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Abstract. Recently there has been a great deal of interest in the power
of \Quantum Computers" [4, 15, 18]. The driving force is the recent
beautiful result of Shor that shows that discrete log and factoring are
solvable in random quantum polynomial time [15]. We use a method
similar to Shor's to obtain a general theorem about quantum polyno-
mial time. We show that any cryptosystem based on what we refer to as
a `hidden linear form' can be broken in quantum polynomial time. Our
results imply that the discrete log problem is doable in quantum poly-
nomial time over any group including Galois �elds and elliptic curves.
Finally, we introduce the notion of `junk bits' which are helpful when
performing classical computations that are not injective.

1 Introduction

The general discrete log problem can be phrased as follows: Let G be a �nite
group for which the group operation can be computed e�ciently( given x; y 2 G
we can �nd x + y). Let h : Z ! G be a homomorphism from the integers to
G which can also be computed e�ciently. Given � = h(�) the general discrete
log problem is to �nd the smallest positive integer x such that h(x) = �. For
example, in the standard discrete log problem over Z�p the homomorphism h
is de�ned by h(�) = g� (mod p) for some generator g of Z�p. Here Z�p is the
multiplicative group of residues modulo a prime p.

A large variety of cryptosystems are based on the discrete log problem for
various groups G. Speci�c groups that are being used are the multiplicative
groups of large Galois �elds [6], the multiplicative group of residues modulo a
composite number [9, 10], elliptic curves over �nite �elds [11, 7] and the class
group of imaginary quadratic �elds [17].

Recently Shor [15] showed that the discrete log problem where G = Z�p can
be solved in polynomial time on a quantum machine. We generalize this result
to show that any type of cryptosystem which is based on what we refer to as
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a \hidden linear form" can be broken in quantum polynomial time(QP). An
immediate application of this result shows that the general discrete log problem
for any �nite group G can be solved in QP. Thus, QP can break any of the
cryptosystems discussed above.

Simon [14] observed that in QP it is possible to �nd a period of a function
de�ned over Zn2 . We show that it is possible to detect the period of any function
de�ned over Z, even when the function is not one to one in its fundamental
domain. Our method is similar to Shor's factoring algorithm and is crucial for
solving the general discrete log problem.

These results raise a natural question of trying to detect periods over arbi-
trary groups G. The problem can be stated as follows: given a function f : G! D
for some range D, �nd an element g 2 G such that f(x+g) = f(x) for all x 2 G.
For instance, the problem of detecting periods of functions over Sn is of signif-
icant importance since the problem of graph isomorphism can be reduced to
it. Fourier analysis is a natural tool to use when trying to detect a period of
a function. It is well known that one can de�ne a Fourier transform over any
group G ([13]). Now, suppose that for a given group G, the Fourier transform of
G can be computed in QP (in time polynomial in log jGj). Does this imply that
a period of the function f : G ! D can be found in QP? We have so far been
unable to resolve this general problem. However, our results can be generalized
to solve this problem for any �nite Abelian group.

We assume that the reader is familiar with the general model of quantum
computations. See [4, 15, 18] for further details.

2 Main Results

In this section we will state our main results. We begin by introducing some
terminology. A function h : Z ! S has period q if for any integer x we have
h(x+ q) = h(x). Such a function h can be regarded as a function from Zq to S.
Here Zq is the group of residues modulo q. We say that the function h has order
at most m provided that h does not map more than m elements of Zq to one,
i.e. all z 2 S satisfy jh�1(z) (mod q)j � m.

Let f(x1; :::; xk) be a function from the integers Zk to some arbitrary range
S. Say that f has hidden linear structure over q provided there are integers
�2; :::;�k and some function h with period q so that

f(x1; :::;xk) = h(x1 + �2x2 + :::+ �kxk)

for all integers x1; :::;xk. We say that f has order at most m if h has order at
most m.

