(σ, u · gm2 · vr) = e(g
1/(x+m+yr)
1 , gx2 · gm2 · g

yr
2 ) = e(g1, g2)

x+m+yr
x+m+yr = z

provided that x+m+ yr 6= 0 (mod p), as required.
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4.2 Main Features and Security

We list below the principal properties of our signature scheme. Additional features, extensions,
and related constructions will be discussed in later sections.

Bandwidth. A signature contains two elements (σ, r), each of length approximately log2 p bits,
therefore the total signature length is approximately 2 log2 p. When we instantiate the pairing using
the elliptic curves described in [11, 3], we obtain a signature whose length is approximately the
same as a DSA signature with the same security, but which is proven secure without the random
oracle model.

Performance. Key generation times are comparable to the BLS scheme [11]. Signature times
are much faster than BLS, by up to an order of magnitude, because our signing algorithm only
makes one exponentiation to the fixed base g1, and this can be greatly accelerated with a moderate
amount of reusable pre-computation. Verification times are also faster than BLS since verification
requires only one pairing and one multi-exponentiation, instead of two pairing computations in
BLS. Since exponentiation tends to be faster than pairing, signature verification is faster than in
the BLS system. We note that BLS verification time can be improved using multi-pairing [27], but
the result is still slower than the system in this paper.

Security. The following theorem shows that the scheme above is existentially unforgeable in the
strong sense under adaptive chosen message attacks, provided that the SDH assumption holds in
(G1,G2). We consider an attacker who makes up to qS adaptive signature queries, and reduce
the forgery to the resolution of a random q-SDH instance for q = qS. Our reduction is tight (up
to a small constant factor approximately equal to 2). In Section 3.3 we showed that the q-SDH
assumption is implied by the conceptually simpler q-aBDH assumption and therefore security also
follows from this simpler assumption.

Theorem 8. Suppose the (q, t′, ε′)-SDH assumption holds in (G1,G2). Then the signature scheme
above is (t, qS, ε)-secure against strong existential forgery under an adaptive chosen message attack
provided that

qS ≤ q , ε ≥ 2ε′ + qS/p ≈ 2ε′ and t ≤ t′ −Θ(q2T )

where T is the maximum time for an exponentiation in G1, G2, and Zp.

Proof. We prove the theorem using two lemmas. In Lemma 9, we first describe a simplified signature
scheme and prove its existential unforgeability against weak chosen message attacks under the SDH
assumption. In Lemma 10, we then show that the security of the basic scheme implies the security
of the full scheme. From these results (Lemmas 9 and 10), Theorem 8 follows easily. We present
the proof in two steps since we will make another use of the construction used to prove Lemma 9
later on in this paper.

4.3 A Weakly Secure Short Signature Scheme

We first show how the SDH assumption can be used to construct an existentially unforgeable scheme
under a weak chosen message attack. This construction demonstrates the main properties of the
SDH assumption. In the next section we show that the security of this basic scheme implies the
security of the full scheme.
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The weakly secure short signature scheme is as follows. As before, let (G1,G2) be a bilinear
group pair where |G1| = |G2| = p for some prime p. For the moment we assume that the messages
m to be signed are elements in Zp.

Key Generation: Select random generators g1 ∈ G1 and g2 ∈ G2, and a random integer x ∈ Z×p .
Compute v ← gx2 ∈ G2 and z ← e(g1, g2) ∈ GT . The public key is the tuple (g1, g2, v, z). The
secret key is (g1, x).

Signing: Given a secret key (g1, x) and a message m ∈ Zp, output the signature σ ← g
1/(x+m)
1 ∈

G1. Here 1/(x + m) is computed modulo p. By convention in this context we define 1/0 to
be 0 so that in the unlikely event that x+m = 0 we have σ ← 1 ∈ G1.

Verification: Given a public key (g1, g2, v, z), a message m, and a signature σ, verify the equality
e(σ, v · gm2 ) = z. If the equality holds, or if σ = 1 and v · gm2 = 1, the result is valid.
Otherwise, the result is invalid.

Again, in practice one would omit g1 from the public key, and keep it instead with the private key.
We show that the basic signature scheme above is existentially unforgeable under a weak chosen

message attack (Definition 2). The proof of the following lemma uses a similar method to the proof
of Theorem 3.5 of Mitsunari et al. [36].

Lemma 9. Suppose the (q, t′, ε)-SDH assumption holds in (G1,G2). Then the basic signature
scheme above is (t, qS, ε)-secure against existential forgery under a weak chosen message attack
provided that

qS ≤ q and t ≤ t′ −Θ(q2T )

where T is the maximum time for an exponentiation in G1, G2, and Zp.

Proof. Assume that A is a forger that (t, qS, ε)-breaks the signature scheme. We construct an
algorithm B that, by interacting with the forger A, solves the q-SDH problem in time t′ with
advantage ε.

Algorithm B is given a random instance (g1, d1, . . . , dq, g2, h) of the q-SDH problem in (G1,G2),

where di = g
(xi)
1 ∈ G1 for i = 1, . . . , q, and h = gx2 ∈ G2, for some unknown x ∈ Zp. For convenience

we set d0 ← g1. The objective of B is to produce a pair (c, g
1/(x+c)
1 ) for some value c ∈ Zp \ {−x}

of its choice. Algorithm B does so by interacting with the forger A as follows:

Query: The attacker A outputs a list of qS distinct messages m1, . . . ,mqs ∈ Zp, where qS ≤ q.
Since A must reveal its queries up front, we may assume that A outputs exactly q messages
to be signed. (If fewer queries are made, we can always virtually reduce the value of q to
q′ = qS, since the hardness of q-SDH entails that of q′-SDH for all q′ < q.)

Response: The simulator B must respond with a public key and q signatures on the respective
messages from A. Let f be the univariate polynomial defined as f(X) =

∏q
i=1(X + mi).

Expand f and write f(X) =
∑q

i=0 αiX
i where α0, . . . , αq ∈ Zp are the coefficients of the

polynomial f . Algorithm B picks a random θ ∈ Z×p , and computes

g′1 ←
q∏
i=0

dαiθi ∈ G1 hence g′1 = g
θf(x)
1

Algorithm B also computes z′ = e(g′1, g2). The public key given to A is (g′1, g2, h, z
′). It has

the correct distribution provided that f(x) 6= 0; in particular, g′1 and g2 are independently
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and uniformly distributed random generators of their respective groups, thanks to the action
of θ. If, however, f(x) = 0, then x = −mi for some i, in which case B can easily recover the
secret key x, and hence solve the given instance of the SDH problem with no further help
from the forger A.

