
Hierarchical Identity Based Encryption with

Constant Size Ciphertext

Dan Boneh∗

dabo@cs.stanford.edu

Xavier Boyen†

xb@boyen.org

Eu-Jin Goh∗

eujin@cs.stanford.edu

June 20, 2005

An extended abstract of this paper appears in R. Cramer, editor, Advances in Cryptology—EURO-
CRYPT 2005, volume 3493 of Lecture Notes in Computer Science, pages 440–456, Springer, 2005.
Online as IACR ePrint Report 2005/015 or http://www.cs.stanford.edu/~xb/eurocrypt05a/.

Abstract

We present a Hierarchical Identity Based Encryption (HIBE) system where the ciphertext
consists of just three group elements and decryption requires only two bilinear map computa-
tions, regardless of the hierarchy depth. Encryption is as efficient as in other HIBE systems.
We prove that the scheme is selective-ID secure in the standard model and fully secure in the
random oracle model. Our system has a number of applications: it gives very efficient forward
secure public key and identity based cryptosystems (with short ciphertexts), it converts the NNL
broadcast encryption system into an efficient public key broadcast system, and it provides an
efficient mechanism for encrypting to the future. The system also supports limited delegation
where users can be given restricted private keys that only allow delegation to bounded depth.
The HIBE system can be modified to support sublinear size private keys at the cost of some
ciphertext expansion.

1 Introduction

An Identity Based Encryption (IBE) system [Sha84, BF01] is a public key system where the public
key can be an arbitrary string such as an email address. A central authority uses a master key
to issue private keys to identities that request them. Hierarchical IBE (HIBE) [HL02, GS02] is a
generalization of IBE that mirrors an organizational hierarchy. An identity at level k of the hierarchy
tree can issue private keys to its descendant identities, but cannot decrypt messages intended for
other identities (details are given in Section 2.1). The first construction for HIBE is due to Gentry
and Silverberg [GS02] where security is based on the Bilinear Diffie-Hellman (BDH) assumption in
the random oracle model. A subsequent construction due to Boneh and Boyen [BB04a] gives an
efficient (selective-ID secure) HIBE based on BDH without random oracles. In both constructions,
the length of ciphertexts and private keys, as well as the time needed for decryption and encryption,
grows linearly in the depth ` of the hierarchy.

There are currently two principal applications for HIBE. The first, due to Canetti, Halevi,
and Katz [CHK03], is forward secure encryption. Forward secure encryption enables users to
periodically update their private keys so that a message encrypted at period n cannot be read using
a private key from period n′ > n. To provide for T = 2t time periods, the CHK construction uses a
HIBE of depth t where identities are binary vectors of length at most t. At time n, the encryptor
encrypts using the identity corresponding to the n-th node of this depth t binary tree. Consequently,

∗Stanford University. Supported by NSF.
†Voltage Inc., Palo Alto.

1

using previous HIBE systems [GS02, BB04a], ciphertexts in this forward secure construction are of
size O(t); private keys are of size O(t2) but can be reduced to size O(t) by using updateable public
storage. The second application for HIBE, due to Dodis and Fazio [DF02], is using HIBE to convert
the NNL broadcast encryption system [NNL01] into a public-key broadcast system. Unfortunately,
the resulting public-key broadcast system is no better than simpler constructions because ciphertext
length in previous HIBE constructions is linear in the depth of the hierarchy.

Our Contribution. We present a HIBE system where the ciphertext size as well as the decryp-
tion cost are independent of the hierarchy depth `. Ciphertexts in our HIBE system are always just
three group elements and decryption requires only two bilinear map computations. Private keys in
our basic system contain ` group elements as in previous HIBE constructions.

Our system gives a forward secure encryption system with short ciphertexts consisting of only
three group elements, for any number T = 2t of time periods. With our basic HIBE system,
the private key size in this forward secure encryption system is O(t2). In Section 4 we describe
a hybrid system that borrows some features from the Boneh-Boyen HIBE [BB04a] and results in
a forward secure encryption scheme where private key size is reduced to O(t3/2) and ciphertext
size is O(

√
t). By using updateable public storage as in CHK [CHK03], private key size in these

systems can be further reduced to size O(t) and O(
√
t) respectively. In addition, instantiating the

Dodis-Fazio [DF02] system with our HIBE system results in a public-key broadcast system that is
as efficient as the NNL subset difference method.

It is worth noting that private keys in our system shrink as the identity depth increases; this
shrinkage is the opposite behavior from previous HIBE systems where private keys become larger
as we descend deeper down the hierarchy tree. This behavior leads to “limited delegation” where
an identity at depth k can be given a restricted private key that only lets it issue private keys to
descendants of limited depth (as opposed to any descendant).

Security of our system is based on the Bilinear Diffie-Hellman Inversion assumption previously
used in [BB04a, DY05, MSK02]. We describe the assumption in Section 2.3. In Section 3 we
describe our HIBE system and prove its security in the selective identity model without using
random oracles. We then observe that a selective-ID secure HIBE results in a fully secure HIBE in
the random oracle model. In Sections 4 and 5 we discuss several extensions and applications of the
system. For example, in addition to the applications already mentioned, we show how private keys
can be further compressed to sublinear size and also describe an efficient mechanism for encrypting
to the future.

2 Preliminaries

We briefly review the definition of HIBE and bilinear groups, and describe the Bilinear Diffie-
Hellman Inversion assumption in such groups.

2.1 Fully Secure HIBE Systems

Like an Identity Based Encryption (IBE) system, a Hierarchical Identity Based Encryption (HIBE)
system consists of four algorithms [HL02, GS02, BB04a]: Setup, KeyGen, Encrypt, Decrypt. In
HIBE, however, identities are vectors; a vector of dimension k represents an identity at depth k. The
Setup algorithm generates system parameters, denoted by params, and a master key master-key.
We refer to the master-key as the private key at depth 0 and note that an IBE system is a HIBE
where all identities are at depth 1. Algorithm KeyGen takes as input an identity ID = (I1, . . . , Ik)

2

at depth k and the private key dID|k−1 of the parent identity ID|k−1 = (I1, . . . , Ik−1) at depth k− 1,
and then outputs the private key dID for identity ID. The encryption algorithm encrypts messages
for an identity using params and the decryption algorithm decrypts ciphertexts using the private
key.

Chosen ciphertext security for HIBE systems is defined under a chosen identity attack where
the adversary is allowed to adaptively chose the public key on which it will be challenged. More
precisely, HIBE security (IND-ID-CCA) is defined by the following game between an adversary A
and a challenger C:

Setup: The challenger C runs the Setup algorithm and gives A the resulting system parameters
params, keeping the master-key to itself.

Phase 1: A adaptively issues queries q1, . . . , qm where query qi is one of the following:

– Private key query 〈IDi〉. C responds by running algorithm KeyGen to generate the private key
di corresponding to the public key 〈IDi〉 and sends di to A.

– Decryption query 〈IDi, Ci〉. C responds by running algorithm KeyGen to generate the private
key d corresponding to IDi. It then runs algorithm Decrypt to decrypt the ciphertext Ci

using the private key d and sends the resulting plaintext to A.

Challenge: Once A decides that Phase 1 is over, it outputs an identity ID∗ and two equal length
plaintexts M0,M1 ∈M on which it wishes to be challenged. The only restriction is that A did not
previously issue a private key query for ID∗ or a prefix of ID∗. C picks a random bit b ∈ {0, 1} and
sets the challenge ciphertext to CT = Encrypt(params, ID∗,Mb), which is sent to A.

Phase 2: A issues additional queries qm+1, . . . , qn where qi is one of:

– Private key query 〈IDi〉 where IDi 6= ID∗ and IDi is not a prefix of ID∗.
– Decryption query 〈Ci〉 6= 〈C〉 for ID∗ or any prefix of ID∗.

In both cases, C responds as in Phase 1. These queries may be adaptive.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins if b = b′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define the advantage of the
adversary A in attacking the scheme E as

AdvE,A =
∣∣Pr[b = b′]− 1/2

∣∣ .
The probability is over the random bits used by the challenger and the adversary.

Canetti, Halevi, and Katz [CHK03, CHK04] define a weaker notion of security in which the
adversary commits ahead of time to the public key it will attack. We refer to this notion as
selective identity, chosen ciphertext secure HIBE (IND-sID-CCA). The game is exactly the same as
IND-ID-CCA except that the adversary A discloses to the challenger the target identity ID∗ before
the Setup phase. The restrictions on private key queries from phase 2 also hold in phase 1.

Definition 2.1. We say that a HIBE system E is (t, qID, qC , ε)-secure if for any t-time IND-ID-CCA
(respectively IND-sID-CCA) adversary A that makes at most qID chosen private key queries and
at most qC chosen decryption queries, we have that AdvE,A < ε. As shorthand, we say that E is
(t, qID, qC, ε)-IND-ID-CCA (resp. IND-sID-CCA) secure.

3

Semantic Security. As usual, we define chosen plaintext security for a HIBE system as in the
preceding game, except that the adversary is not allowed to issue any decryption queries. The
adversary may still issue adaptive private key queries. This security notion is termed as IND-ID-
CPA (or IND-sID-CPA in the case of a selective identity adversary).