Theorem1. Suppose that f(x1; :::;xk) is a function which has a hidden linear
structure over q of order at most m. We impose two technical conditions:

1. Let n = log q then m and k are at most nO(1).
2. Let p be the smallest prime divisor of q; then m < p.



For such a function f , in random quantum polynomial time in n we can recover
the values of all the �2; :::; �n (mod q) from an oracle for f .

The point of this theorem is that random quantum polynomial time is able
to solve a kind of cryptanalysis problem. With just the ability to evaluate the
function f we can �nd the \secret" linear structure of f . The two restrictions
on the function f are critical. The �rst one restricts m, the order of h. This is
crucial since for example, if h is a constant function then trivially it is impossible
to recover the values of the �'s.

The second restriction on m ensures that the �2; : : : ; �n are unique modulo
q. In fact, as we shall see in Section 6, this condition enables us to test if a
proposed solution �0

2; : : : ; �
0
n is the correct one. Note that when q has no small

factors the second restriction is subsumed by the �rst.
Another important problem which can be solved in quantum polynomial time

is that of determining the period of a function.

Theorem2. Suppose the function h : Z ! S is periodic. Let q be the small-
est positive period of h and assume h has order at most m. We impose two
conditions:

1. Let n = log q then m is at most nO(1).
2. Let p be the smallest prime divisor of q; then m < p.

For such a function h, in random quantum polynomial time in n it is possible to
recover the period q of h.

The two technical conditions are required so that we will be able to test that
the output of the algorithm is correct. Theorem 2 shows that the value of q need
not be known for Theorem 1 to hold. Indeed, as we shall see, in many important
applications the value of q is not known.

3 Applications

There are several applications of these theorems. First, we generalize the original
results of Shor [15] to show how to compute discrete log over an arbitrary group.
To achieve this we show how to phrase the general discrete log problem as a
hidden linear form.

Let h : Z ! G be a homomorphism and let � = h(�). Given � we wish to
�nd the smallest positive integer x such that � = h(x). Let d be the order of
h(1) in the group G. Clearly, the homomorphism h has period d. Note that in
general d in unknown, e.g. when G = Z�

n for some composite n or when G is the
class group of a quadratic �eld.

De�ne the function f : Z2 ! G as f(x; y) = h(x + �y). By the remarks
above, the function f has a hidden linear form over d of order 1. An important
observation is that the function f can be e�ciently evaluated as follows:

f(x; y) = h(x)h(�y) = h(x)h(�)y = h(x)�y :



To solve the general discrete log problem we apply the following two steps:
�rst use Theorem 2 to �nd d, the period of the homomorphism h. The theorem
can be applied since the function h has order 1, i.e. m=1. Then apply Theorem 1
to �nd an integer �0 < d such that �0 � � (mod d). Since �0 is the smallest
positive integer such that h(�) = h(�0), it is the required solution to the general
discrete log problem. We have proved the following corollary to Theorems 1
and 2.

Corollary 3. The general Discrete Log problem can be solved in random quan-
tum polynomial time.

This shows that we can �nd Discrete Log over composite modulus, Galois
�elds, and elliptic curves. An immediate corollary of Theorem 2 is the following.

Corollary 4. Factoring can be solved in random quantum polynomial time.

Proof. Suppose we wish to factor an n bit odd integer q. For an element g 2 Z�
q ,

de�ne the function h : Z ! Z�
q by h(x) = g� (mod q). Let d be the order of g

in Z�
q then the function h has period d and oder 1, i.e. m=1. Theorem 2 can be

used to �nd the period of h and hence the order of g. The ability to �nd the
order of an element in Z�

q enables us to factor as is described in [15]. ut

Another application of Theorem 1 concerns what are sometimes called \gar-
bled" linear equations. Consider the following family of linear equations over
Zq:

�1x11 + : : :�nx1n = y1 + e1
...