Next, for each i = 1, . . . q, the simulator B must generate a signature σi on mi. To do so, let
fi be the polynomial fi(X) = f(X)/(X +mi) =

∏q
j=1,j 6=i(X +mj). As before, we expand fi

and write fi(X) =
∑q−1

j=0 βjX
j while calculating its coefficients. Algorithm B computes

σi ←
q−1∏
j=0

d
βjθ
j ∈ G1 hence σi = g

θfi(x)
1 = (g′1)

1/(x+mi)

Observe that σi is a valid signature on message mi under the public key (g′1, g2, h, z
′), since

e
(
σi, h · (g′2)mi

)
= e

(
(g′1)

1/(x+mi), (gx2 )(g2)
mi
)

= z′. Algorithm B performs these steps for
each message, and gives to A the q − 1 resulting signatures σ1, . . . , σq. Since each message
admits only a unique signature, the output distribution is trivially correct.

Output: The forger A returns a forgery (m∗, σ∗) such that σ∗ ∈ G1 is a valid signature on m∗ ∈ Zp.
Note that, necessarily, m∗ 6∈ {m1 . . . ,mq} since the pair (m∗, σ∗) is novel and to each message
corresponds only one valid signature. Since a successful forgery entails e(σ∗, h · gm∗2 ) = z′

where h = gx2 and z′ = e(g′1, g2) we deduce that e(σ∗, g
x+m∗
2 ) = e(g′1, g2) and therefore

σ∗ = (g′1)
1/(x+m∗) = (g1)

θ·f(x)/(x+m∗)

We use long division to compute the ratio f(x)/(x + m∗) that appears in the exponent.
Using long division we rewrite the polynomial f as f(X) = (X + m∗)γ(X) + γ∗ for some
easily computable polynomial γ(X) =

∑q−1
i=0 γiX

i and constant γ∗ ∈ Zp. Then the ratio

f(X)/(X +m∗) can be written as f(X)/(X +m∗) = γ∗
X+m∗

+
∑q−1

i=0 γiX
i and the expression

of σ∗ becomes

σ∗ = g
θ·
(

γ∗
x+m∗

+
∑q−1
i=0 γix

i
)

1

Observe that γ∗ 6= 0, since f(X) =
∏q
i=1(X +mi) and m∗ 6∈ {m1, . . . ,mq}, as thus (X +m∗)

does not divide f(X). Taking roots of order θ and γ∗ modulo p, the simulator B can compute

w ←

(
(σ∗)

1/θ ·
q−1∏
i=0

(di)
−γi

)1/γ∗

∈ G1

Hence, we obtain

w =

(
g

γ∗
x+m∗
1 · g

∑q−1
i=0 γix

i

1 ·
q−1∏
i=0

g−γix
i

1

)1/γ∗

= g
1/(x+m∗)
1

B returns the pair (m∗, w) as the solution to the submitted instance of the SDH problem.

The claimed bounds are obvious by construction of the reduction.

11



4.4 From Weak Security To Full Security

We now present a reduction from the security of the basic scheme we just described to the security
of our full signature scheme presented in Section 4.1. This will complete the proof of Theorem 8.

Lemma 10. Suppose that the basic signature scheme of Section 4.3 is (t′, qS, ε
′)-weakly secure.

Then the full signature scheme is (t, qS, ε)-secure against strong existential forgery under an adaptive
chosen message attack provided that

ε ≥ 2ε′ + qS/p ≈ 2ε′ and t ≤ t′ −Θ(qST )

where T is the maximum time for an exponentiation in G1, G2, and Zp.

We first give some intuition for the proof. Suppose A is a forger for the full scheme under an
adaptive chosen message attack. We build a forger B for the basic scheme under a weak chosen
message attack. Forger B starts by requesting signatures on random messages w1, . . . , wq ∈ Zp. In
response, it is given a public key (g1, g2, u, z) and signatures σ1, . . . , σqs ∈ G1 for the basic scheme.

In principle, B could create a public key for the full scheme by picking a random y ∈ Z×p and
giving A the public key (g1, g2, u, g

y
2 , z). Now, when A issues a signature query for an adaptively

chosen message mi ∈ Zp, forger B could choose an ri ∈ Zp such that mi + yri equals wi. Then
(σi, ri) would be a valid signature on mi for the full scheme and hence a proper response to A’s
query. Eventually, A would output a forgery (m∗, σ∗, r∗). Since (m∗ + yr∗, σ∗) would then be a
valid message/signature pair for the basic scheme, B could output that pair as an existential forgery
against the basic scheme.

The only problem is that m∗+yr∗ might be in {w1, . . . , wqs} in which case (m∗+yr∗, σ∗) would
not be a valid existential forgery for the basic scheme. However, when this happens B learns the
value of y, which would be useful information if it did not know it already, i.e., if the public key had
been constructed differently. Dealing with this case forces us to consider two types of adversaries,
which complicates the proof by requiring us to build a different reduction for either adversary. The
full proof follows.

Proof of Lemma 10. Assume that A is a forger that (t, qS, ε)-breaks the full signature scheme. We
construct an algorithm B that (t′, qS,

1
2(ε − qS/p))-weakly breaks the basic signature scheme of

Section 4.3.
Before describing the algorithm B we distinguish between two types of forgers that A can

emulate. Let (h1, h2, U, V, z) be the public key given to A, where U = gx2 and V = gy2 . First, we
note that by adding dummy queries as necessary, we may always assume that A makes exactly qS
signature queries. Suppose then thatA adaptively asks for signatures on messages m1, . . . ,mqs ∈ Zp
and is given signatures (σi, ri) for i = 1, . . . , qS in response. Let wi = mi+yri for each i, and denote
by (m∗, σ∗, r∗) the forgery eventually produced by A.

1. We say that A is a type-1 forger, denoted A1, if it either

(a) makes a signature query for the message m = −x, or
(b) outputs a forgery where m∗ + yr∗ 6∈ {w1, . . . , wqs}.

2. We say that A is a type-2 forger, denoted A2, if it both

(a) never makes a signature query for the message m = −x, and
(b) outputs a forgery where m∗ + yr∗ = wi for some i ∈ {1, . . . , qS}.

12



These cases form a partition that exhausts all possible successful forgeries. We show that in either
case the forger can be exploited to forge a signature in the weak signature scheme of Section 4.3.
However, the reduction works differently for each forger type. For each type of forger A1, A2, we
show how to construct a suitable simulator B1, B2.

