
Collusion Resistant Broadcast Encryption With

Short Ciphertexts and Private Keys

Dan Boneh∗

dabo@cs.stanford.edu

Craig Gentry
cgentry@docomolabs-usa.com

Brent Waters
bwaters@cs.stanford.edu

Abstract

We describe two new public key broadcast encryption systems for stateless receivers. Both
systems are fully secure against any number of colluders. In our first construction both cipher-
texts and private keys are of constant size (only two group elements), for any subset of receivers.
The public key size in this system is linear in the total number of receivers. Our second system
is a generalization of the first that provides a tradeoff between ciphertext size and public key
size. For example, we achieve a collusion resistant broadcast system for n users where both
ciphertexts and public keys are of size O(

√
n) for any subset of receivers. We discuss several

applications of these systems.

1 Introduction

In a broadcast encryption scheme [FN93] a broadcaster encrypts a message for some subset S of
users who are listening on a broadcast channel. Any user in S can use his private key to decrypt
the broadcast. However, even if all users outside of S collude they can obtain no information about
the contents of the broadcast. Such systems are said to be collusion resistant. The broadcaster can
encrypt to any subset S of his choice. We use n to denote the total number of users.

Broadcast encryption has several applications including access control in encrypted file systems,
satellite TV subscription services, and DVD content protection. As we will see in Section 4 we
distinguish between two types of applications:

• Applications where we broadcast to large sets, namely sets of size n− r for r � n. The best
systems [NNL01, HS02, GST04] achieve a broadcast message containing O(r) ciphertexts
where each user’s private key is of size O(log n).

• Applications where we broadcast to small sets, namely sets of size t for t� n. Until now, the
best known solution was trivial, namely encrypt the broadcast message under each recipient’s
key. This broadcast message contains t ciphertexts and each user’s private key is of size O(1).

In this paper we construct fully collusion secure broadcast encryption systems with short cipher-
texts and private keys for arbitrary receiver sets. Our constructions use groups with an efficiently

∗Supported by NSF.

1

computable bilinear map. Our first construction provides a system in which both the broadcast
message and user private keys are of constant size (a precise statement is given in the next section).
No matter what the receiver set is, our broadcast ciphertext contains only two group elements.
Each user’s private key is just a single group element. Thus, for example, when broadcasting to
small sets our system is far better than the trivial solution discussed above. However, we point
out that the public key size in this system is linear in the number of recipients. This is not a
large problem in applications such as encrypted file systems where the receivers have access to a
large shared storage medium in which the public key can be stored. For other applications, such
as content protection, we need to minimize both public key and ciphertext size.

Our second system is a generalization of the first that enables us to tradeoff public key size
for ciphertext size. One interesting parametrization of our scheme gives a system where both the
public key and the ciphertext are of size O(

√
n). This means that we can attach the public key

to the encrypted broadcast and still achieve ciphertext size of O(
√

n). Consequently, we obtain a
fully collusion secure broadcast encryption scheme with O(

√
n) ciphertext size (for any subset of

users) where the users have a constant size private key.

Section 2 defines our security model and the complexity assumption we use. In Section 3 we
describe our systems and prove their security. Finally, in Section 4 we discuss in detail several
applications for these systems.

1.1 Related Work

Fiat and Naor [FN93] were the first to formally explore broadcast encryption. They presented a
solution which was secure against a collusion of t users and has ciphertext size of O(t log2 t log n).

Naor et al. [NNL01] presented a fully collusion secure broadcast encryption system that is
efficient for broadcasting to all, but a small set of revoked users. Their scheme is useful for content
protection where broadcasts will be sent to all, but a small set of receivers whose keys have been
compromised. Their scheme can be used to encrypt to n−r users with a header size of O(r) elements
and private keys of size O(log2 n). Further improvements [HS02, GST04] reduce the private key
size to O(log n). Dodis and Fazio [DF02] extend the NNL (subtree difference) method into a public
key broadcast system for a small size public key.

Other broadcast encryption methods for large sets include Naor and Pinkas [NP00] and Dodis
and Fazio [DF03]. For some fixed t these systems can revoke any r < t users where ciphertexts are
always of size O(t) and private keys are constant size. By running log n of these systems in parallel,
where the revocation bound of the i’th system is ti = 2i, one obtains a broadcast encryption system
with the same parameters as [GST04]. Private key size is O(log n) and, when revoking r users,
ciphertext size is proportional to 2dlog2 re = O(r). This simple extension to the Naor and Pinkas
system gives a broadcast system with similar parameters as the latest NNL derivative.

Wallner et al.[WHA97] and Wong[WGL98] independently discovered the logical-tree-hierarchy
scheme (LKH) for group multicast. Using these methods receivers must maintain state and remain
connected to receive key-updates. The parameters of the original schemes are improved in further
work [CGI+99, CMN99, SM03].

The security of our broadcast encryption relies on computational assumptions. Several other
works [Sti97, ST98, SW98, GSY99, GSW00] explore broadcast encryption and tracing from an
information theoretic perspective.

Boneh and Silverberg [BS03] show that n-linear maps give the ultimate fully collusion secure

2

scheme with constant public key, private key, and ciphertext size. However, there are currently no
known implementations of cryptographically useful n-linear maps for n > 2. Our results show that
we can come fairly close using bilinear maps alone.

2 Preliminaries

We begin by formally defining what is a secure public-key broadcast encryption system. For simplic-
ity we define broadcast encryption as a key encapsulation mechanism. We then state the complexity
assumption needed for our proof of security.

2.1 Broadcast Encryption Systems

A broadcast encryption system is made up of three randomized algorithms:

Setup(n) Takes as input the number of receivers n. It outputs n private keys d1, . . . , dn and a
public key PK.

Encrypt(S, PK) Takes as input a subset S ⊆ {1, . . . , n}, and a public key PK. It outputs a pair
(Hdr,K) where Hdr is called the header and K ∈ K is a message encryption key. We will
often refer to Hdr as the broadcast ciphertext.

Let M be a message to be broadcast to the set S and let CM be the encryption of M under
the symmetric key K. The broadcast to users in S consists of (S, Hdr, CM). The pair (S, Hdr)
is often called the full header and CM is often called the broadcast body.