Definition 2.2. We say that a HIBE system E is (t, qID, ε)-IND-ID-CPA secure (resp. IND-sID-CPA)
if E is (t, qID, 0, ε)-IND-ID-CCA secure (resp. IND-sID-CCA).

2.2 Bilinear Groups

We briefly review bilinear maps and bilinear map groups. We use the following notation [Jou00,
BLS01]:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e is a bilinear map e : G×G→ G1.

Let G and G1 be two groups as above. A bilinear map is a map e : G×G→ G1 with the properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently and there
exists both a group G1 and an efficiently computable bilinear map e : G×G→ G1 as above.

2.3 Bilinear Diffie-Hellman Inversion Assumption

Let G be a bilinear group of order p. Let w ∈ G be a generator and β ∈ Z∗
p. The `-th Bilinear

Diffie-Hellman Inversion problem [BB04a, MSK02], denoted `-BDHI, is as follows:

`-BDHI : given w,wβ, w(β2), . . . , w(β`) compute e(w,w)1/β (1)

Loosely speaking, the `-BDHI assumption in G says that no efficient algorithm can solve `-BDHI
in G with non-negligible probability.

Weak BDHI Assumption. Our security theorems can be shown under a slightly weaker as-
sumption, which we call Weak BDHI, and denote `-wBDHI. This assumption is weaker in the sense
that the `-wBDHI assumption holds in any group where `-BDHI holds, though the converse is not
known to be true. To state the strongest results, we will use Weak BDHI throughout the paper.

Let g and h be two random generators of G. Let α be a random number in Z∗
p. We define the

(equivalent) `-wBDHI and `-wBDHI* problems as follows:

`-wBDHI : given g, h, gα, g(α2), . . . , g(α`) compute e(g, h)1/α (2)

`-wBDHI*: given g, h, gα, g(α2), . . . , g(α`) compute e(g, h)(α
`+1) (3)

These two problems are equivalent under a linear time reduction. The wBDHI problem (2) is seen
to be more naturally related to the BDHI problem (1), but we will, for notational convenience,
base our proofs on the wBDHI* problem (3).

It is easy to see that an algorithm for `-wBDHI or `-wBDHI* in G gives an algorithm for
`-BDHI with a tight reduction. Indeed, given a `-BDHI problem instance (w,w1, . . . , w`), define

4

the `-wBDHI* instance (w`, h, w`−1, . . . , w1, w) where h = wr
` for some random exponent r ∈ Z∗

p.
Let T ′ be the solution to this `-wBDHI* problem instance, then T = (T ′)1/r is the solution to the
original `-BDHI instance.

We now define precisely the computational and decisional `-wBDHI assumptions. For conve-
nience, we define them in reference to the `-wBDHI* problem.

As shorthand, let yi = g(αi) ∈ G∗. An algorithm A has advantage ε in solving the `-wBDHI*
problem in G if

Pr
[
A
(
g, h, y1, . . . , y`

)
= e(g, h)(α

`+1)
]
≥ ε,

where the probability is over the random choice of generators g, h in G∗, the random choice of α
in Z∗

p, and the random bits used by A. The decisional version of the `-wBDHI* problem in G is
defined in the usual manner, as follows. Let ~yg,α,` = (y1, . . . , y`). An algorithm B that outputs
b ∈ {0, 1} has advantage ε in solving Decision `-wBDHI* in G if∣∣∣∣Pr

[
B
(
g, h, ~yg,α,`, e(g, h)(α

`+1)
)

= 0
]
− Pr

[
B
(
g, h, ~yg,α,`, T

)
= 0
]∣∣∣∣ ≥ ε,

where the probability is over the random choice of generators g, h in G∗, the random choice of α in
Z∗

p, the random choice of T ∈ G∗
1, and the random bits consumed by B. We refer to the distribution

on the left as PwBDHI∗ and the distribution on the right as RwBDHI∗ .

Definition 2.3. We say that the (Decision) (t, ε, `)-wBDHI assumption holds in G if no t-time
algorithm has advantage at least ε in solving the (Decision) `-wBDHI* problem in G.

For conciseness we occasionally drop the t and ε and simply refer to the (Decision) `-wBDHI
assumption in G. As mentioned above, the computational and decisional `-BDHI assumptions in G
respectively imply the computational and decisional `-wBDHI assumptions in G. In Appendices A.2
and A.3, we show that a broad class of assumptions, including the `-wBDHI assumption, hold in
generic bilinear groups [Sho97].

3 A HIBE System with Constant Size Ciphertext

Let G be a bilinear group of prime order p and let e : G × G → G1 be a bilinear map. For now,
we assume that public keys (that is, identities ID) at depth k are vectors of elements in (Z∗

p)
k. We

write ID = (I1, . . . , Ik) ∈ (Z∗
p)

k. The j-th component corresponds to the identity at level j. We
later extend the construction to public keys over {0, 1}∗ by first hashing each component Ij using
a collision resistant hash H : {0, 1}∗ → Z∗

p. We also assume that the messages to be encrypted are
elements in G1. The HIBE system works as follows:

Setup(`): To generate system parameters for an HIBE of maximum depth `, select a random
generator g ∈ G, a random α ∈ Zp, and set g1 = gα. Next, pick random elements
g2, g3, h1, . . . , h` ∈ G. The public parameters and the master key are

params = (g, g1, g2, g3, h1, . . . , h`) , master-key = gα
2 .

KeyGen(dID|k−1, ID): To generate a private key dID for an identity ID = (I1, . . . , Ik) ∈ (Z∗
p)

k of depth
k ≤ `, using the master secret, pick a random r ∈ Zp and output

dID =
(
gα
2 ·
(
hI1

1 · · ·h
Ik
k · g3

)r
, gr, hr

k+1, . . . , hr
`

)
∈ G2+`−k.

5

Note that dID becomes shorter as the depth of ID increases.

The private key for ID can be generated incrementally, given a private key for the parent
identity ID|k−1 = (I1, . . . , Ik−1) ∈ (Z∗

p)
k−1, as required. Indeed, let

dID|k−1 =
(
gα
2 ·
(
hI1

1 · · ·h
Ik−1

k−1 · g3
)r′
, gr′ , hr′

k , . . . , h
r′
`

)
= (a0, a1, bk, . . . , b`)

be the private key for ID|k−1. To generate dID, pick a random t ∈ Zp and output

dID =
(
a0 · bIkk ·

(
hI1

1 · · ·h
Ik
k · g3

)t
, a1 · gt, bk+1 · ht

k+1, . . . , b` · ht
`

)
.

This private key is a properly distributed private key for ID = (I1, . . . , Ik) for r = r′ + t ∈ Zp.

Encrypt(params, ID,M): To encrypt a message M ∈ G1 under the public key ID = (I1, . . . , Ik) ∈
(Z∗

p)
k, pick a random s ∈ Zp and output

CT =
(
e(g1, g2)s ·M, gs,

(
hI1

1 · · ·h
Ik
k · g3

)s) ∈ G1 ×G2.

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik). To decrypt a given ciphertext CT =
(A,B,C) using the private key dID = (a0, a1, bk+1 . . . , b`), output

A · e(a1, C)
/
e(B, a0) = M.

Indeed, for a valid ciphertext, we have

e(a1, C)
e(B, a0)

=
e
(
gr, (hI1

1 · · ·h
Ik
k · g3)

s
)

e
(
gs, gα

2 (hI1
1 · · ·h

Ik
k · g3)r

) =
1

e(g, g2)sα
=

1
e(g1, g2)s

.

Observe that for identities at any depth, the ciphertext contains only 3 elements and decryption
takes only 2 pairings. In previous HIBE systems, ciphertext size and decryption time grow lin-
early in the identity depth. Also, note that e(g1, g2) used for encryption can be precomputed (or
substituted for g2 in the system parameters) so that encryption does not require any pairings.

3.1 Security

We first show that our HIBE scheme is selective identity secure (IND-sID-CPA) under the deci-
sional Bilinear Diffie-Hellman Inversion assumption. As mentioned in Section 2.3, we use a slightly
weaker assumption called the decisional Weak BDHI. We later describe how to provide both chosen
ciphertext security (IND-sID-CCA) and full HIBE security (IND-ID-CCA).

Theorem 3.1. Let G be a bilinear group of prime order p. Suppose the Decision (t, ε, `)-wBDHI
assumption holds in G. Then the previously defined `-HIBE system is (t′, qS, ε)-selective identity,
chosen plaintext (IND-sID-CPA) secure for arbitrary `, qS, and t′ < t − Θ(τ ` qS), where τ is the
maximum time for an exponentiation in G.

Proof. Suppose A has advantage ε in attacking the `-HIBE system. Using A, we build an algorithm
B that solves the Decision `-wBDHI* problem in G.