�1xm1 + : : :�nxmn = ym + em

where e1; : : : ; em are unknown \errors" and the x's are known values. The gen-
eral garbled linear equation problem is to �nd the value of the �'s given m� n
large enough and given that most of the errors are equal to 0. This is a known
di�cult problem. However, suppose that the errors are determined by some poly-
nomial time rule, i.e. some polynomial time function e() satis�es e(yi) = ei. Then
the function

f(x1; : : : ; xn) = h(�1x1 + : : :+ �nxn) where h(y) = y + e(y)

has a hidden linear structure. By Theorem 1 we can, in random quantum poly-
nomial time, �nd the �'s provided h does not collapse too much. Note, that we
assume that we have an oracle that given x1; : : : ; xn supplies us with the value
of y + e(y). Of course we do not assume we know when e(y) = 0 or not.



4 Basic Lemmas

Before we can prove Theorem 1 we need several lemmas. The following lemma is
the main lemma which enables us to handle the fact that hmay not be one-to-one
in Theorems 1 and 2.

Lemma5. Let W be some integer and let R < W . Then for any integers
b1; : : : ; bm there are at least R=m2 integers 0 � x � R satisfying�����

mX
k=1

exp(
2�ixbk
W

)

����� > 1

2
:

Lemma 5 relies on the following lemma.

Lemma6. Let �1; : : : ; �m be m complex numbers each of norm 1. Let Sk =Pm
j=1 �

k
j then there exists a 1 � k � m such that jSkj > 1

2 .

Proof. Assume that for all k = 1; : : : ;m � 1 we have jSkj � 1
2 . We show that

this implies that jSmj > m=2 proving the lemma. Let Ck be the m'th symmetric
polynomial in �1; : : : ; �m, i.e.

Ck =
X

1�j1<j2<:::<jk�m
�j1 � �jk :

First we prove by induction on k that jCkj � 1
2 for k = 1; : : : ;m � 1. For

k = 1 this is clear since jC1j = jS1j � 1
2 . Now, assume that jCjj � 1

2 for
j = 1; : : : ; k � 1 < m � 1. We show that jCkj � 1

2 . For k > 1 de�ne

Ak = C1Sk�1 � C2Sk�2 + : : :+ (�1)kCk�1S1 :

The Newton relations (see [8]) state that Sk � Ak + (�1)kkCk = 0 for k � m.
The induction hypothesis implies that jAkj < k�1

2 since the norm of each term
in the sum is less than 1=2. Hence,

jCkj = 1

k
jSk � Akj � 1

k
(jSkj+ jAkj) � 1

2
:

To conclude the proof of the lemma we show that jSmj > m=2. The fact that
for k = 1; : : : ;m� 1 we have jSkj � 1

2
and jCkj � 1

2
implies that jAmj � m=2.

Furthermore, Since Cm =
Qm

k=1 �k we know that jCmj = 1. Hence, by Newton's
relations

jSmj = jAm � (�1)mmCmj � jmCmj � jAmj � m� m

2
= m=2 :

ut



Proof of Lemma 5. De�ne

�(x) =

�����
mX
k=1

exp(
2�ixbk
W

)

����� :

By Lemma 6, for any x, one of �(x); �(2x); : : : ; �(mx) must be bigger than
1
2 . Observe that the integers f0; : : : ; Rg can be partitioned into R=m2 distinct
sequences of the form fx; 2x; :: : ;mxg. Hence, the lemma follows. ut

The following lemma provides a lower bound on the sum of roots of unity
which are close to 1.