Decrypt(S, i, di,Hdr, PK) Takes as input a subset S ⊆ {1, . . . , n}, a user id i ∈ {1, . . . , n} and the
private key di for user i, a header Hdr, and the public key PK. If i ∈ S, then the algorithm
outputs the message encryption key K ∈ K. The key K can then be used to decrypt the
broadcast body CM and obtain the message body M .

As usual, we require that the system be correct, namely that for all S ⊆ {1, . . . , n} and all i ∈ S,
if (PK, (d1, . . . , dn)) R← Setup(n) and (Hdr,K) R← Encrypt(S, PK) then
Decrypt(S, i, di,Hdr, PK) = K.

We define chosen ciphertext security of a broadcast encryption system against a static adversary.
Security is defined using the following game between an attack algorithm A and a challenger. Both
the challenger and A are given n, the total number of users, as input.

Init. Algorithm A begins by outputting a set S∗ ⊆ {1, . . . , n} of receivers that it wants to
attack.

Setup. The challenger runs Setup(n) to obtain a public key PK and private keys d1, . . . , dn.
It gives A the public key PK and all private keys dj for which j 6∈ S∗.

Query phase 1. Algorithm A adaptively issues decryption queries q1, . . . , qm where a de-
cryption query consists of the triple (u, S, Hdr) where S ⊆ S∗ and u ∈ S. The challenger
responds with Decrypt(S, u, du,Hdr, PK).

Challenge. The challenger runs algorithm Encrypt to obtain (Hdr∗,K) R← Encrypt(S, PK)
where K ∈ K. Next, the challenger picks a random b ∈ {0, 1}. It sets Kb = K and picks
a random K1−b in K. It then gives (Hdr∗,K0,K1) to algorithm A.

3

Query phase 2. Algorithm A continues to adaptively issue decryption queries qm+1, . . . , qqD

where qi = (u, S, Hdr) with S ⊆ S∗ and u ∈ S. The only constraint is that Hdr 6= Hdr∗.
The challenger responds as in phase 1.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Let AdvBrA,n denote the probability that A wins the game when the challenger is given n as input.

Definition 2.1. We say that a broadcast encryption system is (t, ε, n, qD) CCA secure if for all
t-time algorithms A who make a total of qD decryption queries, we have that |AdvBrA,n − 1

2 | < ε.

The game above models an attack where all users not in the set S collude to try and expose
a broadcast intended for users in S only. The set S is chosen by the adversary. Note that the
adversary is non-adaptive; it chooses S, and obtains the keys for users outside of S, before it even
sees the public key PK. An adaptive adversary could request user keys adaptively. We only prove
security of our system in the non-adaptive settings described above. It is an open problem to build
a broadcast encryption system with the performance of our system which is secure against adaptive
adversaries. We note that similar formal definitions for broadcast encryption security were given
in [BS03, DF03].

Semantic Security. As usual we define semantic security for a broadcast encryption scheme by
preventing the attacker from issuing decryption queries.

Definition 2.2. We say that a broadcast encryption system is (t, ε, n) semantically secure if it is
(t, ε, n, 0) CCA secure.

In Section 3 we first construct semantically secure systems with constant ciphertext and private
key size. We come back to chosen ciphertext security in Section 5.

2.2 Bilinear Maps

We briefly review the necessary facts about bilinear maps and bilinear map groups. We use the
following standard notation [Jou00, JN01, BF01]:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e : G×G→ G1 is a bilinear map.

Let G and G1 be two groups as above. A bilinear map is a map e : G × G → G1 with the
following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently and there
exists a group G1 and an efficiently computable bilinear map e : G×G→ G1 as above. Note that
e(,) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

4

2.3 Complexity Assumptions

Security of our system is based on a complexity assumption called the bilinear Diffie-Hellman
Exponent assumption (BDHE). This assumption was recently used to construct a hierarchical
identity based encryption system with constant size ciphertext [BBG05].

Let G be a bilinear group of prime order p. The `-BDHE problem in G is stated as follows:
given a vector of 2` + 1 elements(

h, g, gα, g(α2), . . . , g(α`), g(α`+2), . . . , g(α2`)
)
∈ G2`+1

as input, output e(g, h)(α
`+1) ∈ G1. Note that the input vector is missing the term g(α`+1) so that

the bilinear map seems to be of little help in computing the required e(g, h)(α
`+1).

As shorthand, once g and α are specified, we use gi to denote gi = g(αi) ∈ G. An algorithm A
has advantage ε in solving `-BDHE in G if

Pr [A (h, g, g1, . . . , g`, g`+2, . . . , g2`) = e(g`+1, h)] ≥ ε

where the probability is over the random choice of generators g, h in G, the random choice of α in
Zp, and the random bits used by A.

The decisional version of the `-BDHE problem in G is defined analogously. Let ~yg,α,` =
(g1, . . . , g`, g`+2, . . . , g2`). An algorithm B that outputs b ∈ {0, 1} has advantage ε in solving decision
`-BDHE in G if∣∣∣∣ Pr

[
B

(
g, h, ~yg,α,`, e(g`+1, h)

)
= 0

]
− Pr

[
B

(
g, h, ~yg,α,`, T

)
= 0

] ∣∣∣∣ ≥ ε

where the probability is over the random choice of generators g, h in G, the random choice of α in
Zp, the random choice of T ∈ G1, and the random bits consumed by B. We refer to the distribution
on the left as PBDHE and the distribution on the right as RBDHE .

Definition 2.3. We say that the (decision) (t, ε, `)-BDHE assumption holds in G if no t-time
algorithm has advantage at least ε in solving the (decision) `-BDHE problem in G.

Occasionally we drop the t and ε and refer to the (decision) `-BDHE in G. We note that the `-BDHE
assumption is a natural extension of the bilinear-DHI assumption previously used in [BB04, DY05].
Furthermore, Boneh et al. [BBG05] show that the `-BDHE assumption holds in generic bilinear
groups [Sho97].

3 Construction

We are now ready to present our broadcast encryption system. We first present a special case system
where ciphertexts and private keys are always constant size, but the public key grows linearly with
the number of users. We then present a generalization that allows us to balance the public key
size and the ciphertext size. Private keys are still constant size. We prove security of this general
system.

5

3.1 A Special Case

We begin by describing a broadcast encryption system for n users where the ciphertexts and private
keys are constant size, but the public key grows linearly in the number of users.