For a generator g ∈ G and α ∈ Z∗
p let yi = g(αi) ∈ G. Algorithm B is given as input a random

tuple (g, h, y1, . . . , y`, T) that is either sampled from PwBDHI∗ (where T = e(g, h)(α
`+1)) or from

RwBDHI∗ (where T is uniform and independent in G∗
1). Algorithm B’s goal is to output 1 when

the input tuple is sampled from PwBDHI∗ and 0 otherwise. Algorithm B works by interacting with
A in a selective identity game as follows:

6

Initialization. The selective identity game begins with A first outputting an identity ID∗ =
(I∗1, . . . , I

∗
m) ∈ (Z∗

p)
m of depth m ≤ ` that it intends to attack. If m < ` then B pads ID∗ with `−m

zeroes on the right to make ID∗ a vector of length `. Hence, from here we assume that ID∗ is a
vector of length `.

Setup. To generate the system parameters, algorithm B picks a random γ in Zp and sets g1 =
y1 = gα and g2 = y` · gγ = gγ+(α`). Next, B picks random γ1, . . . , γ` in Zp and sets hi = gγi/y`−i+1

for i = 1, . . . , `. Algorithm B also picks a random δ in Zp and sets g3 = gδ ·
∏`

i=1 y
I∗i
`−i+1.

Finally, B gives A the system parameters params = (g, g1, g2, g3, h1, . . . , h`). Observe that
all these values are distributed uniformly and independently in G as required. The master key
corresponding to these system parameters is gα

2 = gα(α`+γ) = y`+1y
γ
1 , which is unknown to B since

B does not have y`+1.

Phase 1. A issues up to qS private key queries. Consider a query for the private key corresponding
to ID = (I1, . . . , Iu) ∈ (Z∗

p)
u where u ≤ `. The only restriction is that ID is not ID∗ or a prefix of

ID∗. This restriction ensures that there exists a k ∈ {1, . . . , u} such that Ik 6= I∗k (otherwise, ID
would be a prefix of ID∗); we set k such that it is the smallest such index. To respond to the query,
algorithm B first derives a private key for the identity (I1, . . . , Ik) from which it then constructs a
private key for the requested identity ID = (I1, . . . , Ik, . . . , Iu).

To generate the private key for identity (I1, . . . , Ik), B first picks a random r̃ in Zp. We pose
r = αk

(Ik−I∗k) + r̃ ∈ Zp. Next, B generates the private key(
gα
2 · (h

I1
1 · · ·h

Ik
k g3)

r, gr, hr
k+1, . . . , hr

`

)
, (4)

which is a properly distributed private key for the identity (I1, . . . , Ik). We show that B can compute
all elements of this private key given the values at its disposal. We use the fact that y(αj)

i = yi+j

for any i, j.
To generate the first component of the private key, first observe that

(hI1
1 · · ·h

Ik
k g3)

r =

(
gδ+

Pk
i=1 Iiγi ·

k−1∏
i=1

y
(I∗i −Ii)
`−i+1 · y

(I∗k−Ik)

`−k+1 ·
∏̀

i=k+1

y
I∗i
`−i+1

)r

. (5)

Let Z denote the product of the first, second, and fourth terms. That is,

Z =

gδ+
Pk

i=1 Iiγi ·
k−1∏
i=1

y
(I∗i −Ii)
`−i+1︸ ︷︷ ︸

=1

·
∏̀

i=k+1

y
I∗i
`−i+1


r

.

Note that the second term in Z equals 1 because Ii = I∗i for all i < k. One can verify that B can
compute all the terms in Z given the values at its disposal. Next, observe that the third term in
Eq (5), namely yr(I∗k−Ik)

`−k+1 , is:

y
r(I∗k−Ik)

`−k+1 = y
r̃(I∗k−Ik)

`−k+1 · y
(I∗k−Ik) αk

(Ik−I∗
k
)

`−k+1 = y
r̃(I∗k−Ik)

`−k+1 /y`+1.

7

Hence, the first component in the private key (4) is equal to:

gα
2 (hI1

1 · · ·h
Ik
k g3)

r = (y`+1y
γ
1) · Z · (yr̃(I∗k−Ik)

`−k+1 /y`+1) = yγ
1 · Z · y

r̃(I∗k−Ik)

`−k+1 .

Since y`+1 cancels out, all the terms in this expression are known to B. Thus, B can compute the
first private key component.

The second component, gr, is y1/(Ik−I∗k)

k gr̃ which B can compute. Similarly, the remaining
elements hr

k+1, . . . , h
r
` can be computed by B since they do not involve a y`+1 term. Thus, B can

derive a valid private key for (I1, . . . , Ik). Algorithm B uses this private key to derive a private key
for the descendant identity ID and gives A the result.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ G1 on
which it wishes to be challenged. Algorithm B picks a random bit b ∈ {0, 1} and responds with the
challenge ciphertext

CT = (Mb · T · e(y1, h
γ), h, hδ+

P`
i=1 I∗i γi)

where h and T are from the input tuple given to B. First note that if h = gc (for some unknown c
in Zp) then

hδ+
P`

i=1 I∗i γi =

(∏̀
i=1

(gγi/y`−i+1)I
∗
i · (gδ

∏̀
i=1

y
I∗i
`−i+1)

)c

= (hI∗1
1 · · ·h

I∗`
` g3)

c, and

e(g, h)(α
`+1) · e(y1, h

γ) =
(
e(y1, y`) · e(y1, g

γ)
)c = e(y1, y`g

γ)c = e(g1, g2)c.

Therefore, if T = e(g, h)(α
`+1) (i.e., when the input tuple is sampled from PwBDHI∗), then the

challenge ciphertext is a valid encryption of Mb under the original (unpadded) identity ID∗ =
(I∗1, . . . , I

∗
m) chosen by the adversary, since

CT =
(
Mb · e(g1, g2)c, gc, (hI∗1

1 · · ·h
I∗m
m · · ·h

I∗`
` g3)

c
)

=
(
Mb · e(g1, g2)c, gc, (hI∗1

1 · · ·h
I∗m
m g3)c

)
.

On the other hand, when T is uniform and independent in G∗
1 (when the input tuple is sampled

from RwBDHI∗), CT is independent of b in the adversary’s view.

Phase 2. A issues queries not issued in Phase 1. B responds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own game by outputting
a guess as follows. If b = b′ then B outputs 1 meaning T = e(g, h)(α

`+1). Otherwise, it outputs 0
meaning T is random in G1.

When the input tuple is sampled from PwBDHI∗ (where T = e(g, h)(α
`+1)), then A’s view is

identical to its view in a real attack game and therefore A satisfies |Pr[b = b′]− 1/2| ≥ ε. When the
input tuple is sampled from RwBDHI∗ (where T is uniform in G∗

1) then Pr[b = b′] = 1/2. Therefore,
with g, h uniform in G, α uniform in Zp, and T uniform in G1 we have that∣∣∣∣Pr

[
B
(
g, h, ~yg,α,`, e(g, h)(α

`+1)
)

= 0
]
− Pr

[
B
(
g, h, ~yg,α,`, T

)
= 0
]∣∣∣∣ ≥ |(1/2± ε)− 1/2| = ε

as required, which completes the proof of the theorem.

8

Chosen Ciphertext Security. Canetti et al. [CHK04] show a general method of building an
IND-sID-CCA secure `-HIBE from a IND-sID-CPA secure `+ 1-HIBE. A more efficient construction
is given by Boneh and Katz [BK05]. Applying either method to our HIBE construction results
in a IND-sID-CCA secure `-HIBE for arbitrary ` where the ciphertext length is independent of the
hierarchy height.

Arbitrary Identities. We can extend our HIBE to handle arbitrary identities ID = (I1, . . . , I`)
with Ii ∈ {0, 1}∗ for i = 1, . . . , ` by hashing each Ii with a collision resistant hash function H :
{0, 1}∗ → Z∗

p during key generation and encryption. A standard argument shows that if the original
HIBE scheme is IND-sID-CCA secure, then so is the HIBE scheme using H.

3.2 Full HIBE Security

Theorem 3.1 shows that our HIBE system is selective-ID secure without random oracles. Thus, the
system is secure when the adversary commits ahead of time to the identity he intends to attack.
Boneh and Boyen [BB04a] observed that IBE systems that are selective-ID secure are also fully
secure (i.e., secure against adversaries that adaptively select the identity to attack) as long as one
hashes the identity prior to using it. The reduction, however, is not tight. Let H : {0, 1}∗ → {0, 1}d
be a hash function (where, e.g., d = 160 bits). Assuming H is collision resistant, the reduction
introduces a 2d multiplicative security loss factor in the standard model. When H is viewed as
a random oracle, the reduction introduces a qH multiplicative security loss factor where qH is the
number of the hash oracle queries issued by the adversary.

A similar observation applies to HIBE systems. Let E be a selective-ID secure HIBE of
depth `. Let EH be an HIBE system where an identity ID = (I1, . . . , Ik) is hashed to IDH =
(H(I1), . . . ,H(Ik)) before using it in KeyGen and Encrypt. Then, if H is collision resistant, it
follows that EH is a fully secure HIBE, but the reduction introduces a loss factor of 2`d. In the
random oracle model, EH is a fully secure HIBE and the reduction introduces a loss factor of q`

H .
We remark that in the random oracle model, the public parameters are of constant size and

contain only the two group elements (g, g1); the other parameters (g2, g3, h1, . . . , h`) need not be
specified as they can be derived by applying the oracle on a predetermined input string.