Type-1 forger. First, we describe the simulator B1, which interacts with a type-1 forger A1 to
produce a forgery for the signature scheme of Section 4.3, as follows:

Setup: Algorithm B1 selects a list of qS random messages w1, . . . , wqs ∈ Zp, which it sends to
the challenger. The challenger responds with a valid public key (g1, g2, u, z) and a list of qS
signatures σ1, . . . , σqs ∈ G1 on these messages. Algorithm B1 checks whether all σi 6= 1 ∈ G1.
If some σi = 1 ∈ G1, then B1 just learned the challenger’s private key, x = −wi, which it can
then use to produce a valid forgery. Otherwise, we know that all wi are uniform in Zp \ {−x}
and that e(σi, g

wi
2 u) = e(g1, g2) = z for i = 1, . . . , qS.

To proceed, B1 picks a random y ∈ Z×p and gives to A1 the public key PK1 = (g1, g2, U, V, z)←
(g1, g2, u, g

y
2 , z). Note that PK1 does not depend on the wi or σi.

Queries: The forger A1 issues qS signature queries in an adaptive fashion. In order to respond,
B1 maintains a query counter ` which is initially set to 0.

Upon receiving a signature query for m ∈ Zp, the simulator B1 increments ` by one, sets
r` ← (w` − m)/y ∈ Zp, and gives A1 the signature (σ`, r`). We claim that (σ`, r`) is a
valid signature on m under PK1. First, r` is uniform in Zp \ {−x+m

y } since w` is uniform in
Zp \ {−x}. Second,

e(σ`, U · gm2 · V r`) = e(σ`, u · gm2 · g
yr`
2 ) = e(σ`, u · gw`2 ) = z

as required. The reason this works is that B1 chose an r` such that m` + yr` = w`. We
set m` ← m.

A type-1 forger may issue a signature query for m ∈ Zp where m = −x. If this ever happens
then Algorithm B1 obtains the private key for the public key (g1, g2, u, z) it was given. This
allows B1 to forge the signature on any message of its choice without further interaction with
A1. It terminates the simulation and wins the game.

Output: Eventually, suppose A1 returns a forgery (m∗, σ∗, r∗), where (σ∗, r∗) is a valid forgery
distinct from any previously given signature on message m∗. Since the forgery is valid, we
have

e(g1, g2) = e(σ∗, U · gm∗2 · V r∗) = e(σ∗, u · gm∗+yr∗2 )

Let w∗ = m∗ + yr∗. It follows that (w∗, σ∗) is a valid message/signature pair in the basic
signature scheme. Furthermore, the pair is a valid existential forgery in that scheme since for
a type-1 forger we have w∗ 6∈ {w1, . . . , wqs}.

It is easy to see that, if the forger A1 outputs a valid forgery with probability ε in time t, then the
reduction B1 succeeds in time t+ Θ(qST ) with the same probability ε.

Type-2 forger. Second, we describe the simulator B2, which interacts with a type-2 forger A2

to produce a forgery for the signature scheme of Section 4.3, as follows:
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Setup: Algorithm B2 starts by sending a list of qS random messages w1, . . . , wqs ∈ Z×p to its
challenger, and receives in response a valid public key (g1, g2, u, z) and a list of qS signatures
σ1, . . . , σqs ∈ G1 on these messages. We write u = gy2 for some y ∈ Z×p . Notice that for this
reduction we restricted the wi to non-zero values.

Algorithm B2 checks whether some σi = 1 ∈ G1, in which case u = g−wi2 , which would allow
B2 to produce a valid forgery using −wi as private key. In this case B2 stops the simulation
and wins the game. Otherwise, for all i = 1, . . . , qS the wi are uniform in Z×p \ {−y} and
satisfy e(σi, g

wi
2 u) = e(g1, g2) = z.

To proceed, B2 picks a random x ∈ Z×p and gives toA2 the public key PK2 = (g1, g2, U, V, z)←
(g1, g2, g

x
2 , u, z).

Queries: The forger A issues qS signature queries in an adaptive fashion. In order to respond, B
maintains a list L of tuples (mi, ri,Wi) which is initially empty, and a query counter ` which
is initially set to 0.

Upon receiving a signature query for m, the algorithm B2 increments ` by one, and defines
r` ← (x + m)/w` ∈ Zp. Note that r` 6= 0 since m 6= −x in a type-2 forgery. B2 then adds
the tuple (m, r`, g

m
2 V

r`) to the list L, and responds to the query by giving A2 the signature

(σ
1/r`
` , r`). This is a valid signature on m under PK2 since

e(σ
1/r`
` , U · gm2 · V r`) = e(σ

1/r`
` , gx2 · gm2 · ur`) = e(σ`, g

(x+m)/r`
2 · u) = e(σ`, g

w`
2 · u) = z

Since r` is uniform over Z×p \ {−x+m
y } instead of Zp \ {−x+m

y }, the signature is almost
correctly distributed with a statistical distance of 1/p from the correct distribution. Taken as
a whole, the qS signatures are jointly distributed with statistical distance at most qS/p from
the specification.

Output: Eventually, suppose A2 returns a forgery (m∗, σ∗, r∗), where (σ∗, r∗) is a valid forgery
distinct from any previously given signature on message m∗. Let W∗ ← gm∗2 V r∗ , and let
(mj , rj ,Wj) be a tuple on the list L such that Wj = W∗; in a type-2 forgery such a tuple
always exists. Since V = u we know that g

mj
2 urj = gm∗2 ur∗ . Write V = gy2 for some y ∈ Z×p so

that mj + yrj = m∗+ yr∗. We know that (mj , rj) 6= (m∗, r∗), otherwise the forgery would be
identical to a previously given signature on the query message mj . Since g

mj
2 urj = gm∗2 ur∗ , it

follows that mj 6= m∗ and rj 6= r∗. Therefore, B2 can compute y ← (m∗−mj)/(rj−r∗) ∈ Z×p ,
thus recovering the private key corresponding to the public key (g1, g2, u, z) it was given.
Algorithm B2 can then forge a signature on any message of its choice.

It is easy to see that, if the forger A2 outputs a valid forgery with probability ε in time t, then the
reduction B2 succeeds in time t+ Θ(qST ) with probability at least ε− qS/p.

This completes the description of the two reduction algorithms, B1 and B2. Regardless of
which reduction is used, a standard argument shows that if the algorithm does not abort, then,
from the viewpoint of the adversary, A1 or A2, the simulation is indistinguishable from a real
attack environment. In particular, the public keys and signatures are correctly distributed, and the
adversary cannot tell whether it is interacting with B1 and B2.

Therefore, given an arbitrary adversary A that (t, qS, ε)-breaks the full signature scheme but
whose type is unknown, it suffices to let B be an algorithm that randomly executes one of B1 and
B2 with equal probability. We obtain an algorithm that breaks the basic signature scheme with
probability 1

2 min(ε, ε− qS/p) = 1
2(ε− qS/p) ≥ ε′ in time t+ Θ(qST ) ≥ t′. This completes the proof

of Lemma 10.
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Since in the full scheme a single message has many valid signatures, it is worth repeating that
the full signature scheme is existentially unforgeable in the strong sense: the adversary cannot make
any forgery, even on messages which are already signed.