Setup(n): Let G be a bilinear group of prime order p. The algorithm first picks a random generator
g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G for i = 1, 2, . . . , n, n + 2, . . . , 2n.
Next, it picks a random γ ∈ Zp and sets v = gγ ∈ G. The public key is:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, v) ∈ G2n+1

The private key for user i ∈ {1, . . . , n} is set as: di = gγ
i ∈ G. Note that di = v(αi).

The algorithm outputs the public key PK and the n private keys d1, . . . , dn.

Encrypt(S, PK): Pick a random t in Zp and set K = e(gn+1, g)t ∈ G. The value e(gn+1, g) can
be computed as e(gn, g1). Next, set

Hdr =

gt, (v ·
∏
j∈S

gn+1−j)t

 ∈ G2

and output the pair (Hdr,K).

Decrypt(S, i, di,Hdr, PK): Let Hdr = (C0, C1) and recall that di ∈ G. Then, output

K = e(gi, C1) / e(di ·
∏
j∈S
j 6=i

gn+1−j+i, C0)

Note that a private key is only one group element in G and the ciphertext, Hdr, is only two
group elements. Furthermore, since e(gn+1, g) can be precomputed, encryption requires no pairings.
Nevertheless, the system is able to broadcast to any subset of users and is fully collusion resistant.
We prove security in Section 3.3 where we discuss a more general system.

We first verify that the system is correct, namely that the decryption algorithm works correctly.
We use the fact that g

(αj)
i = gi+j for any i, j. Suppose i ∈ S, then user i decrypts as:

K = e(gi, C1) / e(di ·
∏
j∈S
j 6=i

gn+1−j+i, C0)

= e(g(αi), (v ·
∏
j∈S

gn+1−j)t) / e(v(αi) ·
∏
j∈S
j 6=i

gn+1−j+i, gt)

= e(g(αi), (gn+1−i)t) · e(g(αi), (v ·
∏
j∈S
j 6=i

gn+1−j)t) / e(v(αi) ·
∏
j∈S
j 6=i

gn+1−j+i, gt)

= e(gn+1, g)t · e(g(αi), v ·
∏
j∈S
j 6=i

gn+1−j)t / e(v(αi) ·
∏
j∈S
j 6=i

gn+1−j+i, g)t

= e(gn+1, g)t · e(g, v(αi) ·
∏
j∈S
j 6=i

gn+1−j+i)t / e(v(αi) ·
∏
j∈S
j 6=i

gn+1−j+i, g)t

= e(gn+1, g)t

as required.

6

Efficient implementation. For any large number of receivers, decryption time will be dominated
by the |S| − 2 group operations needed to compute

∏
j∈S
j 6=i

gn+1−j+i. However, we observe that if

the receiver had previously computed the value w =
∏

j∈S′

j 6=i

gn+1−j+i for some receiver set S′ that

is similar to S then, the receiver can compute
∏

j∈S
j 6=i

gn+1−j+i with just δ group operations using

the cached value w, where δ is the size of the set difference between S and S′.

This observation is especially useful when the broadcast system is intended to broadcast to large
sets, i.e. sets of size n− r for r � n. The private key di could include the value

∏n
j=1
j 6=i

gn+1−j+i ∈ G

which would enable the receiver to decrypt using only r group operations. Furthermore, user i
would only need r elements from the public key PK.

We note that computation time for encryption will similarly be dominated by the |S| − 1 group
operations to compute

∏
j∈S gt

n+1−j and similar performance optimizations (e.g. precomputing∏n
j=1 gn+1−j) apply. We also note that in the secret key settings (where the encryptor is allowed

to keep secret information) the encryptor need only store (g, v, α) as opposed to storing the entire
public key vector.

3.2 General Construction

Next, we present our general broadcast encryption system. The idea is to run A parallel instances
of the system in the previous section where each instance can broadcast to at most B � n users. As
a result we can handle as many as n = AB users. However, we substantially improve performance
by sharing information between the A instances. In particular, all instances will share the same
public key values g, g1, . . . , gB, gB+2, . . . , g2B.

This generalized system enables us to tradeoff the public key size for ciphertext size. Setting
B = n gives the system of the previous section. However, setting B = b

√
nc gives a system where

both public key and ciphertext size are about
√

n elements. Note that either way, the private key
is always just one group element.

Let B be a fixed positive integer. The B-broadcast encryption system works as follows:

SetupB(n): The algorithm will set up A = d n
B e instances of the scheme. Let G be a bilinear

group of prime order p. The algorithm first picks a random generator g ∈ G and a random
α ∈ Zp. It computes gi = g(αi) ∈ G for i = 1, 2, . . . , B,B + 2, . . . , 2B. Next, it picks random
γ1, . . . , γA ∈ Zp and sets v1 = gγ1 , . . . , vA = gγA ∈ G. The public key is:

PK = (g, g1, . . . , gB, gB+2, . . . , g2B, v1, . . . , vA) ∈ G2B+A

The private key for user i ∈ {1, . . . , n} is defined as follows: write i as i = (a − 1)B + b for
some 1 ≤ a ≤ A and 1 ≤ b ≤ B (i.e. a = di/Be and b = i mod B). Set the private key for
user i as:

di = gγa

b ∈ G (note that di = v(αb)
a)

The algorithm outputs the public key PK and the n private keys d1, . . . , dn.

Encrypt(S, PK): For each ` = 1, . . . , A define the subsets Ŝ` and S` as

Ŝ` = S ∩ {(`− 1)B + 1, . . . , `B} and S` = {x− `B + B | x ∈ Ŝ`} ⊆ {1, . . . , B}

7

In other words, Ŝ` contains all users in S that fall in the `’th interval of length B and S`

contains the indices of those users relative to the beginning of the interval. Pick a random
t in Zp and set K = e(gB+1, g)t ∈ G. As before, the value e(gB+1, g) can be computed as
e(gB, g1). Set

Hdr =

gt, (v1 ·
∏
j∈S1

gB+1−j)t, . . . , (vA ·
∏

j∈SA

gB+1−j)t

 ∈ GA+1

Output the pair (Hdr,K). Note that Hdr contains A + 1 elements.

Decrypt(S, i, di,Hdr, PK): Let Hdr = (C0, C1, . . . , CA) and recall that di ∈ G. Write i as i =
(a− 1)B + b for some 1 ≤ a ≤ A and 1 ≤ b ≤ B. Then

K = e(gb, Ca) / e(di ·
∏
j∈Sa
j 6=b

gB+1−j+b, C0)

Verifying that the decryption algorithm works correctly is analogous to the calculation in the
previous section. We note that when B = n then A = 1 and we obtain the system of the previous
section.