We also note that the construction of Waters [Wat05], for a fixed depth `, applied to our
HIBE could give a fully secure constant ciphertext HIBE with a polynomial time reduction to the
underlying complexity assumption in the standard model. The resulting private keys are much
larger, namely of size d`, as opposed to ` in our system.

4 Extensions

We discuss a number of extensions to the HIBE system of the previous section.

4.1 Limited Delegation

Let dID = (a0, a1, bk, . . . , b`) be the private key for the identity ID. Note that the Decrypt algorithm
uses only the terms a0 and a1, and the KeyGen algorithm uses only the remaining terms bk, . . . , b`.

By removing any number of bk, . . . , b`, an identity ID at depth k can be given a restricted
private key that only lets it issue private keys to descendants of bounded depth. For example,
if the private key for ID only contains bk, bk+1, bk+2 (instead of all bk, . . . , b`), then ID can only

9

issue private keys for three generations of descendants, and those descendants’ private keys will be
limited even further.

4.2 HIBE with Short Private Keys

Certain applications, such as the time lock encryption (to be described in Section 5), are better
served by using a HIBE system with short private keys rather than ciphertexts. We show how to
construct a HIBE system whose private key size grows only sublinearly with hierarchy depth.

The idea is to construct a hybrid of the HIBE in Section 3 and the Boneh-Boyen HIBE [BB04a].
Recall that in the former system the private key shrinks as the identity depth increases, while in
the latter system the private key grows with the depth of an identity. The hybrid is based on the
algebraic similarities between both systems, and exploits their opposite behavior with regard to
private key size, to ensure that no private key ever contains more than O(

√
`) group elements.

Specifically, for ω ∈ [0, 1], the hybrid scheme achieves O(`ω + `1−ω) private key size and O(`ω)
ciphertext size at every level in a hierarchy of depth `. The setting ω = 0 corresponds to our HIBE,
whereas ω = 1 corresponds to the Boneh-Boyen HIBE [BB04a]. The most efficient hybrids are
obtained when ω ∈ [0, 1/2]. For example, when ω = 1/2, private keys and ciphertexts are of size
O(
√
`).

Hybrid Scheme. As before, we assume a bilinear group G and a map e : G × G → G1, where
G and G1 have prime order p. Let `1 = d`ωe and `2 = d`1−ωe. The basic idea is to partition levels
of the hierarchy into `1 consecutive groups of size `2. Within each group we use the system of
Section 3. Between groups we use the Boneh-Boyen HIBE [BB04a].

Let ID = (I1, . . . , Ik) ∈ (Z∗
p)

k be an identity of depth k ≤ `. We will represent ID as a pair (k, I)
where I ∈ (Z∗

p)
`1×`2 is an `1 × `2 matrix filled using the elements I1, . . . , Ik in typographic order:

one row at a time starting from the top, in each row starting from the left (note that `1 ·`2 ≥ ` ≥ k;
the unfilled matrix entries are undefined). For convenience, we decompose the indices k = 1, . . . , `
into row-column pairs (k1, k2) such that k = `2 · (k1 − 1) + k2 where k1, k2 > 0. For shorthand, we
write (k1, k2) = k. It follows that in the above matrix representation of ID we have I(i1,i2) = Ii for
all i = 1, . . . , k. Or, pictorially, for an ID at the maximum depth ` with I = I1, . . . , I` and ` = `1`2:

I =


I1 I2 . . . I`2

I`2+1 I`2+2 . . . I2 `2
...

...
. . .

...
I(`1−1)`2+1 I(`1−1)`2+2 . . . I`1`2

 =


I(1,1) I(1,2) . . . I(1,`2)

I(2,1) I(2,2) . . . I(2,`2)
...

...
. . .

...
I(`1,1) I(`1,2) . . . I(`1,`2)

 .

Using this convention, we can now describe the hybrid HIBE system as follows.

Setup(`, ω): For a HIBE of maximum depth `, first determine `1 and `2 as above so that ` ≤ `1 · `2.
Next, select a random generator g in G, a random α ∈ Zp, and set g1 = gα. Then, pick
random elements g2, f1, . . . , f`1 , h1, . . . , h`2 ∈ G. The public parameters params and the
secret master-key are given by

params = (g, g1, g2, f1, . . . , f`1 , h1, . . . , h`2) , master-key = gα
2 .

KeyGen(dID|k−1, ID): To generate private key dID for identity ID = (I1, . . . , Ik) ∈ (Z∗
p)

k of depth

10

(k1, k2) = k ≤ `, where k1 ≤ `1 and k2 ≤ `2, pick random r1, . . . , rk1 ∈ Zp, and output

dID =

(
gα
2 ·

(
k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri

)
·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r′k1 ,

gr1 , . . . , grk1−1 , g
r′k1 , h

r′k1
k2+1, . . . , h

r′k1
`2

)
∈ G1+k1+`2−k2 .

(6)

Note that the factors (. . .)ri under the
∏

sign contain `2 identity terms each, whereas the
last factor (. . .)rk1 only has k2 such terms. The size of dID grows with k1 and shrinks with k2;
the private key thus becomes alternatively shorter and longer as the depth of ID increases,
but never exceeds `1 + `2 elements of G.

The private key for ID can be generated with a private key for ID|k−1 = (I1, . . . , Ik−1) ∈
(Z∗

p)
k−1 as required. Decompose k as (k1, k2) according to our convention. There are two

cases:

1. If k− 1 is written (k1, k2− 1), namely k and k− 1 have the same row index k1, then we know
that the private key for ID|k−1 is of the form:

dID|k−1 =
(
gα
2 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri ·
(
h

I(k1,1)

1 · · ·hI(k1,k2−1)

k2−1 · fk1

)rk1 , gr1 ,

. . . , grk1 , h
rk1
k2
, . . . , h

rk1
`2

)
= (a0, b1, . . . , bk1 , ck2 , . . . , c`2) ∈ G2+k1+`2−k2 .

In this case, to generate dID from dID|k−1, pick a random r∗ ∈ Zp and output

dID =
(
a0 · c

I(k1,k2)

k2
·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r∗
, b1, . . . , bk1−1, bk1 · gr∗ ,

ck2+1 · hr∗
k2+1, . . . , c`2 · hr∗

`2

)
∈ G1+k1+`2−k2 .

This tuple is of the same form as Eq (6) where r′k1
= rk1 + r∗.

2. If the row indices differ, then necessarily k − 1 = (k1 − 1, `2) and k = (k1, 1), and the private
key for ID|k−1 must be of the form:

dID|k−1 =
(
gα
2 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri , gr1 , . . . , grk1−1

)
= (a0, b1, . . . , bk1−1) ∈ Gk1 .

In this case, to generate dID from dID|k−1, pick a random r ∈ Zp and output

dID =
(
a0 ·

(
h

I(k1,1)

1 · fk1

)r
, b1, . . . , bk1−1, gr, hr

2, , . . . , hr
`2

)
∈ Gk1+`2 .

Again, this tuple conforms to Eq (6) in which rk1 has been set to r.

11

Encrypt(params, ID,M): To encrypt a message M ∈ G1 under the public key ID = (I1, . . . , Ik) ∈ Zk
p

where k = (k1, k2), pick a random s ∈ Zp and output

CT =
(
e(g1, g2)s ·M, gs,

(
h

I(1,1)

1 · · ·hI(1,`2)

`2
· f1

)s
, . . . ,(

h
I(k1−1,1)

1 · · ·hI(k1−1,`2)

`2
· fk1−1

)s
,
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)s) ∈ G1 ×G1+k1 .

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik) with k = (k1, k2). To decrypt a ciphertext
CT = (A,B,C1, . . . , Ck1−1, Ck1) using the private key dID = (a0, b1, . . . , bk1 , ck2+1, . . . , c`2),
output

A ·
k1∏
i=1

e(bi, Ci)
/
e(B, a0) = M.

Note that the private key components ck2+1, . . . , c`2 are not used for decryption.

Complexity. It is easy to see that in a hierarchy of depth `, private keys at all levels contain at
most `1 + `2 elements of G, while ciphertexts contain at most 1+ `1 elements of G and one element
of G1. Encryption, decryption, and one-level-down key generation, all require O(`1+`2) operations,
or O(

√
`) for the choice ω = 1/2 as claimed. We note that the combination of having a selectable

parameter ω together with the option of using an asymmetric bilinear group geared toward reducing
the ciphertext or the private key size (described in Section 4.3), gives great flexibility toward
achieving the optimal trade-off for a given application.

Security. We prove security based on the (`2)-wBDHI assumption. We note that for ω = 1/2,
security for a `-level hierarchy is based on the O(

√
`)-wBDHI assumption.