4.5 Relation to Chameleon Hash Signatures

It is instructive to consider the relation between the full signature scheme of Section 4.1 and an
elegant signature construction based on the Strong RSA assumption due to Gennaro, Halevi, and
Rabin (GHR) [23]. GHR signatures are pairs (r, s1/H(m,r)) where H is a Chameleon hash [31], r is
random in some range, and arithmetic is done modulo an RSA modulus N . Looking closely, one
can see some parallels between the proof of security in Lemma 10 and the proof of security in [23].
There are three interesting points to be made:

• The m + yr component in our signature scheme provides us with the functionality of a
Chameleon hash: given m, we can choose r so that m+ yr maps to some predefined value of
our choice. This makes it possible to handle adaptive chosen message attacks. Embedding the
hash m+yr directly within the signature scheme results in a much more efficient construction
than using an explicit Chameleon hash (which requires additional exponentiations). Such an
easy embedding is not known to be possible with Strong RSA signatures, though we refer to
the work of Fischlin [20] for ideas in that direction.

• One difficulty with GHR signatures is that given a “non-prime” solution such as (6, s1/6)
to the Strong RSA problem, one can deduce another solution, e.g., (3, s1/3). Thus, given a
GHR signature on one message it possible to deduce a GHR signature on another message
(see [23, 16] for details). Gennaro et al. [23] solve this problem by ensuring that H(m, r)
always maps to a prime; however, that makes it difficult to compute the hash (a different
solution is given in [18]). This issue does not come up at all in the SDH assumption and in
our constructions.

• We obtain short signatures since, unlike Strong RSA, the SDH assumption applies to groups
with a short element representation. This is especially true at high security levels.

Thus, we see that Strong Diffie-Hellman leads to signatures that are simpler and shorter than their
Strong RSA counterparts.

4.6 Limited Message Recovery

We now describe another useful property of the signature schemes whereby the total size of signed
messages can be further reduced at the cost of increasing the verification time. The technique
applies equally well to the fully secure signature scheme as to the weakly secure one. Unlike all the
other constructions in the paper, it also makes fuller use of the pairing than as the mere provider
of a DDH predicate.

A common technique for shortening the total length of a signed message is to encode a part
of the message in the signature [34, §11]. In the standard terminology, such schemes are called
signatures with message recovery, as opposed to signatures with appendix. Signatures based on
trapdoor permutations support very efficient message recovery. At the other end of the spectrum,
any signature scheme can support a very inefficient form of message recovery, based on the following
trivial signature compression mechanism. Rather than transmit a message/signature pair (M,σ),
the sender transmits (M̂, σ) where M̂ is a truncated version of M that omits its last t bits. To
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verify (M̂, σ) and recover M , the verifier tries to verify the signature on all concatenations of M̂
with the 2t possible values for the missing bits; if one verification succeeds, the signature is accepted
and the corresponding reconstitution is output as the message M . This trivial method shows that
a signed message (M,σ) can be shortened by t bits at the cost of increasing verification time by a
factor of 2t.

For our signature scheme we obtain a better tradeoff than with the trivial method above,
although not as good as provided by trapdoor permutations. The signed message (M,σ) can be
shortened by t bits at the cost of increasing verification time by a factor of 2t/2 only. We refer to
this property as limited message recovery. Our technique applies to both the full strongly secure
signature scheme of Section 4.1 and the basic weakly secure signature scheme of Section 4.3. The
main requirement is that whichever scheme is used be implemented using an actual pairing (instead
of a generic DDH predicate).

Achieving Limited Message Recovery. For simplicity, we only show how limited message
recovery applies to the full signature scheme. Assume messages are k-bit strings represented as
integers in Zp. Let (g1, g2, u, v, z) be a public key in the full scheme—although for this application
one might prefer to abbreviate the public key as (g2, u, v) and let the verifier derive g1 and z.
Suppose we are given the signed message (m̂, σ, r) where m̂ is a truncation of the last t bits of
m ∈ Zp. Thus m = m̂ · 2t + δ for some integer 0 ≤ δ < 2t. Our goal is to verify the signed message
(m̂, σ, r) and to reconstruct the missing bits δ in time 2t/2. To do so, we first rewrite the verification
equation e(σ, u · vr · gm2 ) = e(g1, g2) as

e(σ, g2)
m =

e(g1, g2)

e(σ, u · vr)

Then, substituting m = m̂ · 2t + δ we obtain

e(σ, g2)
δ =

e(g1, g2)

e(σ, u · vr · gm̂2t
2 )

(3)

Now, we say that (m̂, σ, r) is valid if there exists an integer δ ∈ [0, 2t) satisfying Equation (3).
Finding such a δ takes time approximately 2t/2 using Pollard’s Lambda method [34, p.128] for
computing discrete logarithms. Thus, we can verify the signature and recover the t missing message
bits in time 2t/2, as required.

Very Short Weakly Secure Signatures. Obvious applications of limited message recovery are
situations where bandwidth is extremely limited, such as when the signature is an authenticator
that is to be typed-in by a human. The messages in such applications are typically chosen and
signed by a central authority, so that adaptive chosen message attacks are typically not a concern.
It is safe in those cases to use the weakly secure signature scheme of Section 4.3, and apply limited
message recovery to further shrink the already compact signatures it produces. Specifically, using
t-bit truncation as above we obtain a total signature overhead of (160− t) bits for common security
parameters, at the cost of requiring 2t/2 arithmetic operations for signature verification. The total
bandwidth requirement is thus even smaller than BLS signatures in the random oracle model [11],
even though the security of our application does not rely on random oracles.

4.7 Arbitrary Message Signing

We can extend our signature schemes to sign arbitrary messages in {0, 1}?, as opposed to merely
messages in Zp, by first hashing the message using a collision resistant hash function H : {0, 1}? →
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Zp prior to both signing and verifying. A standard argument shows that if the scheme above is
secure against existential forgery under an adaptive chosen message attack (in the strong sense)
then so is the scheme with the hash. The result is a signature scheme for arbitrary messages in
{0, 1}?. We note that there is no need for a full domain hash into Zp; a collision resistant hash
function H : {0, 1}? → {1, . . . , 2b} such that 2b < p is sufficient for the security proof. This
transformation applies to both the fully and the weakly secure signature schemes described above.

More rigorously in the asymptotic setting, a target collision resistant hash (TCR) [39, 6, 47]
may be substituted for H at the expense of a slightly longer signature to accommodate the extra
random seed or index.