3.2.1 Efficiency

A user’s private key size again will only consist of one group element. The ciphertext consists of
A + 1 group elements and the public key is 2B + A elements. Our choice of B depends on the
application. As we will see, in some cases we want B = n to obtain the smallest possible ciphertext.
In other cases we want B =

√
n to minimize the concatenation of the ciphertext and public key.

The decryption time for user i = (a − 1)B + b will be dominated by |Sa| − 2 < B group
operations. Similar caching techniques to those described in the end of Section 3.1 can be used to
improve performance.

3.3 Security

We now prove the semantic security of the general system of Section 3.2.

Theorem 3.1. Let G be a bilinear group of prime order p. For any positive integers B,n (n > B)
our B-broadcast encryption system is (t, ε, n) semantically secure assuming the decision (t, ε, B)-
BDHE assumption holds in G.

Proof. Suppose there exists a t-time adversary, A, such that AdvBrA,n > ε for a system parame-
terized with a given B. We build an algorithm, B, that has advantage ε in solving the B-BDHE
problem in G. Algorithm B takes as input a random B-BDHE challenge (g, h, ~yg,α,B, Z), where
~yg,α,B = (g1, . . . , gB, gB+2, . . . , g2B) and Z is either e(gB+1, h) or a random element of G1 (recall that
gi = g(αi)). Algorithm, B, proceeds as follows.

Init Algorithm B runs A and receives the set S of users that A wishes to be challenged on.

8

Setup B needs to generate a public key PK and private keys di for i 6∈ S. The crux of the proof
is in the choice of v1, . . . , vA. Algorithm B chooses random ui ∈ Zp for 1 ≤ i ≤ B. We again define
the subsets Ŝi and Si as

Ŝi = S ∩ {(i− 1)B + 1, . . . , iB} and Si = {x− iB + B | x ∈ Ŝi} ⊆ {1, . . . , B}

For i = 1, . . . , A algorithm B sets vi = gui

(∏
j∈Si

gB+1−j

)−1
. It gives A the public key

PK = (g, g1, . . . , gB, gB+2, . . . , g2B, v1, . . . , vA) ∈ G2B+A

Note that since g, α and the ui values are chosen uniformly at random, this public key has an
identical distribution to that in the actual construction.

Next, the adversary needs all private keys that are not in the target set S. For all i 6∈ S we
write i as i = (a− 1)B + b for some 1 ≤ a ≤ A and 1 ≤ b ≤ B. Algorithm B computes di as

di = gui
b ·

∏
j∈Sa

(gB+1−j+b)−1

Indeed, we have that di = (gui
∏

j∈Sa
(gB+1−j)−1)(α

b) = v
(αb)
a as required. The main point is

that since i /∈ S we know that b /∈ Sa and therefore algorithm B has all the necessary values to
compute di.

Challenge To generate the challenge, B computes Hdr as (h, hu1 , . . . , huA). It then randomly
chooses a bit b ∈ {0, 1} and sets Kb = Z and picks a random K1−b in G1. It gives (Hdr,K0,K1) as
the challenge to A.

We claim that when Z = e(gB+1, h) (i.e. the input to B is a B-BDHE tuple) then (Hdr,K0,K1)
is a valid challenge to A as in a real attack. To see this, write h = gt for some (unknown) t ∈ Zp.
Then, for all i = 1, . . . , A we have

hui = (gui)t = (gui(
∏
j∈Si

gB+1−j)−1(
∏
j∈Si

gB+1−j))t = (vi

∏
j∈Si

gB+1−j)t

Therefore, by definition, (h, hu1 , . . . , huA) is a valid encryption of the key e(gB+1, g)t. Furthermore,
e(gB+1, g)t = e(gB+1, h) = Z = Kb and hence (Hdr,K0,K1) is a valid challenge to A.

On the other hand, when Z is random in G1 (i.e. the input to B is a random tuple) then K0,K1

are just random independent elements of G1.

Guess The adversary, A outputs a guess b′ of b. If b′ = b the algorithm B outputs 0 (indicating
that Z = e(gB+1, h)). Otherwise, it outputs 1 (indicating that Z is random in G1).

We see that if (g, h, ~yg,α,B, Z) is sampled from RBDHE then Pr[B(g, h, ~yg,α,B, Z) = 0] = 1
2 . If

(g, h, ~yg,α,B, Z) is sampled from PBDHE then |Pr[B(g, h, ~yg,α,B, Z) = 0] − 1
2 | = AdvBrA,n ≥ ε. It

follows that B has advantage at least ε in solving B-BDHE in G. This concludes the proof of
Theorem 3.1.

Note that the proof of Theorem 3.1 does not use the random oracle model. The system can
be proved secure using the weaker computational `-BDHE assumption (as opposed to decision `-
BDHE), using the random oracle model. In that case the advantage of the simulator is at least ε/q,
where q is the maximum number of random oracle queries made by the adversary.

9

4 Applications

We describe how our system can be used for a number of specific applications. The first application,
file sharing in encrypted file systems, is an example of broadcasts to small sets. The second
application, encrypted email for large mailing lists, shows that the majority of the public-key can
be shared by many broadcast systems so that the public-key for a new broadcast system is constant
size. The third application, DVD content protection, is an example of broadcasts to large sets.

4.1 File Sharing in Encrypted File Systems

Encrypted file systems let users encrypt files on disk. For example, Windows EFS, encrypts the file
contents using a file encryption key KF and then places an encryption of KF in the file header. If
n users have access to the file, EFS encrypts KF under the public keys of all n users and places the
resulting n ciphertexts in the file header. Related designs can be found in the SiRiUS [GSMB03]
and Plutus [KRS+03] file systems.

Abstractly, access control in an encrypted file system can be viewed as a broadcast encryption
problem. The file system is the broadcast channel and the key KF is broadcast (via the file header)
to the subset of users that can access file F . Many encrypted file systems implement the straight
forward broadcast system where the number of ciphertexts in the file header grows linearly in the
number of users that can access the file. As a result, there is often a hard limit on the number of
users that can access a file. For example, the following quote is from Microsoft’s knowledge base:

“EFS has a limit of 256KB in the file header for the EFS metadata. This limits the
number of individual entries for file sharing that may be added. On average, a maximum
of 800 individual users may be added to an encrypted file.”