Theorem 4.1. Let G be a bilinear group of prime order p. Consider a hybrid `-HIBE system with
identity hierarchy partitioned into `1 groups each of size `2. Suppose the Decision (t, ε, `2 + 1)-
wBDHI assumption holds in G. Then the hybrid `-HIBE system is (t′, qS, ε)-selective identity,
chosen plaintext (IND-sID-CPA) secure for arbitrary `, qS, and t′ < t − Θ(τ ` qS), where τ is the
maximum time for an exponentiation in G.

The proof is similar to that for Theorem 3.1 and is given in Appendix B.

4.3 Asymmetric Bilinear Groups and MNT Curves.

It is often desirable to use bilinear maps e : G×G′ → G1 where G and G′ are distinct groups. Such
maps let us take advantage of certain curves called MNT curves [MNT01]. Typically, elements of
the group G tend to afford a particularly compact representation compared to elements of G′. This
property is used for constructing short signatures [BLS01, BB04b, BBS04]. For our system, we can
use this property to shrink either the private keys or the ciphertexts.

We briefly describe how to rephrase the above HIBE in terms of asymmetric bilinear groups
e : G×G′ → G1. Recall that such groups are necessarily equipped with an efficiently computable
homomorphism φ : G′ → G. Thus, Setup picks all randomly selected group elements from G′.
Before these elements are used or disclosed, each element is either converted to a point in G using
φ, or left alone in G′, depending on whether this particular element is destined to appear in the first
or second argument of the bilinear map e(·, ·). It is easy to see that there are no conflicts. There are
two ways to perform this conversion: we can either send the private key or the ciphertext elements
to G; in one case we end up with smaller private keys, and in the other, smaller ciphertexts.

12

5 Applications

We now discuss applications of our compact HIBE system and its extensions.

5.1 Forward Secure Encryption

The main purpose of a forward secure encryption scheme is to guarantee that all messages encrypted
before the secret key is compromised remain secret.

An elegant public key encryption scheme with forward security was proposed by Canetti, Halevi,
and Katz (CHK) [CHK03]. Let T = 2t be the number of distinct time periods in the forward secure
system. When implemented with previous HIBE systems [GS02, BB04a], the CHK framework
results in ciphertexts of size O(t) and private keys of size O(t2). Using public updateable storage,
Canetti et al. reduce private key size to O(t) without affecting ciphertext length — the idea is to
encrypt the private key for time period i under the public key of time period i − 1 and store the
resulting ciphertext, of size O(t2), in public storage; consequently, only one HIBE private key of
size O(t) is kept in private storage.

Using the HIBE system of Section 3 in the CHK framework, we obtain a forward secure en-
cryption scheme with O(1) ciphertext size and decryption time — independent of the number of
time periods. Private keys using our basic system are of size O(t2). Alternatively, using the hybrid
HIBE of Section 4.2 in which we set ω = 1/2, we obtain a forward secure encryption scheme with
private key size O(t3/2); in this case ciphertext size and decryption time become O(

√
t).

Following Canetti et al. [CHK03], we can store most of the private key in updateable public
storage in order to lessen the private storage requirement. Applied to our basic forward secure
system, using O(t2) public storage we can reduce the private key size to O(t) while keeping the
ciphertext size constant. Using the hybrid HIBE system (for ω = 1/2), the private storage require-
ment can be similarly reduced to O(

√
t) at the cost of O(t3/2) updateable public storage; ciphertext

size in this case remains O(
√
t).

5.2 Forward Secure HIBE

Recently, a forward secure HIBE scheme was proposed by Yao et al. [YFDL04]. Their scheme
essentially uses two HIBE hierarchies in the manner of Canetti et al. [CHK03] to obtain forward
security together with the ability to derive subordinate keys. Their system has ciphertexts of size
O(` · t) where ` is the depth of the identity hierarchy and T = 2t is the number of time periods.
Indeed, they pose as an open problem if a forward secure HIBE scheme with “linear” complexity
is possible.

Instantiating both hierarchies in their construction with our HIBE system immediately gives a
forward secure HIBE scheme with ciphertexts of size O(1), which resolves this question.

We also propose a more specific forward secure HIBE construction that achieves “linear” O(`+t)
size for all components, including private keys and public parameters (ciphertexts are no longer
constant size in that construction). The construction is a hybrid between the HIBE given in
Section 3 and the Boneh-Boyen HIBE from [BB04a]; it is described in detail in Appendix C.

5.3 Public Key NNL Broadcast Encryption

Broadcast encryption schemes, introduced by Fiat and Naor [FN93], are cryptosystems designed
for the efficient broadcast of data to a dynamic group of users authorized to receive the data. Naor,
Naor, and Lotspiech [NNL01] considered broadcast encryption in the stateless receiver setting; they

13

provided a general “subset cover” framework for such broadcast encryption schemes and gave two
instances of the framework — the Complete Subtree (CS) method and the more efficient Subset
Difference (SD) method. Further improvements have been proposed such as the Layered Subset
Difference (LSD) [HS02] and the Stratified Subset Difference (SSD) [GST04]. In the symmetric key
setting, only a “center” that possesses the secret keys can broadcast to the users. In a public key
broadcast encryption system, anyone is allowed to broadcast to selected subsets of users.

Using the HIBE framework, Dodis and Fazio [DF02] showed how to translate the SD and LSD
methods to the public key setting. For N users and r revoked users, their SD and LSD constructions
based on previous HIBE systems give ciphertexts of size O(r · logN), which is no better than the
basic CS method. Substituting the HIBE system of Section 3 restores the full benefits of both SD
and LSD, which results in ciphertexts of size O(r).

5.4 Encrypting to the Future

Mont et al. [MHS03] observed that an IBE system gives a mechanism for encrypting to the future
using a trusted server. Let D be a certain date string. We view D as a public key in an IBE
system. Every day, a trusted server publishes the private key corresponding to that day, which
enables messages encrypted for that day to be decrypted. Methods for encrypting to the future
without a trusted server were proposed by Rivest, Shamir, and Wagner [RSW96].

One problem with the IBE timelock mechanism is that after n days have passed, the server has
to publish a bulletin board with n private keys on it (one private key for each day). The amount
of data on the bulletin board can be greatly reduced by using the CHK forward secure encryption
scheme in reverse. Suppose the CHK framework is set up for a total of T time periods (using
a tree of depth log2 T). To encrypt a message for day n < T , use the CHK public key for time
period T − n. Similarly, on day n the trusted server publishes the CHK private key corresponding
to time period T − n. This single private key enables anyone to derive the private keys for CHK
time periods T − n, T − n+ 1, . . . , T . Anyone can thus decrypt messages intended for days in the
range 1, . . . , n.

Implementing this encoding using our O(1) ciphertext HIBE, the trusted server on any day only
needs to publish a single private key comprising O(log2 T) group elements. Using the hybrid HIBE
system of Section 4.2, the private key posted by the server is further reduced to O(log3/2 T) group
elements for ciphertexts of size O(

√
log T). These parameters are much better than the IBE based

mechanism [MHS03], where the bulletin board contains as many as T group elements.

6 Conclusions and Open Problems

We presented a new HIBE system where the ciphertexts consist of three group elements and de-
cryption only requires computing two bilinear maps, both of which are independent of the hierarchy
depth. Encryption time is as efficient as other HIBE systems. For a hierarchy of depth `, we proved
security based on the (Weak) `-BDHI assumption.

We discussed several applications of our system, including efficient forward secure encryption,
an efficient public key version of the NNL broadcast encryption system, and an efficient mechanism
for encrypting to the future. Our HIBE system allows for limited delegation and can be combined
with the Boneh-Boyen HIBE to form a hybrid HIBE that has sublinear private key size.

We note that our selective-ID proof of security is tight. On the other hand, the proof of
full security (either in the random oracle or standard model) discussed in Section 3.2 degrades
exponentially in the hierarchy depth. The same is true for all existing HIBE systems. It is an

14

open problem to construct a HIBE system where security does not degrade exponentially in the
hierarchy depth.

Acknowledgments

In an earlier version of this paper [BBG05] the security theorem used the Bilinear Diffie-Hellman
Exponent assumption, defined in Appendix A.1; we thank Nelly Fazio for pointing out that our
proof of security holds, without any change, under the weaker BDHI assumption. The authors also
thank Mihir Bellare for his helpful comments.

References

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-ID identity based encryption with-
out random oracles. In Christian Cachin and Jan Camenisch, editors, Proceedings of
Eurocrypt 2004, volume 3027 of LNCS, pages 223–38. Springer, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian
Cachin and Jan Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of
LNCS, pages 56–73. Springer, 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Ronald Cramer, editor, Proceedings of Eurocrypt 2005,
volume 3494 of LNCS, pages 440–456. Springer, 2005.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matt
Franklin, editor, Proceedings of Crypto 2004, LNCS, pages 41–55. Springer, 2004.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages 213–29.
Springer, 2001.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption
with short ciphertexts and private keys. Cryptology ePrint Archive, Report 2005/018,
2005.