Lemma7. Suppose that j�kj � � < 1 are real numbers for k = 1; : : : ;m. Then,

��� mX
k=1

exp(i �k)
��� � (1� �2)m :

Proof. This follows directly from the fact that the real part of exp(i�i) is at least
cos(�) > 1� �2. ut

5 An Overview of the Proofs

Before we present the proofs of Theorems 1 and 2 we will outline a general
paradigm for proving that a problem of size n can be solved in quantum poly-
nomial time. We will describe a certain quantum experiment E . Each time we
perform this experiment we will get some observable value. Let V be some subset
of all the possible observable values. We will arrange things so that the following
are true:

1. Given any value from V we can in polynomial time (on a conventional com-
puter) solve the given problem.

2. The probability of observing a speci�c element of V is at least 1=Wnc for
some integer W and constant c.

3. The cardinality of the set V is at least W=nc
0
for some constant c0.

We refer to the observables in V as the \good" observables. By 2 and 3 above,
The probability of sampling an observable from V is at least 1=nO(1). Once such
an observable is found it will be used to solve the given problem. Hence, in
expected polynomial time the problem will be solved.

An important point is that we do not know which observables lie in the set
V. When an observable is observed, we try to use it to solve the hidden linear
problem as if it is in V. Then, we check that the computed result works correctly.
If it does we are done; otherwise, we try again.



6 The Proof of Theorem 1

We now turn to the proof of Theorem 1. We will prove the theorem for a hidden
linear form with two variables f (x; y) = h(x + �y). This is enough to prove
the general theorem, since we can �nd all the �'s one by one by setting all the
irrelevant variables to zero.

Let f(x; y) = h(x + �y) be a hidden linear form over q, an n-bit number.
The assumptions of Theorem 1 state that h has order at most m = nd for some
constant d and if p is the smallest prime divisor of q, then m < p. Our objective
is to �nd �.

We �rst show that given an �0 it is easy to test if � � �0 (mod q). This is
the only place where we use the fact that m < p. Let A�0 be the set of pairs
f(�k�0; k)g for k = 0; : : : ;m.

Lemma8. If for all (x; y) 2 A�0 we have f(x; y) = h(x + �0y) then � � �0

(mod q).

Proof. Observe that for all (x; y) 2 A�0 we have x+�0y = 0. Hence, all (x; y) 2
A�0 satisfy h(x+ �y) = f(x; y) = h(0). Now, suppose � 6� �0 (mod q). For two
distinct pairs (x; y) and (x0; y0) in A�0 we have that x + �y 6� x0 + �y0. This
follows from the fact that

� 6� �0 � x� x0

y0 � y
(mod q) :

The division by y � y0 is valid since jy � y0j � m < p where p is the smallest
prime divisor of q. Hence, y � y0 is relatively prime to q and hence invertible.
This shows that h maps the m+1 pairs in A�0 to the same value, h(0). However,
by assumption h had order at most m. This contradiction proves the lemma. ut

6.1 The Quantum Experiment

Let W1 < W2 < : : : be the �rst primes that are relatively prime to q. De�ne
W =

Qk
i=1Wi as the �rst product that exceeds maxf2q;mqg. Note that W and

q are relatively prime. Since m < nO(1) we have W < qnO(1).
Let FW be the Fourier transform unitary matrix:

(FW )x;y =
1p
W

e2�ixy=W :

Shor shows that for the W constructed above the transformation FW can be
carried out by a quantum machine in polynomial time. In general this holds
whenever W is smooth, i.e. contains no large prime factors,

The quantum experiment E is as follows: First, the quantum machine writes
two random numbers r1; r2 from Zq on its tape. So the state after this �rst step
is

1

q

X
r1;r2

jr1; r2 > :



The algorithm next computes the function f in a reversible manner so that the
machine is in state

1

q

X
r1;r2

jr1; r2; f(r1; r2) > :

We now use the mapping (FW )x;y = e2�ixy=W to send each ri to si for i = 1; 2
with amplitude 1p

W
exp(2�irisi=W ). This places the machine in the state

1

qW

X
exp(2�i(r1s1 + r2s2)=W )js1; s2; f(r1; r2) >

where the sum is over all r1; r2 and s1; s2. Thus, the machine will end up in state
js1; s2; b > with probability��� 1

qW

X
exp(2�i(r1s1 + r2s2)=W )

���2
where the sum is over all r1; r2 such that f(r1; r2) = b.