A natural question is whether we can implement file sharing in an encrypted file system without
resorting to large headers. Remarkably, there is no known combinatorial solution that performs
better than the straight forward solution used in EFS. The broadcast system of Section 3.1 performs
far better and provides a system with the following parameters:

• The public key (whose size is linear in n) is stored somewhere on the file system. Even for
a large organization of 100,000 users this file is only 4MB long (using a standard security
parameter where each group element is 20 bytes).
• Each user is given a private key that contains only one group element.
• Each file header contains ([S], C) where [S] is a description of the set S of users who can

access F and C is a fixed size ciphertext consisting of only two group elements.

Since S tends to be small relative to n its shortest description is simply an enumeration of the users
in S. Assuming 32-bit user ID’s, a description of a set S of size r takes 4r bytes. Hence, the file
header grows with the size of S, but only at a rate of 4 bytes per user. In EFS the header grows by
one public key ciphertext per user. For comparison, we can accommodate sharing among 800 users
using a header of size 4 × 800 + 40 = 3240 bytes which is far less than EFS’s header size. Even if
EFS were using short ElGamal ciphertexts on elliptic curves, headers would grow by 44 bytes per
user which would result in headers that are 11 times bigger than headers in our system.

Our system has two more properties that make it especially useful for cryptographic access
control. We describe these next.

10

1. Incremental sharing. Suppose a file header contains a ciphertext C = (C0, C1) which is the
encryption of KF for a certain set S of users. Let C0 = gt and C1 = (v ·

∏
j∈S gn+1−j)t. Suppose

the file owner wishes to add access rights for some user u ∈ {1, . . . , n}. This is easy to do given t.
Simply set C1 ← C1 · gt

n+1−u. Similarly, to revoke access rights for user u set C1 ← C1/gt
n+1−u.

This incremental sharing mechanism requires the file owner to remember the random value
t ∈ Zp for every file. Alternatively, the file owner can embed a short nonce TF in every file header
and derive the value t for that file by setting t← PRFk(TF) where k is a secret key known only to
the file owner. Hence, changing access permissions can be done efficiently with the file owner only
having to remember a single key k. Note that when access rights to a file F change it is sometimes
desirable to pick a new key Knew

F . Modifying the existing header to encrypt a new Knew
F for the

updated access list is just as easy.

2. Incremental growth of the number of users. In many cases a broadcast encryption system
must be able to handle the incremental addition of new users. It is desirable to have a system that
does not a-priori restrict the total number of users it can handle. Our system supports this by
slowly expanding the public key as the number of users in the system grows. To do so, at system
initialization the setup algorithm picks a large value of n (say n = 264) that is much larger than
the maximum number of users that will ever use the system. At any one time if there are j users
in the system the public key will be gn−j+1, . . . , gn, gn+2, . . . , gn+j . Whenever a new user joins the
system we simply add two more elements to the public key. Note that user i must also be given gi

as part of the private key and everything else remains the same.

4.2 Sending Encrypted Email to Mailing Lists

One interesting aspect of our system is that the public values ~yg,α,n = (g1, . . . gn, gn+2, . . . , g2n) can
be shared among many broadcast systems and α can be erased. Suppose this ~yg,α,n is distributed
globally to a large group of users (for example, imagine ~yg,α,n is pre-installed on every computer).
Then creating a new broadcast system is done by simply choosing a random γ ∈ Zp, setting v = gγ ,
and assigning private keys as di = gγ

i . Since all broadcast systems use the same pre-distributed
~yg,α,n, the actual public key for this new broadcast system is just one element, v. Theorem 3.1
shows that using the same ~yg,α,n for many broadcast systems is secure.

We illustrate this property with an example of secure mailing lists. Sending out encrypted
email to all members of a mailing list is an example of a broadcast encryption system. Suppose the
global public vector ~yg,α,n is shipped with the operating system and installed on every computer.
We arbitrarily set n = 50, 000 in which case the size of ~yg,α,n is about 2MB.

For every secure mailing list, the administrator creates a separate broadcast encryption system.
Thus, every mailing list is identified by its public key v = gγ . We assume the maximum number
of members in a mailing list is less than n = 50, 000 (larger lists can be partitioned into multiple
smaller lists). Each time a new user is added onto the list, the user is assigned a previously unused
index i ∈ {1, . . . , n} and given the secret key di = gγ

i . The broadcast set S is updated to include
i and all mailing list members are notified of the change in S. Similarly, if a user with index j is
removed from the list, then j is removed from the set S and all members are notified. We note
that any member, i, does not need to actually store S. Instead, member i need only store the value∏

j∈Sj 6=i gn+1−j+i needed for decryption. The member updates this value every time a membership
update message is sent. To send email to a mailing list with public key v the server simply does a
broadcast encryption to the current set of members S using (~yg,α,n, v) as the public key.

In this mail system, the header of email messages sent to the list are constant size. Similarly,

11

membership update messages are of constant size. A mailing list member only needs to store two
group elements for each list he belongs to (although we have to keep in mind the cost of storing
~yg,α,n which is amortized over all mailing lists). It is interesting to compare our solution to one
using an LKH scheme [WHA97, WGL98]. In LKH email messages are encrypted under a group
key. Using this type of a system each update message contains O(log(m)) ciphertexts and private
keys are of size O(log(m)) (per system) where m is the current group size. In our system, update
messages and private user storage are much smaller.

4.3 Content Protection

Broadcast encryption applies naturally to protecting DVD content, where the goal is to revoke
compromised DVD players. Recall that the public key in our system is needed for decryption and
hence it must be embedded in the header of every DVD disk. Consequently, we are interested in
minimizing the total length of the header and public key, namely minimize |Hdr|+ |PK|.

Let n be the total number of DVD players (e.g. n = 232) and let r be the number of revoked
players. Let `id = log2 n (e.g. `id = 32) and let k̄ be the size of a group element (e.g. k̄ = 160 bits).
Then using our

√
n-broadcast system (B =

√
n) we can broadcast to sets of size n − r using the

following parameters:

priv-key-size = 4k̄, and |Hdr|+ |PK|+ |S| = 4k̄d
√

ne+ r`id

In comparison, the NNL system [NNL01] and its derivatives [HS02, GST04] can broadcast to sets
of size n− r using:

priv-key-size = O(k log n), and header-size = O((k + `id) · r)

where k is the length of a symmetric key (e.g. k = 128 bits). Note that the broadcast header grows
by O(k + `id) bits per revoked player. With our system the broadcast header only grows by `id bits
per revoked player.