4.8 Off-line/On-line Signatures

Even though our signature scheme already provides a very efficient signing operation—dominated
by a single inversion in Zp and a single exponentiation to a fixed base—, it is possible to make it
almost instantaneous for on-line signing by doing essentially all of the work off-line.

The idea is very simple. In the off-line phase, the signer would pick any number of random

integers ρi ∈ Z×p , and for each of them compute σi = g
1/ρi
1 ahead of time; the pairs (ρi, σi) must be

stored securely. In the on-line phase, to sign a message or message hash m ∈ Zp, the signer would
select an unused pair (ρ, σ), erase it from its secure storage, compute r = (ρ − m − x) y−1, and
output the signature (σ, r). The entire on-line signature process requires only two subtractions and
a single multiplication in Zp, provided that the signer stores his private key as (x, y−1).

Observe that the private key is not needed in the off-line phase. In particular, this means that
exposure of unused pair (ρ, σ) causes no harm as long as the compromised pairs are not subsequently
used to create signatures. A similar approach was proposed by Shamir and Halevi [45].

4.9 Efficiency Considerations

As noted earlier, the signing operation in the full scheme is dominated by an inversion in Z×p and an
exponentiation with a fixed base g1 ∈ G. With some pre-computations, a fixed-base exponentiation
can be made much faster than a general exponentiation by eliminating the sequence of repeated
squarings and grouping the ancillary multiplications into a few large chunks or windows.

Window-Ladder Pre-computation. Specifically, we would pre-compute a “power ladder” of
w-bit “windows” for the fixed base g1 ∈ G1, comprising the 2wdlog2(p)/we group elements

(g1)
y·2kw for all y = 0, . . . , 2w − 1 and all k = 0, . . . , dlog2(p)/we − 1

Using these values, raising g1 to any power in Zp requires no more than dlog2(p)/we group operations
in G1. The main cost of the pre-computation is the storage requirement, which grows as 2w/w;
however, even for small windows of width w ∈ {4, . . . , 8} the efficiency gains are very substantial.
To illustrate, a general exponentiation using the fast “signed m-ary windows” method [7, §IV.2]
requires on average (2m−2 − 2) + dlog2(p)e + [log2(p) + 1]/(m + 1) group operations, or about
6 + 7

6 log2(p) for the optimal choice m = 5 under common values of log2(p). Hence, with our
window-ladder method for w = 8, a fixed-base exponentiation will be close to 10 times faster than
the fastest known general exponentiation algorithm. Notice also that the pre-computed values are
not secret and are thus easy to handle. Since the value of g1 rarely ever changes for a given signer,
the (rather benign) pre-computation effort can be amortized over many signatures.
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The off-line phase in the off-line/on-line signature process described in Section 4.8 benefits
equally from pre-computations for all exponentiations (and, as noted earlier, the on-line phase is
already almost instantaneous).

Real-World Performance. For comparison, a signature in our scheme can be generated in less
than 1/10-th of the time needed for a BLS signature, since the latter involves a full domain hash
directly into G1 as well as a general exponentiation (whose base is the unpredictable hash output).
The speed-up of our scheme over RSA-based signatures is even more pronounced since not only
do the latter require a general exponentiation, they also need a much larger modulus for a given
security level.

The following table, courtesy of Shacham [44], compares the time required to perform general
and fixed-base exponentiations in a group G1 of 158-bit prime order, using various methods. Here,
an exponentiation in G1 is a point multiplication on an MNT [37] elliptic curve over a 159-bit finite
field with embedding degree 6, resulting in 79-bit brute force and 953-bit finite field MOV [33]
security levels. The reported timings pertain to the c159 curve from Lynn’s PBC [32] library
running on top of Gnu GMP [25], on a G4 model CPU clocked at 1.25GHz with 512MB of RAM.

Method General Fixed base Time Storage

Double-and-add exponentiation X 5.92 ms —
Sliding windows (m = 4) on the fly X 5.13 ms —
Sliding windows (m = 8) from cache X 4.29 ms 255 elts.
Window-ladder pre-computation (w = 5) X 0.74 ms 1024 elts.

Similar ideas can be used to speed up the verification process. Recall from Section 4.1 that
signature verification amounts to testing whether e(σ, u gm2 vr) = z. Since g2 and v (as well as u)
are fixed for each signatory, the window-ladder pre-computation trick can be used exactly as in
the signing process. The main difference is that the verifier needs one set of pre-computations for
each new signer public key it encounters, whereas the signer only has one private key to contend
with. In practice, pre-computation for verification might require a queuing strategy to delay the
pre-computation investment for a particular public key until there is evidence that it might pay off.

More realistically, pre-computations will only be used for signature and not for verification. In
that case, the verification expression u gm2 vr should be evaluated as a one multi-exponentiation
rather than two exponentiations, with only one sequence of repeated doublings instead of two.
Verification time will then amount to slightly more than the time of one exponentiation and one
pairing, versus two pairings (or one multi-pairing [27]) for BLS verification.

5 Shorter Signatures With Random Oracles

For completeness we show that the weakly secure signature scheme of Section 4.3 can also be trans-
formed into particularly efficient and fully secure short signatures in the random oracle model [4].
To do so, we show a general transformation from any existentially unforgeable signature scheme
under a weak chosen message attack into an existentially unforgeable signature scheme under an
adaptive chosen message attack (in the strong sense), in the random oracle model. This gives a
very efficient short signature scheme based on q-SDH in the random oracle model. We analyze
our construction using a method of Katz and Wang [30] which gives a very tight reduction to the
security of the underlying signature. We note that a closely related system was independently
proposed by Zhang et al. [49].
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5.1 Strongly Secure Tight Conversion

Let (KeyGen, Sign, Verify) be an existentially unforgeable signature under a weak chosen message
attack. We assume that the scheme signs messages in some finite set Σ and that the private keys are
in some set Π. We need two hash functions H1 : Π×{0, 1}? → {0, 1} and H2 : {0, 1}×{0, 1}? → Σ
that will be viewed as random oracles in the security analysis. The hash-signature scheme is as
follows:

Key Generation: Same as KeyGen. The public key is PK; the secret key is SK ∈ Π.

Signing: Given a secret key SK, and given a message M ∈ {0, 1}?, compute b ← H1(SK,M) ∈
{0, 1} and m ← H2(b,M) ∈ Σ. Output the signature (b,Sign(m)). Note that signatures are
one bit longer than in the underlying signature scheme.

Verification: Given a public key PK, a message M ∈ {0, 1}?, and a signature (b, σ), output valid
if Verify(PK, H2(b,M), σ) = valid.