[BK05] Dan Boneh and Jonathan Katz. Improved efficiency for CCA-secure cryptosystems built
using identity based encryption. In Proceedings of RSA-CT 2005, 2005.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
Colin Boyd, editor, Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 514–32.
Springer, 2001.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. In Eli Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS.
Springer, 2003.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. In Christian Cachin and Jan Camenisch, editors, Proceedings of
Eurocrypt 2004, volume 3027 of LNCS, pages 207–22. Springer, 2004.

15

[DF02] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless receivers.
In Joan Feigenbaum, editor, Proceedings of the Digital Rights Management Workshop
2002, volume 2696 of LNCS, pages 61–80. Springer, 2002.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short
proofs and keys. In Proceedings of the Workshop on Theory and Practice in Public Key
Cryptography 2005, 2005.

[FN93] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas Stinson, editor, Proceed-
ings of Crypto 1993, volume 773 of LNCS, pages 480–91. Springer, 1993.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang
Zheng, editor, Proceedings of Asiacrypt 2002, volume 2501 of LNCS, pages 548–66,
2002.

[GST04] Michael Goodrich, Jonathan Sun, and Robert Tamassia. Efficient tree-based revocation
in groups of low-state devices. In Matthew Franklin, editor, Proceedings of Crypto 2004,
volume 3152 of LNCS, pages 511–27. Springer, 2004.

[HL02] Jeremy Horwitz and Ben Lynn. Towards hierarchical identity-based encryption. In Lars
Knudsen, editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS, pages 466–81.
Springer, 2002.

[HS02] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In Moti Yung,
editor, Proceedings of Crypto 2002, volume 2442 of LNCS, pages 47–60, 2002.

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Wieb Bosma, editor,
Proceedings of Algorithmic Number Theory Symposium IV, volume 1838 of LNCS, pages
385–94. Springer, 2000.

[MHS03] Marco Casassa Mont, Keith Harrison, and Martin Sadler. The HP time vault service:
exploiting IBE for timed release of confidential information. In Proceedings of the In-
ternational World Wide Web Conference 2003, pages 160–69. ACM, 2003.

[MNT01] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New explicit conditions of
elliptic curve traces for FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234–43,
2001.

[MSK02] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IEICE
Transactions Fundamentals, E85-A(2):481–84, 2002.

[NNL01] Dalit Naor, Moni Naor, and Jeff Lotspiech. Revocation and tracing schemes for stateless
receivers. In Joe Kilian, editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages
41–62. Springer, 2001.

[RSW96] Ronald Rivest, Adi Shamir, and David Wagner. Time-lock puzzles and timed-release
crypto. Technical Report MIT/LCS/TR-684, MIT Laboratory for Computer Science,
1996.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. Blakley and
David Chaum, editors, Proceedings of Crypto 1984, volume 196 of LNCS, pages 47–53.
Springer, 1984.

16

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Wal-
ter Fumy, editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 256–66.
Springer, 1997.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Proceedings of Eurocrypt 2005, LNCS. Springer, 2005.

[YFDL04] Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. ID-based encryption
for complex hierarchies with applications to forward security and broadcast encryption.
In Birgit Pfitzmann, editor, Proceedings of the ACM Conference on Computer and Com-
munications Security 2004, pages 354–63, 2004.

A Diffie-Hellman Problems in Generic Bilinear Groups

Recently a number of Diffie-Hellman-type complexity assumptions in bilinear groups have been used
to construct efficient cryptosystems. These include the Bilinear DH assumption (BDH) [BF01], the
DH Inversion assumption (DHI) [BB04a], the Linear DH assumption [BBS04], and the BDHE
assumption used in [BGW05], and others. To gain some confidence in these assumptions, one can
prove computational lower bounds on the difficulty of breaking them in a generic bilinear group
model [Sho97]. Rather than prove a separate lower bound for each assumption, we give a general
lower bound that encompasses all the assumptions listed above. This “master” generic-group lower
bound can be used to qualify other assumptions that may come up in future constructions. We
emphesize, however, that lower bounds in generic groups do not imply a lower bound in any specific
group.

The Strong Diffie-Hellman (SDH) assumption [BB04b] stands out from the list above and is
not covered by the “master” argument. We briefly mention the reasons for this in Section A.4.

A.1 Bilinear Diffie-Hellman Exponent (BDHE) Problem

An early version of this paper [BBG05] introduced the BDHE assumption. The assumption is no
longer used in the paper; we use the weaker BDHI assumption instead. Nevertheless, we briefly
describe the BDHE assumption for completeness. We note that the BDHE assumption has been
used to construct a broadcast encryption system where both ciphertexts and private keys are
short [BGW05].

Let g and h be random generators in G, and let α be random in Z∗
p. The `-BDHE problem in

G is as follows:

`-BDHE: given g, h, and g(αi) for i = 1, 2, . . . , `− 1, `+ 1, . . . , 2` output e(g, h)(α
`)

Since g(α`) is missing from the list of powers, the bilinear map seems to be of no help in computing
e(g, h)(α

`). As a shorthand, let yi = g(αi) ∈ G. An algorithm A has advantage ε in solving the
computational `-BDHE problem in G if

Pr
[
A
(
g, h, y1, . . . , y`−1, y`+1, . . . , y2`

)
= e(g, h)(α

`)
]
≥ ε,

where the probability is over the random choice of generators g, h in G, the random choice of α in
Z∗

p, and the random bits used by A. The decisional version of the `-BDHE problem in G is defined
in the usual manner.

17

For any `, the (` + 1)-BDHE problem is similar to the `-wBDHI* problem described in Sec-
tion 2.3, except that additional terms are given in which g is raised to higher powers of α beyond
a “gap” at exponent α` (which is always omitted). The generic lower bound presented in the
“master” argument below applies to the BDHE problem.

A.2 General Diffie-Hellman Exponent Problem

Let p be an integer prime and let s, n be positive integers. Let P,Q ∈ Fp[X1, . . . , Xn]s be two
s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . , Xn]. Thus, P and Q are just
two ordered sets containing s multi-variate polynomials each. We write P = (p1, p2, . . . , ps) and
Q = (q1, q2, . . . , qs). We require that the first components of P,Q satisfy p1 = q1 = 1; that is, the
constant polynomials 1. For a set Ω, a function h : Fp → Ω, and a vector x1, . . . , xn ∈ Fp, we write

h(P (x1, . . . , xn)) =
(
h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))

)
∈ Ωs.

We use similar notation for the s-tuple Q. Let G0,G1 be groups of order p and let e : G0×G0 → G1

be a non-degenerate bilinear map. Let g ∈ G0 be a generator of G0 and set g1 = e(g, g) ∈ G1.

We define the (P,Q, f)-Diffie-Hellman Problem in G as follows: Given the vector

H(x1, . . . , xn) =
(
gP (x1,...,xn), g

Q(x1,...,xn)
1

)
∈ Gs

0 ×Gs
1,

compute gf(x1,...,xn)
1 ∈ G1.

To obtain the most general result, we study the decisional version of this problem. We say that
an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the Decision (P,Q, f)-Diffie-
Hellman problem in G0 if∣∣∣∣Pr

[
B(H(x1, . . . , xn), gf(x1,...,xn)

1) = 0
]
− Pr

[
B(H(x1, . . . , xn), T) = 0

]∣∣∣∣ > ε

where the probability is over the random choice of generator g ∈ G0, the random choice of x1, . . . , xn

in Fp, the random choice of T ∈ G1, and the random bits consumed by B.
Before we can state the lower bound on the decision problem above, we need the following

natural definition.

Definition A.1. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp.
Write P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs) where p1 = q1 = 1. We say that a polynomial
f ∈ Fp[X1, . . . , Xn] is dependent on the sets (P,Q) if there exist s2+s constants {ai,j}si,j=1, {bk}sk=1

such that

f =
s∑

i,j=1

ai,jpipj +
s∑

k=1

bkqk

We say that f is independent of (P,Q) if f is not dependent on (P,Q).

For a polynomial f ∈ Fp[X1, . . . , Xn]s, we let df denote the total degree of f . For a set
P ⊆ Fp[X1, . . . , Xn]s we let dP = max{df | f ∈ P}.

18

A.3 Complexity Lower Bound in Generic Bilinear Groups

We state the following lower bound in the framework of the generic group model [Sho97]. We
consider two random encodings ξ0, ξ1 of the additive group Z+

p , i.e. injective maps ξ0, ξ1 : Z+
p →

{0, 1}m. For i = 0, 1 we write Gi = {ξi(x) | x ∈ Z+
p }. We are given oracles to compute the induced

group action on G0,G1, and an oracle to compute a non-degenerate bilinear map e : G0×G0 → G1.
We refer to G0 as a generic bilinear group. The following theorem gives a lower bound on the
advantage of a generic algorithm in solving the decision (P,Q, f)-Diffie-Hellman problem. We
emphasize, however, that a lower bound in generic groups does not imply a lower bound in any
specific group.