Example. Plugging in real numbers we obtain the following. When n = 232, k̄ = 20 bytes, and
`id = 4 bytes, header size in our system is 5.12mb and each revocation adds 4 bytes to the header.
In NNL-like systems, using k = 128-bit symmetric keys, each revocation adds about 40 bytes to
the header, but there is no upfront 5mb fixed cost.

The best system is obtained by combining NNL with our system (using NNL when r <
√

n and
our system when r >

√
n). Thus, as long as things are stable, DVD disk distributors use NNL. In

case of a disaster where, say, a DVD player manufacturer loses a large number of player keys, DVD
disk distributors can switch to our system where the header size grows slowly beyond O(

√
n).

5 Chosen Ciphertext Secure Broadcast Encryption

We show how to extend the system of Section 3.1 to obtain chosen ciphertext security. The basic
idea is to compose the system with the IBE system of [BB04] and then apply the ideas of [CHK04].
The resulting system is chosen ciphertext secure without using random oracles.

We will need a signature scheme (SigKeyGen,Sign,Verify). We will also need a collision resistant
hash function that maps verification keys to Zp. However, rather than carry the hash function

12

everywhere, we will simply assume that verification keys are encoded as elements of Zp. This
greatly simplifies the notation.

As we will see, security of the CCA-secure broadcast system for n users is based on the (n+1)-
BDHE assumption (as opposed to the n-BDHE assumption for the system of Section 3.1). Hence,
to keep the notation consistent with Section 3.1 we will describe the CCA-secure system for n− 1
users so that security will depend on the n-BDHE assumption as before. The system works as
follows:

Setup(n− 1): Same as in Section 3.1. Pick a random generator g ∈ G and random α, γ ∈ Zp.
Compute gi = g(αi) ∈ G for i = 1, 2, . . . , 2n and v = gγ ∈ G. The public key is:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, v) ∈ G2n+1

The private key for user i ∈ {1, . . . , n − 1} is set as: di = gγ
i ∈ G. The algorithm outputs

the public key PK and the n− 1 private keys d1, . . . , dn−1.

Encrypt(S, PK): Run the SigKeyGen algorithm to obtain a signature signing key KSIG and a
verification key VSIG. Recall that for simplicity we assume VSIG ∈ Zp. Next, pick a random t
in Zp and set K = e(gn+1, g)t ∈ G. Set

C =
(

gt,
(
v · gVSIG

1 ·
∏
j∈S

gn+1−j

)t
)
∈ G2

Hdr =
(
C, Sign(C,KSIG), VSIG

)
and output the pair (Hdr,K). Note that the only change to the ciphertext from Section 3.1
is the term gVSIG

1 and the additional signature data.

Decrypt(S, i, di,Hdr, PK): Let Hdr =
(
(C0, C1), σ, VSIG

)
.

1. Verify that σ is a valid signature of (C0, C1) under the key VSIG. If invalid, output ‘?’.
2. Otherwise, pick a random w ∈ Zp and compute

d̂0 =
(

di · gVSIG
i+1 ·

∏
j∈S
j 6=i

gn+1−j+i

)
·
(

v · gVSIG
1 ·

∏
j∈S

gn+1−j

)w

and d̂1 = gig
w

3. Output K = e(d̂1, C1)/e(d̂0, C0).

Correctness can be shown with a similar calculation to the one in Section 3.1. Note that private
key size and ciphertext size are unchanged.

Unlike the system of Section 3.1, decryption requires a randomization value w ∈ Zp. This
randomization ensures that for any i ∈ S the pair (d̂0, d̂1) is chosen from the following distribution(

g−1
n+1 ·

(
v · gVSIG

1 ·
∏
j∈S

gn+1−j

)r
, gr

)
where r is uniform in Zp. Note that this distribution is independent of i implying that all members
of S generate a sample from the same distribution. Although this randomization slows down
decryption by a factor of two, it is necessary for the proof of security.

13

Before proving security we briefly recall that a signature scheme (SigKeyGen,Sign,Verify) is
(t, ε, qS) strongly existentially unforgeable if no t-time adversary who makes at most qS signature
queries is able to produce some new (message,signature) pair with probability at least ε. A complete
definition is given in, e.g., [CHK04]. The following theorem proves chosen ciphertext security.

Theorem 5.1. Let G be a bilinear group of prime order p. For any positive integer n, the broadcast
encryption system above is (t, ε1 + ε2, n− 1, qD) CCA-secure assuming the decision (t, ε1, n)-BDHE
assumption holds in G and the signature scheme is (t, ε2, 1) strongly existentially unforgeable.

Proof. Suppose there exists a t-time adversary, A, such that AdvBrA,n−1 > ε1 + ε2. We build an
algorithm, B, that has advantage ε1 in solving the n-BDHE problem in G. Algorithm B takes as
input a random n-BDHE challenge (g, h, ~yg,α,n, Z), where ~yg,α,n = (g1, . . . , gn, gn+2, . . . , g2n) and Z

is either e(gn+1, h) or a random element of G1 (recall that gi = g(αi)). Algorithm, B, proceeds as
follows.

Init. Algorithm B runs A and receives the set S∗ of users that A wishes to be challenged on.

Setup. B needs to generate a public key PK and private keys di for i 6∈ S∗. Algorithm B first runs
the SigKeyGen algorithm to obtain a signature signing key K∗

SIG and a verification key V ∗
SIG ∈ Zp.

Next, it chooses random γ ∈ Zp and sets v = gγg
−V ∗

SIG
1

(∏
j∈S∗ gn+1−j

)−1
. It gives A the public

key
PK = (g, g1, . . . , gn, gn+2, . . . , g2n, v) ∈ G2n+1

Note that since g, α, γ are chosen uniformly at random, this public key has an identical distribution
to that in the actual construction.

Next, the adversary needs all private keys that are not in the target set S∗. For i /∈ S∗ algorithm
B computes di as

di = gγ
i · g

−V ∗
SIG

1+i ·
∏

j∈S∗

(gn+1−j+i)−1

Indeed, we have that

di =
(

gγ · g−V ∗
SIG

1 ·
∏

j∈S∗

(gn+1−j)−1

)(αi)

= v(αi)

as required. The important thing to note is that since i /∈ S∗ algorithm B has all the necessary
values to compute di.