We now describe the special set of observables V. We denote the residue of
x modulo W by fxgW . The observable (s1; s2; b) is in V provided the following
properties are satis�ed:

1. s1q �W ;
2. fs1qgW � W=m;
3. Let C = s2 � s1� + �

q
fs1qgW . Then C = tW + � for some integer t and

j�j < 1.

4.
���Pm

k=1 exp(2�ibks1=W )
��� � 1=2 where b1; : : : ; bm are distinct elements so

that h(bk) = b for k = 1; : : : ;m. Recall that m is the order of the function
h.

In what follows we will refer to these conditions as (1),(2),(3) and (4). It re-
mains to prove that the set V satis�es the three properties speci�ed in Section 5.

6.2 Using a \Good" Observable

Let (s1; s2; b) be an observable from the set V. We show how this observable can
be used to �nd �. Condition (3) implies that

s2 � �

q
(s1q � fs1qgW ) = tW + � :

Write s1q = vW + u with 0 � u < W . Observe that v = s1q�fs1qgW
W . Since t is

an integer, and j�j < 1, dividing the above equality by W leads to s2W � �
v

q

 < 1

W

where kxk is the fractional part of x, i.e. minjx+ ij over all integers i.



Let s be the integer which makes the values of s
q the closet to

s2
W . That is, sq

is the fraction we get when we round s2
W to the closest rational with denominator

q. Since W > 2q it is not di�cult to see that for the above inequality to hold we
must have  sq � �

v

q

 = 0 :

This means that s � �v � 0 (mod q). By condition (1) we know that v � 1.
Hence, when q and v are relatively prime we can easily recover �.

When q and v are not relatively prime we proceed as follows: let z =
q= gcd(q; v). Observe that v is invertible modulo z and let �0 = s=v (mod z).
Clearly �0 � � (mod z). For 0 � �0 < z we have that �0 � � (mod z) if and
only if �0 qz � � q

z (mod q). Hence, it is easy to check that the resulting �0 satis�es
�0 � � (mod z) by using Lemma 8 on the function f 0(x; y) = f(x; qzy).

Once a pair �0; z satisfying �0 � � (mod z) is found, write � = �0 + zk.
De�ne a new function f 00(x; y) = f(zx � �0y; y). Then

f 00(x; y) = h(zx� �0y + �y) = h(z(x+ ky)) :

Hence, f 00(x; y) has a hidden linear structure over q=z. We can now recursively
apply the algorithm to f 00 to �nd k and thus �nd � (mod q).

6.3 The Amplitude of a \Good" Observable

For an observable (s1; s2; b), we denote by �(s1; s2; b) the probability of observing
(s1; s2; b) at the end of the quantum experiment. To simplify the exposition in
this section we assume that the order of the function f satis�es m � 10. This is
not a restriction since a function which has order less than 10 may be regarded
as a function with order 10.

Let (s1; s2; b) be an observable from the set V. Recall that the probability of
this observation is

�(s1; s2; b) =

���� 1

qW

X
exp

�
2�i

W
(r1s1 + r2s2)

�����2
where the sum is over all r1; r2 such that f(r1; r2) = b. The key is that f has
a hidden linear structure, i.e. f(r1; r2) = b if and only if h(r1 + �r2) = b. Since
h need not be one to one there are distinct b1; ::; bm0 so that h(bk) = b for
k = 1; : : : ;m0 and m0 � m. WLOG we assume m = m0. Thus, �(s1; s2; b) is
equal to

1

q2W 2

��� mX
k=1

X
exp(2�i(r1s1 + r2s2)=W )

���2
where the inner sum is over all r1; r2 so that r1 � bk � �r2 mod q. Since 1 �
r1 < q, given an r2 the value of r1 is equal to bk � �r2� qb(bk ��r2)=qc. Thus,
the key is to bound the absolute value of the following double summation,

mX
k=1

exp(2�ibks1=W )

q�1X
r2=0

exp

�
2�i

W
(r2s2 � �s1r2 � s1qb(bk � �r2)=qc)