Theorem A.2. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp and
let f ∈ Fp[X1, . . . , Xn]. Let d = max(2dP , dQ, df). Let ξ0, ξ1 and G0,G1 be defined as above. If
f is independent of (P,Q) then for any A that makes a total of at most q queries to the oracles
computing the group operation in G0,G1 and the bilinear pairing e : G0 ×G0 → G1 we have:

∣∣∣∣Pr

A
 p, ξ0(P (x1, . . . , xn)),

ξ1(Q(x1, . . . , xn)),
ξ1(t0), ξ1(t1)

 = b :

x1, . . . , xn, y
R← Fp,

b
R← {0, 1},

tb ← f(x1, . . . , xn),
t1−b ← y

 − 1
2

∣∣∣∣ ≤ (q + 2s+ 2)2 · d
2p

.

Proof. Consider an algorithm B that plays the following game with A. Algorithm B maintains two
lists of pairs,

L0 = {(pi, ξ0,i) : i = 1, . . . , τ0} , L1 = {(qi, ξ1,i) : i = 1, . . . , τ1} ,

under the invariant that at step τ in the game, τ0 + τ1 = τ + 2s+ 2. Here, pi ∈ Fp[X1, . . . , Xn] and
qi ∈ Fp[X1, . . . , Xn, Y0, Y1] are multi-variate polynomials. The ξ?,? are strings in {0, 1}m.

The lists are initialized at step τ = 0 by initializing τ0 = s and τ1 = s + 2. We set p1, . . . , ps

in L0 to be the polynomials in P and we set q1, . . . , qs in L1 to be the polynomials in Q. We also
set qs+1 = Y0 and qs+2 = Y1. Algorithm B complete the preparation of the lists L0, L1 by setting
the ξ-strings associated with distinct polynomials to random strings in {0, 1}m. Overall, initially
L0 contains s entries and L1 contains s+ 2 entries.

We can assume that A makes oracle queries only on strings obtained from B, since B can make
the strings in G0,G1 arbitrarily hard to guess by increasing m. We note that B can easily determine
the index i of any given string ξj,i in Lj (ties are broken arbitrarily). B starts the game by providing
A with the value of p and a tuple of strings

{ξ0,i}si=1, {ξ1,i}s+2
i=1 ,

meant to encode some tuple ∈ Gs
0 ×Gs+2

1 . Algorithm B responds to A’s oracle queries as follows.

Group operation in G0,G1. A query in G0 consists of two operands ξ0,i, ξ0,j with 1 ≤ i, j ≤ τ0
and a selection bit indicating whether to multiply or divide the group elements. To answer,
let τ ′0 ← τ0 + 1. Perform the polynomial addition or subtraction pτ ′0

← pi ± pj depending on
whether multiplication or division is requested. If the result pτ ′0

= pl for some l ≤ τ0, then
set ξ0,τ ′0

← ξ0,l; otherwise, set ξ0,τ ′0
to a new random string in {0, 1}m \{ξ0,1, . . . , ξ0,τ0}. Insert

the pair (pτ ′0
, ξ0,τ ′0

) into the list L0 and update the counter τ0 ← τ ′0. Algorithm B replies to
A with the string ξ0,τ ′0

.

G1 queries are handled analogously, this time by working with the list L1 and the counter τ1.

19

Bilinear pairing. A query of this type consists of two operands ξ0,i, ξ0,j with 1 ≤ i, j ≤ τ0. To
respond, B sets τ ′1 ← τ1 + 1, and performs the polynomial multiplication rτ ′1 ← pi · pj . If
the result qτ ′1 = ql for some l ≤ τ1, it assigns ξ1,τ ′1

← ξ1,l; otherwise, it sets ξ1,τ ′1
to a fresh

random string in {0, 1}m\{ξ1,1, . . . , ξ1,τ1−1}. Finally, it adds (qτ ′1 , ξ1,τ ′1
) to the list L1, updates

τ1 ← τ ′1, and outputs ξ1,τ ′1
as answer to the query.

After at most q queries, A terminates and returns a guess b′ ∈ {0, 1}. At this point B chooses
random x1, . . . , xn, y

R← Fp and b R← {0, 1}. Let yb = f(x1, . . . , xn) and y1−b = y.
For i = 1, . . . , n, we set Xi = xi, Y0 = y0, and Y1 = y1. It follows that the simulation provided

by B is perfect unless the chosen random values for the variables X1, . . . , Xn, Y0, Y1 result in an
equality relation between intermediate values that is not an equality of polynomials. In other words,
the simulation is perfect unless for some i, j one of the following holds:

1. pi(x1, . . . , xn)− pj(x1, . . . , xn) = 0, yet the polynomials pi and pj are not equal.

2. qi(x1, . . . , xn, y0, y1)− qj(x1, . . . , xn, y0, y1) = 0, yet the polynomials qi and qj are not equal.

Let fail be the event that one of these two conditions holds. When event fail occurs, then B’s
responses to A’s queries deviate from the real oracles’ responses when the input tuple is derived
from the vector (x1, . . . , xn, y0, y1) ∈ Fn+2

p .
We first bound the probability that event fail occurs. We bound the probability in two steps.

First, consider setting Yb = f(X1, . . . , Xn). We claim that this symbolic substitution does not
create any new equalities between polynomials qi, qj . In other words, if qi− qj 6= 0 for all i, j before
the substitution, then qi−qj 6= 0 also holds after we set Yb = f(X1, . . . , Xn). This statement follows
because f is independent of (P,Q). Indeed, qi − qj is a polynomial of the form

s∑
k=1

s∑
l=1

ak,l pk pl +
s∑

u=1

bu qu + c Y0 + d Y1

for some constants ak,l, bu, c, d ∈ Fp. If this polynomial is non-zero but setting Yb = f(X1, . . . , Xn)
causes this polynomial to vanish, then f must be dependent on (P,Q).

We are now left with polynomials inX1, . . . , Xn, Y1−b. We need to bound the probability that for
some i, j we get (pi− pj)(x1, . . . , xn) = 0 even though pi− pj 6= 0, or that (qi− qj)(x1, . . . , x,y) = 0
even though qi − qj 6= 0. By construction, the maximum total degree of these polynomials is
d = max(2dP , dQ, df). Therefore, for a given i, j the probability that a random assignment to

X1, . . . , Xn, Y1−b
R← Fp is a root of qi − qj is at most d/p. The same holds for pi − pj . Since there

are no more than 2
(
q+2s+2

2

)
such pairs (pi, pj) and (qi, qj) in total, we have that

Pr[fail] ≤
(
q + 2s+ 2

2

)
2d
p
≤ (q + 2s+ 2)2d/p

If event fail does not occur, then B’s simulation is perfect. Furthermore, in this case b is
independent from algorithm A’s view. Indeed b is only chosen after the simulation ends. Hence,
Pr[b = b′|¬fail] = 1/2. It now follows that

Pr[b = b′] ≤ Pr[b = b′|¬fail](1− Pr[fail]) + Pr[fail] = 1/2 + Pr[fail]/2
Pr[b = b′] ≥ Pr[b = b′|¬fail](1− Pr[fail]) = 1/2− Pr[fail]/2

and hence |Pr[b = b′]− 1/2| ≤ Pr[fail]/2 ≤ (q + 2s+ 2)2d/2p as required

20

Corollary A.3. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp and
let f ∈ Fp[X1, . . . , Xn]. Let d = max(2dP , dQ, df). If f is independent of (P,Q) then any A that
has advantage 1/2 in solving the decision (P,Q, f)-Diffie-Hellman Problem in a generic bilinear
group G must take time at least Ω(

√
p/d − s).

Using Corollary A.3. We briefly show that many standard (decisional) assumptions follow from
Corollary A.3.

• DDH in G1: set P = (1), Q = (1, x, y), f = xy.

• BDH in G0: set P = (1, x, y, z), Q = (1), f = xyz.

• `-BDHI in G0: set P = (1, x, x2, . . . , x`), Q = (1), f = x2`+1.

• `-BDHE in G0: set P = (1, y, x, x2, . . . , x`−1, x`+1, . . . , x2`), Q = (1), f = x`y.

Extensions. To take advantage of certain families of elliptic curves, such as the so-called MNT
curves [MNT01], one often uses a more general bilinear map e : G0 × G1 → G2 where the groups
G0 and G1 are not necessarily the same. To accurately model the algebraic structure of these
groups, we let ψ : G1 → G0 be an efficiently computable isomorphism (on MNT curves, such an
isomorphism is given by the trace map). We briefly state a similar result for these more general
maps. We first generalize the definition of independence.

Definition A.4. Let P,Q,R ∈ Fp[X1, . . . , Xn]s be three s-tuples of n-variate polynomials over Fp.
Write P = (p1, p2, . . . , ps), Q = (q1, q2, . . . , qs), and R = (r1, r2, . . . , rs) where p1 = q1 = r1 = 1. We
say that a polynomial f ∈ Fp[X1, . . . , Xn] is dependent on the sets (P,Q,R) if there exist 2s2 + s
constants {ai,j}si,j=1, {bi,j}si,j=1, {ck}sk=1 such that

f =
s∑

i=1

s∑
j=1

ai,j pi qj +
s∑

i=1

s∑
j=1

bi,jqi qj +
s∑

k=1

ck rk

We say that f is independent of (P,Q,R) if f is not dependent on (P,Q,R).