Query phase 1. Algorithm A issues decryption queries. Let (u, S, Hdr) be a decryption query
where S ⊆ S∗ and u ∈ S. Let Hdr =

(
(C0, C1), σ, VSIG

)
. Algorithm B responds as follows:

1. Run Verify to check the signature σ on (C0, C1) using the verification key VSIG. If the signature
is invalid, B responds with ‘?’.

2. If VSIG = V ∗
SIG algorithm B outputs a random bit b

R← {0, 1} and aborts the simulation.

14

3. Otherwise, the challenger picks a random r ∈ Zp and sets

d̂1 = gr · g1/(VSIG−V ∗
SIG)

n

d̂0 = d̂γ
1 · g

r(VSIG−V ∗
SIG)

1 ·
∏

j∈S∗\S

g−r
n+1−j ·

∏
j∈S∗\S

g
−1/(VSIG−V ∗

SIG)
2n+1−j

4. B responds with K = e(d̂1, C1)/e(d̂0, C0).

To see that B’s response is as in a real attack game define r̃ = r + αn

VSIG−V ∗
SIG

and observe that

d̂0 = g−1
n+1 · (v · g

VSIG
1 ·

∏
j∈S

gn+1−j)r̃ and d̂1 = gr̃

Furthermore, since r is uniform in Zp we know that r̃ is uniform in Zp. Thus, B’s response is
identical to Decrypt(S, u, du,Hdr, PK), as required.

Challenge. To generate the challenge, B computes

C = (h, hγ) ∈ G2

Hdr∗ =
(
C, Sign(C,K∗

SIG), V ∗
SIG

)
It then randomly chooses a bit b ∈ {0, 1} and sets Kb = Z and picks a random K1−b in G1. It gives
(Hdr∗,K0,K1) as the challenge to A.

We claim that when Z = e(gn+1, h) (i.e. the input to B is an n-BDHE tuple) then (Hdr∗,K0,K1)
is a valid challenge to A as in a real attack. To see this, write h = gt for some (unknown) t ∈ Zp.
Then,

hγ = gγt =
(

gγ · (gV ∗
SIG

1

∏
j∈S

gn+1−j)−1 · (gV ∗
SIG

1

∏
j∈S

gn+1−j)
)t

= (v · gV ∗
SIG

1 ·
∏
j∈S

gn+1−j)t

Therefore, by definition, (h, hγ) is a valid encryption of the key e(gn+1, g)t. Furthermore, e(gn+1, g)t =
e(gn+1, h) = Z = Kb and hence (Hdr,K0,K1) is a valid challenge to A.

On the other hand, when Z is random in G1 (i.e. the input to B is a random tuple) then K0,K1

are just random independent elements of G1.

Query phase 2. Same as in query phase 1.

Guess. The adversary, A outputs a guess b′ of b. If b′ = b the algorithm B outputs 0 (indicating
that Z = e(gn+1, h)). Otherwise, it outputs 1 (indicating that Z is random in G1).

We see that if (g, h, ~yg,α,n, Z) is sampled from RBDHE then Pr[B(g, h, ~yg,α,n, Z) = 0] = 1
2 . Now,

let abort be the event that B aborted during the simulation. Then, when (g, h, ~yg,α,n, Z) is sampled
from PBDHE we have∣∣ Pr[B(g, h, ~yg,α,n, Z) = 0]− 1

2

∣∣ ≥ AdvBrA,n−1 − Pr[abort] > (ε1 + ε2)− Pr[abort]

15

The first inequality follows from the fact that when (g, h, ~yg,α,n, Z) is sampled from PBDHE the
simulation is perfect when B does not abort. It now follows that B has advantage at least ε1 + ε2−
Pr[abort] in solving n-BDHE.

To conclude the proof of Theorem 5.1 it remains to bound the probability that B aborts the
simulation as a result of one A’s decryption queries. We claim that Pr[abort] < ε2. Otherwise one
can useA to forge signatures with probability at least ε2. Briefly, we can construct another simulator
that knows the private key, γ, but receives K∗

SIG as a challenge in an existential forgery game. In
the above experiment, A causes an abort by submitting a query that includes an existential forgery
under K∗

SIG on some ciphertext. Our simulator is able to use this forgery to win the existential
forgery game. Note that during the game the adversary makes only one chosen message query to
generate the signature needed for the challenge ciphertext. Thus, Pr[abort] < ε2.

It now follows that B’s advantage is at least ε1 as required. This completes the proof of
Theorem 5.1.

Note that the proof of Theorem 5.1 does not use the random oracle model implying that the
system is chosen-ciphertext secure in the standard model.

We also note that instead of the signature-based method of [CHK04] we could have used the
more efficient MAC-based method of [BK04]. We chose to present the construction using the
signature method to simplify the proof. The MAC-based method would also work.

6 Conclusions and Open Problems

We presented the first fully collusion resistant broadcast encryption scheme with constant size
ciphertexts and private keys for arbitrary receiver sets. In Section 5 we built a chosen-ciphertext
secure broadcast system with the same parameters. A generalization of our basic scheme gave us
a tradeoff between public key size and ciphertext size. With the appropriate parametrization we
achieve a broadcast encryption scheme with O(

√
n) ciphertext and public key size. We discussed

several applications such as encrypted file systems and content protection.

We leave as an open problem the question of building a public-key broadcast encryption system
with the same parameters as ours which is secure against adaptive adversaries. We note that any
non-adaptive scheme that is (t, ε, n) secure is also (t, ε/2n, n) secure against adaptive adversaries.
However, in practice this reduction is only meaningful for small values of n.

Another problem is to build a tracing traitors system [CFN94] with the same parameters as our
system. Ideally, one could combine the two systems to obtain an efficient trace-and-revoke system.
Finally, it is interesting to explore alternate systems with similar performance that can be proved
secure under a weaker assumption.

References

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID identity based encryption without
random oracles. In Proceedings of Eurocrypt 2004, LNCS, pages 223–238. Springer-
Verlag, 2004.

[BBG05] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with constant
size ciphertext. In Proceedings of Eurocrypt ’05, 2005. to appear.

16

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages 213–29.
Springer-Verlag, 2001.

[BK04] Dan Boneh and Jonathan Katz. Improved efficiency for CCA-secure cryptosystems
built using identity based encryption. Submitted for publication, 2004.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324:71–90, 2003.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Proceedings of Crypto
’94, volume 839 of LNCS, pages 257–270. Springer, 1994.