�
:



First we bound the inner sums. For a given k, rewrite the inner sum as

q�1X
r2=0

exp

�
2�i

W
r2(s2 � �s1 +

�

q
fs1qgW )

�
exp

�
�2�i

W

�
�r2
q

+

�
bk � �r2

q

��
fs1qgW

�
:

By condition (3), and the fact that r2=W < q=W < 1=m, the argument of
the �rst exponent is always less than 2�i=m. For the second exponent we know
bk < q. The fact that all reals A;B > 0 satisfy jB + bA�Bcj � bAc+ 1 implies
that �����r2q +

�
bk � �r2

q

����� � �
bk
q

�
+ 1 � 1 :

Combining this with condition (2) we see that the argument of the second ex-
ponent is always less, in absolute value, than 2�i=m. Hence, the total exponent
is less than 4�i=m. Using Lemma 7, we get that the inner sum is always bigger
than

�
1� O( 1

m2 )
�
q. On the other hand the inner sum is clearly less than q. It

follows that �(s1; s2; b) is equal to

�(s1; s2; b) =
1

W 2

��� mX
k=1

(1� �k) exp(2�ibks1=W )
���2

where 0 � �k � O( 1
m2 ) for all k = 1; : : : ;m. Now, since the �k are small it is

not di�cult to see that condition (4) implies that �(s1; s2; b) > 
( 1
W2 ). Hence,

a \good" observable (s1; s2; b) has the required probability.

6.4 Cardinality of Set of \Good" Observables

The last step is to show that V has the required cardinality. First, observe that
for any s1 there exists an s2 satisfying condition (3). This follows by setting s2 to
the integer closest to �s1+

�
q
fs1qgW . We only need to lower bound the number

of s1 satisfying

1. s1q �W ;
2. fs1qgW � W=m;

3.
���Pm

k=1 exp(2�ibks1=W )
��� � 1=2

We will show that the number of s1 satisfying conditions (2) and (3) is at least
W=m3. The number of s1 violating condition (1) is at most W=q which is negli-
gible in comparison. Hence, throwing away the s1 that violate condition (1) will
make no di�erence.

Let x = qs1 (mod W ) and ck = bkq
�1 (mod W ). Since q and W are rela-

tively prime by construction, q�1 exists modulo W . Conditions (2) and (3) can
now be rewritten as

1. 0 � x � W=m

2.
���Pm

k=1 exp(2�ickx=W )
��� � 1=2



By Lemma 5, the number of x that satisfy these two conditions is at leastW=m3.
Since m < nO(1), the number of such x is at least W=nO(1).

Hence, the total number of pairs s1; s2 satisfying conditions (1),(2),(3) and
(4) in the de�nition of V is W=nO(1). Putting this together with the fact that
there are q possible value for b, we get that the number of triplets (s1; s2; b) in
V is qW=nO(1). By de�nition of W we know that W = qnO(1). Hence, jVj >
W 2=nO(1), which is what we had to show.

7 The Proof of Theorem 2

Say we are given a function h : Z ! S which is periodic. We wish to �nd the
smallest period q of h. Let n = log q. We assume that h is of order at most m
where m = nO(1).

Without loss of generality we can assume that we are given an upper bound
q0 on q such that q0 < 2q. This upper bound can be found by guessing some
initial q0 and running the algorithm. If the algorithm fails to �nd the period,
double q0 and rerun the algorithm. After at most n steps q0 will be the required
upper bound.

Let p be the smallest prime factor of q. As in the previous section, the as-
sumption of Theorem 2 that m < p implies that when the algorithms outputs q0

as the period, we can test that q = q0.