Theorem 11 below proves security of the scheme by leveraging the weak scheme from Section 4.3.
The security reduction in Theorem 11 is tight and generic, in the sense that an attacker on the
hash-signature scheme with success probability ε is converted to an attacker on the underlying
signature with success probability approximately ε/2.

Theorem 11. Suppose (KeyGen, Sign,Verify) is (t′, q′S, ε
′)-existentially unforgeable under a weak

chosen message attack. Then the corresponding hash-signature scheme is (t, qS, qH , ε)-secure against
strong existential forgery under an adaptive chosen message attack, in the random oracle model,
whenever qS + qH ≤ q′S, and for all t and ε satisfying

ε ≥ 2ε′/(1− q′S
|Σ|

) ≈ 2ε′ and t ≤ t′ − o(t′)

Proof. Assume A is a forger that (t, qS, qH , ε)-breaks the hash-signature scheme (in the random ora-
cle model). We construct an algorithm B that interacts with A and (t′, q′S, ε

′)-breaks the underlying
signature scheme. Algorithm B works as follows:

Setup: Algorithm B picks q′S random and independent messages m1, . . . ,mq′s in Σ and sends them
to the challenger. The challenger responds with a public key PK and signatures σ1, . . . , σq′s
on m1, . . . ,mq′s . Algorithm B gives PK to the adversary A.

Hash queries: At any time, the forger A can query the hash functions H1 and H2. It can query
these functions qH times each. Since B can maintain tables to ensure that repeated queries
are answered consistently, we assume without loss of generality that A never queries on the
same input twice.

To respond to a query for H1(K,M) our algorithm B first checks if K = SK by attempting
to sign a random message using K. If the signature is valid then B outputs that mes-
sage/signature pair as an existential forgery and terminates. Otherwise, B picks a random
bit b ∈ {0, 1} and tells A that H1(K,M) = b.

To respond to a query for H2(c,M) our algorithm B maintains a list of tuples (Mi, bi, i) called
the H-list, and a counter ` which is initially set to 0. The H-list is initially empty. When
responding to a query for H2(c,M) we set things up so that we know the signature on either
H2(0,M) or H2(1,M) but A will not know which one. More precisely, to respond to the
query H2(c,M) the simulator B does the following:
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1. If M does not appear as first component in any tuple in the H-list then pick a random
bit b ∈ {0, 1}, set `← `+ 1, and add (M, b, `) to the H-list.

2. Let then (M, b, j) be the entry on the H-list corresponding to M . If b = c, output
H2(c,M) = mj (for which we know that σj is a valid signature). Otherwise, pick a
random message m ∈ Σ and output H2(c,M) = m. Observe that j ≤ qS + qH ≤ q′S
(since ` is always less than this value) and hence mj is well defined.

Signature queries: A can issue up to qS signature queries. To respond to a signature query for
M ∈ Σ, the simulator B first runs the algorithm for responding to a hash query for H2(0,M),
which incidentally is why the total number of H2 queries is qS +qH . Let (M, b, j) be the entry
on the H-list corresponding to M . Algorithm B responds with (b, σj) as the signature on M .
This is a valid signature on M since H2(b,M) = mj and σj is a valid signature on mj . Note
that this defines H1(SK,M) = b even though B does not know SK.

Output: Eventually, suppose A returns a forgery, (M∗, (b∗, σ∗)), such that (b∗, σ∗) is a valid signa-
ture on M∗ in the hash-signature scheme and A did not previously obtain (b∗, σ∗) from B in
response to a signature query on M∗. It follows that σ∗ is a valid signature in the underlying
signature scheme for the message m∗ = H2(b∗,M∗). If m∗ ∈ {m1, . . . ,mq′s} then B reports
failure and aborts. Otherwise, it outputs (m∗, σ∗) as the existential forgery for the underlying
signature scheme.

Algorithm B simulates the random oracles and signature oracle perfectly for A. Therefore A
produces a valid forgery for the hash-signature scheme with probability at least ε. It remains
to bound the probability that m∗ ∈ {m1, . . . ,mq′s}. Let (M∗, b, j) be the entry on the H-list
corresponding to M∗. First, consider the case where A never issued a signature query for M∗. In
this case the bit b is independent of A’s view. Therefore, Pr[b∗ = b] = 1/2. Next, note that if
b∗ = b then, by construction, m∗ = H2(b∗,M∗) = mj and therefore in this case B will fail. When
b∗ 6= b, by construction, H2(b∗,M∗) is chosen at random in Σ and therefore, in this case, B will fail
with probability at most q′S/|Σ|. Now, in the case where A did issue a signature query for M∗, we
necessarily have b∗ 6= b, otherwise A’s forgery would be a replay of B’s response. B’s failure rate in
this case is thus also at most q′S/|Σ|. Thus, in all cases, it follows that B succeeds with probability
at least

Pr[success(B)] ≥ ε

2
· (1− q′S

|Σ|
) ≥ ε′

as required.

We note that in the proof above H1 can be replaced with a Pseudo Random Function (PRF)
and does not need to be modeled as a random oracle. However, modeling H2 as a random oracle
appears to be unavoidable.

Concrete Short Hash-Signature Scheme with Random Oracles. Applying Theorem 11 to
the weakly secure scheme of Section 4.3 gives an efficient short signature that is strongly existentially
unforgeable under an adaptive chosen message attack in the random oracle model assuming the
hardness of the (qS + qH)-SDH problem in (G1,G2). For a public key (g1, g2, v = gx2 , z) and
a hash function H : {0, 1}? → Zp a signature on a message m is defined as the group element

σ ← g
1/(x+H(b,m))
1 ∈ G1 concatenated with the bit b ∈ {0, 1}. To verify the signature, one checks

that e(σ, v · gH(b,m)
2 ) = z = e(g1, g2). We see these signatures are essentially as short as BLS

signatures, and can be verified in approximately half the time. As before, signature time is where
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our scheme really shines compared to BLS, being up to an order of magnitude faster with pre-
computations on g1, as discussed in Section 4.9.

We note that the random oracle (RO) construction relies on the hardness of the q-SDH problem
for q = qS + qH , whereas the system of Section 4.1 in the standard model only required q = qS.
In practice, one often considers qS = 240 and qH = 280 as bounds on the attacker’s capabilities.
Hence, we see that the RO system relies on a stronger SDH assumption than the non-RO system.
For the RO system, this qH is sufficiently large compared to p that one has to take special care in
choosing p to avoid the Brown-Gallant [12] and Cheon [14] generic algorithms for SDH discussed in
Section 3.3. Alternatively, for the RO system one could choose a larger group size p that satisfies
p ≈ q3H , in accordance with the generic complexity lower bounds we give in Section 6. The resulting
signatures are still shorter than the non-RO system, but longer than BLS signatures.