[CGI+99] Ran Canetti, Juan Garay, Gene Itkis, Daniele Micciancio, Moni Naor, and Benny
Pinkas. Multicast security: A taxonomy and some efficient constructions. In Proc.
IEEE INFOCOM’99, volume 2, pages 708–716, New York, NY, March 1999. IEEE.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. In Proceedings of Eurocrypt 2004, LNCS, pages 207–222, 2004.

[CMN99] Ran Canetti, Tal Malkin, and Kobbi Nissim. Efficient communication-storage tradeoffs
for multicast encryption. In Proceedings of Eurocrypt 1999, pages 459–474, 1999.

[DF02] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless receivers.
In Proceedings of the Digital Rights Management Workshop 2002, volume 2696 of LNCS,
pages 61–80. Springer, 2002.

[DF03] Y. Dodis and N. Fazio. Public key broadcast encryption secure against adaptive chosen
ciphertext attack. In Workshop on Public Key Cryptography (PKC), 2003.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short
proofs and keys. In Proceedings of the Workshop on Theory and Practice in Public Key
Cryptography 2005, 2005.

[FN93] A. Fiat and M. Naor. Broadcast encryption. In Proceedings of Crypto ’93, volume 773
of LNCS, pages 480–491. Springer-Verlag, 1993.

[Gem97] Peter Gemmel. An introduction to threshold cryptography. RSA CryptoBytes, 2(3):7–
12, 1997.

[GSMB03] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing remote untrusted
storage. In Proceedings of the Internet Society (ISOC) Network and Distributed Systems
Security (NDSS) Symposium, pages 131–145, 2003.

[GST04] M. T. Goodrich, J. Z. Sun, , and R. Tamassia. Efficient tree-based revocation in groups
of low-state devices. In Proceedings of Crypto ’04, volume 2204 of LNCS, 2004.

[GSW00] Juan A. Garay, Jessica Staddon, and Avishai Wool. Long-lived broadcast encryption.
In CRYPTO ’00: Proceedings of the 20th Annual International Cryptology Conference
on Advances in Cryptology, pages 333–352. Springer-Verlag, 2000.

17

[GSY99] Eli Gafni, Jessica Staddon, and Yiqun Lisa Yin. Efficient methods for integrating
traceability and broadcast encryption. In CRYPTO ’99: Proceedings of the 19th An-
nual International Cryptology Conference on Advances in Cryptology, pages 372–387.
Springer-Verlag, 1999.

[HS02] D. Halevy and A. Shamir. The lsd broadcast encryption scheme. In Proceedings of
Crypto ’02, volume 2442 of LNCS, pages 47–60, 2002.

[JN01] Antoine Joux and Kim Nguyen. Separating decision Diffie-Hellman from Diffie-Hellman
in cryptographic groups. Cryptology ePrint Archive, Report 2001/003, 2001. http:
//eprint.iacr.org/.

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Wieb Bosma,
editor, Proceedings of ANTS IV, volume 1838 of LNCS, pages 385–94. Springer-Verlag,
2000.

[KRS+03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, QianWang, and Kevin Fu. Plutus:
Scalable secure file sharing on untrusted storage. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST), 2003.

[NNL01] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In Proceedings of Crypto ’01, volume 2139 of LNCS, pages 41–62, 2001.

[NP00] M. Naor and B. Pinkas. Efficient trace and revoke schemes. In Financial cryptography
2000, volume 1962 of LNCS, pages 1–20. Springer, 2000.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Proceed-
ings of Eurocrypt 1997. Springer-Verlag, 1997.

[SM03] Alan T. Sherman and David A. McGrew. Key establishment in large dynamic groups
using one-way function trees. IEEE Trans. Softw. Eng., 29(5):444–458, 2003.

[ST98] Doug R. Stinson and Tran Van Trung. Some new results on key distribution patterns
and broadcast encryption. Des. Codes Cryptography, 14(3):261–279, 1998.

[Sti97] Doug R. Stinson. On some methods for unconditionally secure key distribution and
broadcast encryption. Des. Codes Cryptography, 12(3):215–243, 1997.

[SW98] D. R. Stinson and R. Wei. Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM J. Discret. Math., 11(1):41–53, 1998.

[WGL98] C. K. Wong, M. Gouda, and S. Lam. Secure group communications using key graphs.
In Proceedings of SIGCOMM ’98, 1998.

[WHA97] D.M. Wallner, E.J. Harder, and R.C. Agee. Key management for multiast: Issues and
architectures. IETF draft wallner-key, 1997.

A Threshold Key Generation

In the file system application of Section 4.1 the administrator hands private keys to users. Note
that the administrator can therefore decrypt all files on disk. A standard approach for mediating

18

the risk of a single trusted administrator is using threshold cryptography [Gem97]. We briefly
sketch how the administrator’s secret key γ, where v = gγ , can be broken into m shares so that a
private key di can be derived from t of them in a threshold fashion. For simplicity we assume a
trusted dealer generates the m shares of γ.

Setup. Let G be a bilinear group of order p. Pick a random generator g of G and random
α, γ ∈ Zp and, as usual, define gi = g(αi) and v = gγ ∈ G. Output the public key PK =
{g, g1, . . . , gn, gn+2, . . . , g2n, v} as in Section 3.1.

Next, the dealer generates m shares of γ. We use Shamir secret sharing to generate the shares.
Let f ∈ Zp[x] be a random polynomial of degree t − 1 satisfying f(0) = γ. For j = 1, . . . ,m the
j’th share of γ is defined as sj = f(j) ∈ Zp. Note that for any subset of t shares {s1, . . . , st} we
have that γ =

∑t
i=1 λisi where λi are the appropriate Lagrange interpolation coefficients.

Now, suppose user k ∈ {1, . . . , n} wants her private key dk = gγ
k ∈ G. She picks t administrator

servers to help her generate dk. Without loss of generality we assume she picks servers 1, . . . , t. To
generate dk she does the following:

1. For i = 1, . . . , t she receives gsi
k from the ith administrator.

2. She computes her private key as dk =
∏t

i=1(g
si
k)λi . Then dk = g

∑t
i=1 λisi

k = gγ
k as required.

As usual, we assume all these messages are sent between the administrators and a user are over a
private channel.

19