7.1 The Quantum Experiment

Let W be a smooth number constructed as in the previous section such that
W > maxfq02;mq02g and W < q02nO(1). The quantum experiment E is as
follows: First, the quantum machine writes a random numbers r from ZW on its
tape. So the state after this �rst step is

1p
W

X
r

jr > :

The algorithm next computes the function h in a reversible manner so that the
state of the machine is now

1p
W

X
r

jr; h(r) > :

We now use the Fourier unitary transformation FW to send r to s with amplitude
1p
W

exp(2�irs=W ). It places the machine in the state

1

W

X
r;s

exp(2�irs=W )js; h(r) > :

The probability that the machine ends in the state js; b > is��� 1
W

X
exp(2�irs=W )

���2



where the sum is over all r such that h(r) = b.
As before, we now describe the special set of observables V. An observable

(s; b) is in V provided the following properties are satis�ed:

1. fsqgW < q=m;

2.
���Pm

k=1 exp(2�ibks=W )
��� � 1=2 where b1; : : : ; bm are distinct elements so that

h(bk) = b for k = 1; : : : ;m. Recall that m is the order of the function h.

It remains to prove that the set V satis�es the three properties speci�ed in
Section 5:

1. Given an observable (s; b) in V Condition (1) implies that we can �nd a non
trivial factor z of q using a method similar to Shor's [15]. We can then de�ne
a new function h0(x) = h(zx) which will have period q=z. The algorithm can
be applied recursively on h0 to recover q=z. This shows that given a \good"
observable we can �nd the period q.

2. Using condition (2) and an argument similar to the one in the previous
section we can show that the amplitude of a \good" observable is 
( 1

q2
).

3. Using Lemma 5 we can show that the cardinality of V is at least q2=nO(1).

8 Junk Bits

In both algorithms described in the previous sections the �rst step was to pick
a random number between 1 and q � 1 for some integer q. This means that the
machine should be in state

1p
q

q�1X
r=0

jr > :

However, when q is a large prime, this state can not be easily constructed using
a quantum circuit.

An easy method for generating a random number between 0 and q � 1 is to
pick an integer W which is the closest power of 2 to q. Then generate a random
number x (mod W ). If x < q then use x, otherwise generate a new x and repeat
this until a number in the required range is generated. This will clearly generate a
number uniformly distributed on 0; : : : ; q�1. The problem is that this procedure
can not be carried out on a quantum machine since all the \bad" samples (the
ones larger than q) can not be erased from the tape. Erasure is not a reversible
operation. Clearly the bad samples can not be left on the tape since they would
prevent the interference e�ects which are so useful in quantum computing.

Another approach is to pick some large integer W > q2 which is a power of
2. Then generate a random number x (mod W ) and compute x (mod q). The
resulting value will be exponentially close to being uniformly distributed between
0 and q � 1 which is good enough. However, as before, we run into the problem
that the map sending x to x (mod q) is not reversible. As before keeping extra
information on the tape to make this map reversible is risky since it may prevent
interference e�ects.



The solution is to keep just enough extra information on the tape so that
the computation is reversible, however the extra information on the tape should
be independent of the computation taking place. We call this extra information
Junk bits.

De�nition 9. Let f : f0; 1gn ! Y be some polynomial time computable func-
tion which is not one to one. A function J : f0; 1gn! Y 0 will be called a \junk"
function for f if the following are satis�ed:

1. The map x ! (f(x); J(x)) is one to one and polynomial time computable.
Furthermore, the inverse map is in QP;

2.
��Pr[f(x) = y j J(x) = j]� Pr[f(x) = y]

�� < 2�
(n).

Thus, the value of J(x) and f(x) should be almost independent of one an-
other. Condition (1) implies that the map sending x to (f(x); J(x)) can be
computed in QP using a result due to Bennett [2]. It should be clear that once
we have computed (f(x); J(x)), the computation can proceed to use the value
of f(x) as if J(x) was not written on the tape. The independence property will
guarantee that the interference e�ects will change by an exponentially small
amount. The full details of this method will be given in the �nal version of the
paper.