5.2 Full Domain Hash Conversion

Another method for converting a signature scheme secure under a weak chosen message attack into
a scheme secure under an adaptive chosen message attack is to simply apply Sign and Verify to
H(M) rather than M . In other words, we hash M ∈ {0, 1}? using a full domain hash H prior to
signing and verifying. Security in the random oracle model is shown using a similar argument to
Coron’s analysis [15] of the Full Domain Hash [5]. However, the resulting reduction is not tight:
an attacker on this hash-then-sign signature with success probability ε yields an attacker on the
underlying signature with success probability approximately ε/qS. We note, however, that these
proofs are set in the random oracle model and therefore it is not clear whether the efficiency of the
security reduction is relevant to actual security in the real world. Therefore, since this full domain
hash conversion is slightly simpler that the tight conversion of Theorem 11 it might be preferable
to use it rather than the system of Section 5.1. When we apply the full domain hash to the weakly
secure scheme of Section 4.3, we obtain a secure signature under an adaptive chosen message attack
assuming that the (qS + qH)-SDH problem is hard in (G1,G2). A signature is one element, namely

σ ← g
1/(x+H(m))
1 ∈ G1. As before, signature verification is twice as fast as in BLS signatures, and

signing five to ten times faster.
As mentioned above, a similar scheme was independently proposed by Zhang et al. [49], with

a different reduction: in the random oracle model, security of this full domain hash scheme can
be proven under Mitsunari’s et al. [36] slightly weaker complexity assumption, rather than SDH.
That assumption amounts to pre-specifying the value c in the q-SDH instance instead of letting it
be chosen by the adversary. However, the resulting security reduction is far less efficient.

6 Generic Security of the SDH Assumption

To provide more confidence in the SDH assumption we prove a lower bound on the computational
complexity of the q-SDH problem for generic groups in the sense of Shoup [46]. We slightly extend
the original model to account for the multiple groups and the bilinearity.

In the generic bilinear group model, elements of G1, G2, and GT appear to be encoded as
arbitrary unique strings, so that no property other than equality can be directly tested by the
adversary. The representation may use random-looking strings, or even sequential integers where
the i-th string that the adversary sees is represented by the number i. The adversary performs
operations on group elements by interacting with various oracles: three oracles for the group
operation in each of the three groups G1, G2, GT , two oracles for the homomorphism ψ : G2 → G1

and its inverse ψ−1, and one oracle for the bilinear pairing e : G1 × G2 → GT . We remark that

21



this model gives too much power to the adversary in bilinear groups where ψ or ψ−1 cannot be
computed efficiently.

To represent and simulate the working of the oracles, we model the opaque encoding of the
elements of G1 using an injective function ξ1 : Zp → {0, 1}dlog2 pe, where p is the group order.
Internally, the simulator represents the elements of G1 not as themselves but as their discrete
logarithms relative to some arbitrary generator g1. This is captured by the function ξ1, which
maps any integer a ∈ Zp to the external string representation ξ1 ∈ {0, 1}dlog2 pe of the element
ga1 ∈ G1. We similarly define a second function ξ2 : Zp → {0, 1}dlog2 pe to represent G2, and a third
function ξT : Zp → {0, 1}dlog2 pe to represent GT . The adversary communicates with the oracles
using the string representation of the group elements exclusively. Note that the adversary is given
p = |G1| = |G2| = |GT |.

The following theorem establishes the unconditional hardness of the q-SDH problem in the
generic bilinear group model.

Theorem 12. Suppose A is an algorithm that solves the q-SDH problem in generic bilinear groups
of order p, making at most qG oracle queries for the group operations in G1, G2, and GT , the
homomorphisms ψ and ψ−1, and the bilinear pairing e, all counted together. Suppose also that the
integer x ∈ Z×p and the encoding functions ξ1, ξ2, ξT are chosen at random. Then, the probability,

ε, that A on input (p, ξ1(1), ξ1(x), . . . , ξ1(x
q), ξ2(1), ξ2(x)) outputs (c, ξ1(

1
x+c)) with c ∈ Zp \ {−x},

ε = Pr

[
AG
(
p, ξ1(1), ξ1(x), . . . , ξ1(x

q),

ξ2(1), ξ2(x)

)
=
(
c, ξ1(

1

x+ c
)
)]

is bounded as

ε ≤ (qG + q + 3)2(q + 1)

p− 1

Asymptotically we have, ε ≤ O
(
q2G q+q

3

p

)
.

Proof. Consider an algorithm B that plays the following game with A.
B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 1, . . . , τ1}, L2 = {(F2,i, ξ2,i) : i = 1, . . . , τ2},

and LT = {(FT,i, ξT,i) : i = 1, . . . , τT }, such that, at step τ in the game, τ1+τ2+τT = τ+q+3. The
entries F1,i and F2,i will be univariate polynomials of degree ≤ q in Zp[X], and the FT,i polynomials
of degree ≤ 2q in Zp[X]. The entries ξ1,i, ξ2,i, ξT,i will be all the strings given out to the adversary.
The lists are initialized at step τ = 0 by setting τ1 = q + 1, τ2 = 2, and τT = 0, and assigning
F1,i = Xi−1 for i = 1, . . . , q+ 1 and F2,i = Xi−1 for i = 1, 2. The corresponding ξ1,i and ξ2,i are set
to random distinct strings. All polynomials are stored as coefficients of powers of X.

We assume that A only makes oracle queries on strings previously obtained from B, a rule that
is easy for B to enforce. Hence, given any query string ξ1,i, it is easy for B to determine its index
i into the table L1, and from there the corresponding polynomial F1,i. If the same string appears
multiple times in the list L1, ties are broken arbitrarily. (The same applies to L2 and LT .)

To start the game, B provides A with the q+ 3 strings ξ1,1, . . . , ξ1,q+1, ξ2,1, ξ2,2 that correspond
to the challenge SDH instance. B answers A’s queries as follows:

Group operations: A may request a group operation in G1 as a multiplication or as a division.
Before answering a G1 query, the simulator B starts by incrementing the τ1 counter by one.
A gives B two operands ξ1,i, ξ1,j with 1 ≤ i, j < τ1, and a multiply/divide selection bit.
To respond, B creates a polynomial F1,τ1 ∈ Zp[x] which it sets to F1,τ1 ← F1,i + F1,j for
a multiplication or to F1,τ1 ← F1,i − F1,j for a division. If the result is identical to an
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earlier polynomial F1,l for some l < τ1, the simulator B duplicates its string representation:
ξ1,τ1 ← ξ1,l; otherwise, it lets ξ1,τ1 be a fresh random string in {0, 1}dlog2 pe distinct from
ξ1,1, . . . , ξ1,τ1−1. The simulator appends the pair (F1,τ1 , ξ1,τ1) to the list L1 and gives the
string ξ1,τ1 to A.