To generate a random number between 0 and q � 1 we follow the second
method. Let W > q2 be a large power of 2. Generate a random number between
0 and W � 1. We now wish to compute the function f(x) = x mod q. A possible
junk function for f is J(x) = bx=qc. It is not di�cult to see that J(x) is indeed
a junk function for f(x). Using similar methods we can show that it is possible
to generate random permutations and other random objects.

9 Conclusions and Open Problems

We have shown that QP can solve two types of problems: recovering the hidden
linear structure of a function and detecting periods over Z. Our results hold even
when the function h used is not one to one. Using both theorems we were able
to show that the discrete log problem can be solved in quantum polynomial time
over any group.

The problem of recovering the hidden linear structure can be generalized to
any ring. Similarly, the problem of detecting periods can be generalized to any
group. As was mentioned in the introduction, graph isomorphism is reducible
to the problem of detecting periods of functions de�ned over the symmetric
group Sn. This example shows the importance of these generalizations. We hope
that Fourier methods analogous to the ones used in this paper can be used to
detect periods over Sn. This will show that the graph isomorphism problem
can be solved in random quantum polynomial time. We mention that Beals [1]
has shown that the Fourier transform over the group Sn can be carried out in
quantum polynomial time.



We have also introduced the concept of Junk bits which enables quantum
machine to carry out certain non invertible functions in a way that does not
e�ect the interference patterns. A natural problem is to try and understand
which deterministic computations can be done using junk bits.

Acknowledgments

We wish to thank Robert Beals and Merrick Furst for helpful discussions about
this work.

References

1. R. Beals, Computing Fourier Transform over Sn in QP, unpublished
manuscript.

2. C. Bennett, Logical reversibility of computation, IBM J. Res. Develop. vol. 17,
1973, pp. 525-532.

3. C. Bennett, E. Bernstein, G. Brassard, U. Vazirani, Strengths and Weaknesses
of Quantum Computing, to appear.

4. E. Bernstein and U. Vazirani, Quantum Complexity Theory, Proc. 25th ACM
Symp. on Theory of Computation, 1993.

5. D. Coppersmith, An Approximate Fourier Transform Useful in Quantum Fac-
toring, IBM Research Report 19642, 1994.

6. W. Di�e and M. Hellman, New Directions in Cryptography, IEEE transactions
on Information Theory, vol. 22, no. 6, pp. 644{654, 1976.

7. N. Koblitz, Elliptic Curve Cryptosystems, Mathematics of Computations 48,
1987, pp. 203{209.

8. S. Lang, Algebra.
9. U. Maurer and Y. Yacobi,Non-interactive public-key cryptography, EuroCrypt-

91, pp.498{507, 1991.
10. K. McCurley, A Key Distribution System Equivalent to Factoring, Journal of

Cryptology, vol. 1, no. 2, pp. 95{105.
11. V. Miller, Uses of Elliptic Curves in Cryptography, In Proceedings of Crypto

1985, pp. 417{426.
12. B. Preneel, R. Govaerts, J. Vandewalle, Hash Functions Based on Block Ci-

phers: A Synthetic Approach, in Proc. of Advances in Cryptology, CRYPTO
'93.

13. J. P. Serre, Linear Representations of Finite Groups, Springer-Verlag, 1977.
14. D. Simon, On the Power of Quantum Computation, Proc. FOCS, 1994, pp.

116{123.
15. P. Shor, Algorithms for Quantum Computation, Proc. FOCS, 1994, pp. 124{

134.
16. L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1982.
17. J. Buchmann and H. Williams, A Key Exchange System Based on Imaginary

Quadratic Fields, Journal of Cryptology, vol. 1, no. 2, pp. 107{118, 1988.
18. A. Yao, Quantum Circuit Complexity, Proc. 34th IEEE Symp. on Foundations

of Computer Science, 1993, pp. 352{360.

This article was processed using the LaTEX macro package with LLNCS style