Group operation queries in G2 and GT are answered in a similar manner, based on the lists
L2 and LT respectively.

Homomorphisms: To answer a homomorphism query from G2 to G1, the simulator starts by
incrementing the τ1 counter by one. A gives to B a string operand ξ2,i with 1 ≤ i < τ2.
To respond, B makes a copy of the associated L2 polynomial into L1: it sets F1,τ1 ← F2,i.
If L1 already contained a copy of the polynomial, i.e., F1,τ1 = F1,l for some l < τ1, then B
duplicates its existing string representation: ξ1,τ1 ← ξ1,l; otherwise, it sets ξ1,τ1 to a random
string in {0, 1}dlog2 pe \ {ξ1,1, . . . , ξ1,τ1−1}. The pair (F1,τ1 , ξ1,τ1) is added to the list L1, and
the string ξ1,τ1 is given to A as answer to the query.

Inverse homomorphism queries from G1 to G2 are answered similarly. Note that in this case
the counter τ2 is to be incremented, and a string from L2 is to be returned.

Pairing: A pairing query consists of two operands ξ1,i and ξ2,j with 1 ≤ i ≤ τ1 and 1 ≤ j ≤ τ2
for the current values of τ1 and τ2. Upon receipt of such a query from A, the counter τT is
incremented. The simulator then computes the product of polynomials FT,τT ← F1,i · F2,j .
The result is a polynomial of degree at most 2q in Zp[X]. If the same polynomial was already
present in LT , i.e., if FT,τT = FT,l for some l < τT , then B simply clones the associated string:
ξT,τT ← ξT,l; otherwise, it sets ξT,τT to a new random string in {0, 1}dlog2 pe\{ξT,1, . . . , ξT,τT−1}.
The simulator then adds the pair (FT,τT , ξT,τT ) to the list LT , and gives the string ξT,τT to A.

Note that A can implement exponentiation generically using O(log p) calls to the group operation
oracles, so we need not provide an exponentiation oracle. Similarly, A can obtain the identity
element in each group by requesting the division of any element into itself. Observe also that the
following invariant is preserved throughout the game, where τ is the total number of oracle queries
that have been answered at any given time:

τ1 + τ2 + τT = τ + q + 3 (4)

When A terminates it returns a pair (c, ξ1,`) where c ∈ Zp and 1 ≤ ` ≤ τ1. Let F1,` be the
corresponding polynomial in the list L1. In order to exhibit the correctness of A’s answer within
the simulation framework, B computes the polynomial FT,? = F1,` · (F2,2 + c ·F2,1) = F1,` · (X + c).
Notice that if A’s answer is correct for a particular secret SDH exponent x ∈ Zp, then for X = x
we must necessarily have

FT,?(X) = 1 (5)

Indeed, this equality corresponds to the DDH relation “e(A, gx2g
c
2) = e(g1, g2)” where A denotes

the element of G1 represented by ξ1,`. Observe that since the constant monomial “1” has degree
0 and FT,? = F1,` · (X + c) where (X + c) has degree 1, the above relation (5) cannot be satisfied
identically in Zp[X] unless F1,` has degree ≥ p− 2. We know that the degree of F1,` is at most q,
therefore we deduce that there exists an assignment in Zp to the variable X for which Equation (5)
does not hold. Since Equation (5) is thus a non-trivial polynomial equation of degree ≤ q + 1, it
admits at most q + 1 roots in Zp.

At this point, B chooses a random x ∈ Z×p as the secret SDH exponent, and evaluates all the
polynomials under the assignment X ← x. If the assignment causes two non-identical polynomials
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within either of the lists L1, L2, and LT to assume the same value, then the simulation provided
by B to A was flawed since it presented as distinct two group elements that were in fact equal.
If it causes the non-trivial Equation (5) to be satisfied, then the adversary has won the game.
However, if no non-trivial equality emerged from the assignment, then B’s simulation was perfect
and nonetheless resulted in A’s failure to solve the instance it was given.

By the above argument, the success probability of A in the generic model is bounded by the
probability that at least one equality among the following collections is satisfied, for random x ∈ Z×p :

1. F1,i(x) = F1,j(x) in Zp — for some i, j such that F1,i 6= F1,j in Zp[X],

2. F2,i(x) = F2,j(x) in Zp — for some i, j such that F2,i 6= F2,j in Zp[X],

3. FT,i(x) = FT,j(x) in Zp — for some i, j such that FT,i 6= FT,j in Zp[X],

4. F1,`(x) · (x+ c) = 1 in Zp.

Since each non-trivial polynomial F1,i − F1,j has degree at most q, it vanishes at a random x ∈ Z×p
with probability at most q/(p−1). In a similar way, each non-trivial polynomial F2,i−F2,j vanishes
with probability ≤ q/(p − 1), and FT,i − FT,j with probability ≤ 2q/(p − 1) since polynomials in
LT can have degree up to 2q. The last equality holds with probability ≤ (q+ 1)/(p− 1), as already
shown. Summing over all valid pairs (i, j) in all four cases, we deduce that A wins the game with
probability

ε ≤
(
τ1
2

)
q

p− 1
+

(
τ2
2

)
q

p− 1
+

(
τT
2

)
2q

p− 1
+
q + 1

p− 1

It follows from Equation (4) that the game ended with τ1 + τ2 + τT ≤ qG + q + 3, and we obtain:
ε ≤ (qG + q + 3)2q/(p− 1) = O(q2G q/p+ q3/p).

The following corollary restates in a simpler way the asymptotic hardness of the SDH assumption
against generic attacks.

Corollary 13. Any adversary that solves the q-SDH problem with constant probability ε > 0 in
generic bilinear groups of order p such that q < O( 3

√
p) requires Ω(

√
εp/q) generic operations.

7 Conclusion

We presented a number of short signature schemes based on the SDH assumption in bilinear groups.
Our main result is a short signature which is fully secure without random oracles or hash functions.
The signature is very efficient and as short as DSA signatures, but is provably secure in the standard
model under a tight security reduction. We also described a number of useful extensions to our
scheme, such as limited message recovery for even greater compactness, off-line/on-line operation
for instantaneous signing, and a random oracle signature that is as compact as and much more
efficient than the BLS scheme.

These constructions are possible thanks to properties of the Strong Diffie-Hellman assumption,
which we introduced, motivated, and proved secure in the generic group model. The Strong DH
assumption can be regarded as a discrete logarithm analogue of the Strong RSA assumption. We
hope that the SDH assumption will establish itself as a useful tool for constructing cryptographic
systems.
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