Given P,Q,R ∈ Fp[X1, . . . , Xn]s, and generators g0 ∈ G0, g1 ∈ G1, g2 ∈ G2, we define the
vector

H(x1, . . . , xn) =
(
g

P (x1,...,xn)
0 , g

Q(x1,...,xn)
1 , g

R(x1,...,xn)
2

)
∈ Gs

0 ×Gs
1 ×Gs

2

We say that an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the Decision
(P,Q,R, f)-Diffie-Hellman problem in (G0,G1) if∣∣∣∣Pr

[
B(H(x1, . . . , xn), gf(x1,...,xn)

1) = 0
]
− Pr

[
B(H(x1, . . . , xn), T) = 0

]∣∣∣∣ > ε

where the probability is over the random choice of generators g0 ∈ G0, g1 ∈ G1, g2 ∈ G2, the
random choice of x1, . . . , xn in Fp, the random choice of T ∈ G2, and the random bits consumed
by B. An identical proof to that of Theorem A.2 gives the following theorem.

Theorem A.5. Let P,Q,R ∈ Fp[X1, . . . , Xn]s be three s-tuples of n-variate polynomials over Fp

and let f ∈ Fp[X1, . . . , Xn]. Let d = max(dP + dQ, 2dQ, dR, df). If f is independent of (P,Q,R)
then any A that has advantage 1/2 in solving the decision (P,Q,R, f)-Diffie-Hellman Problem in
a generic bilinear group (G0,G1) must take time at least Ω(

√
p/d − s).

21

A.4 The Case of the Strong Diffie-Hellman Assumption

As mentioned previously, the Strong Diffie-Hellman (SDH) assumption [BB04b] is not covered by
the General Diffie-Hellman Exponent framework. A slightly simplified version of the `-SDH problem
can be stated as follows:

Given elements g, gα, . . . , g(α`) in G, find a pair (c, g1/(α+c)) such that c 6= 0 mod p.

A closely related problem is to find g1/(α+c) for some given value of c 6= 0. The two cases differ as
follows:

– When c is fixed, the task is equivalent to the DHI problem [BB04a, DY05, MSK02], and is
thus covered by the results of the previous section. We note that any hardness result on the
bilinear DHI assumption immediately implies the hardness of the DHI assumption when the
adversary no longer has access to the bilinear map oracle.

– When c is allowed to vary, as in the SDH problem [BB04b], the General Diffie-Hellman
Exponent framework no longer applies because the problem now admits a large number of
valid, distinct solutions (one for each c). In this respect, the SDH assumption is fundamentally
different from DHI. We note that Boneh and Boyen [BB04b] give a direct proof of hardness
of SDH in the generic group model.

B Security Proof for the Hybrid System of Section 4.2

In this section, we give a proof of Theorem 4.1, which is restated below for convenience.

Theorem B.1. Let G be a bilinear group of prime order p. Consider a hybrid `-HIBE system
with identity hierarchy partitioned into `1 groups each of size `2. Suppose the Decision (t, ε, `2)-
wBDHI assumption holds in G. Then the hybrid `-HIBE system is (t′, qS, ε)-selective identity,
chosen plaintext (IND-sID-CPA) secure for arbitrary `, qS, and t′ < t − Θ(τ ` qS), where τ is the
maximum time for an exponentiation in G.

Proof. Suppose A has advantage ε in attacking the hybrid `-HIBE system. Using A, we build an
algorithm B that solves the Decision (`2)-wBDHI* problem in G.

For a generator g ∈ G and α ∈ Zp, let yi = g(αi) ∈ G. Algorithm B is given as input a random
tuple (g, h, y1, . . . , y`2 , T) that is either sampled from PwBDHI∗ (where T = e(g, h)(α

`2+1)) or from
RwBDHI∗ (where T is uniform and independent in G∗

1). Algorithm B’s goal is to output 1 when
the input tuple is sampled from PwBDHI∗ and 0 otherwise. Algorithm B works by interacting with
A in a selective identity game as follows:

Initialization. The selective identity game begins with A first outputting an identity ID∗ =
(I∗1, . . . , I

∗
m) ∈ Zm

p of depth m ≤ ` that it intends to attack. If m < ` then B pads ID∗

with `−m zeroes on the right to make ID∗ is a vector of length `. From here on we assume
that ID∗ is a vector of length `. Following our convention, we write ID∗ as a pair (`, I∗) where
the matrix I∗ ∈ Z`1×`2

p is filled using the elements I∗1, . . . , I
∗
` .

Setup. To generate the system parameters, algorithm B picks a random γ in Zp and sets g1 =
y1 = gα and g2 = y`2 · gγ = gγ+(α`2).

Next, B picks random γ1, . . . , γ`2 in Zp and sets hi = gγi/y`2−i+1 for i = 1, . . . , `2.
Algorithm B also picks random δ1, . . . , δ`1 in Zp and sets fi = gδi ·

∏`2
j=1(y`2−j+1)

I∗
(i,j) for

i = 1, . . . , `1.

22

Finally, B gives A the system parameters params = (g, g1, g2, f1, . . . , f`1 , h1, . . . , h`2). Observe
that all these values are distributed uniformly and independently in G as required.

The master key g4 corresponding to these system parameters is g4 = gα(α`2+γ) = y`2+1y
γ
1 ,

which is unknown to B since B does not have y`2+1.

Phase 1. A issues up to qS private key queries. Consider a query for the private key corresponding
to ID = (I1, . . . , Iu) ∈ Zu

p where u ≤ `. The only restriction is that ID is not a prefix of ID∗.
This restriction ensures that there exists a k ∈ {1, . . . , u} such that Ik 6= I∗k (otherwise, ID
would be a prefix of ID∗); we set k such that it is the smallest such index. To respond to the
query, algorithm B first derives a private key for the identity IDk = (I1, . . . , Ik) from which it
then constructs a private key for the requested identity ID = (I1, . . . , Ik, . . . , Iu).

As per our convention, we write IDk as a pair (k, I) where the matrix I ∈ Z`1×`2
p is filled using

the elements I1, . . . , Ik. Recall that our convention allows for decomposing the depth index k
into a row-column pair (k1, k2) = k.

To generate the private key for the identity IDk at depth k = (k1, k2) where k1 ≤ `1 and k2 ≤
`2, algorithm B first picks random r1, . . . , rk1−1, r̃k1 in Zp. We pose rk1 = αk2

(I(k1,k2)−I∗
(k1,k2)

) +

r̃k1 ∈ Zp. Next, B generates the private key

dIDk
=

(
g4 ·

(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)rk1 ·

(
k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri

)
,

gr1 , . . . , grk1−1 , grk1 , h
rk1
k2+1, . . . , h

rk1
`2

)
∈ G1+k1+`2−k2 .

(7)

which is a properly distributed private key for the identity IDk. We show that B can compute
all elements of this private key given the values at its disposal. We use the fact that y(αj)

i =
yi+j for any i, j.

We begin by showing how to generate the first component of the private key. Observe that(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)rk1

=

grk1
·(δk1

+
Pk2

i=1 I(k1,i)γi) ·
k2−1∏
i=1

y
rk1

·(I∗
(k1,i)

−I(k1,i))

`2−i+1 · y
rk1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1 ·
`2∏

i=k2+1

y
rk1

·I∗
(k1,i)

`2−i+1

 .

(8)
Let Z denote the product of the first, second, and fourth terms. That is,

Z =
(
grk1

·(δk1
+

Pk2
i=1 I(k1,i)γi)

)
·

k2−1∏
i=1

y
rk1

·(I∗
(k1,i)

−I(k1,i))

`2−i+1︸ ︷︷ ︸
=1

·
`2∏

i=k2+1

y
rk1

·I∗
(k1,i)

`2−i+1 .

Note that the second term in Z equals 1 because Ii = I∗i for all i < k (namely, I(i,j) = I∗(i,j)
where both i ≤ k1 and j < k2 hold). One can verify that B can compute all the terms in
Z given the values at its disposal. On the other hand, B cannot compute the third term in
Eq (8) by itself since it requires knowledge of y`2+1 = yαk2

`2−k2+1. We, however, observe that

y
rk1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1 = y
r̃k1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1

/
y`2+1 = y

r̃k1
·(I∗

(k1,k2)
−I(k1,k2))

`2−k2+1

/
(g4y

−γ
1).

23

Hence, the product of the first two terms in the first component (7) in the private key is:

g4 ·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)rk1 = g4 · Z · y
r̃k1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1

/
(g4y

−γ
1)

= Z · y
r̃k1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1 · yγ
1 .

Since g4 cancels out from the expression on the right, all the terms in that expression are
known to B. Thus, B can compute the product of the first two terms in the first component
of the private key (7). To conclude, note that the third term

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri

=
k1−1∏
i=1

gri·(δi+
P`2

j=1 I(i,j)γi) ·
`2∏

j=1

y
ri·(I∗(i,j)−I(i,j))

`2−j+1


has a similar form to Z and can be computed by B given the values at its disposal. Therefore,
we have shown that B can compute the first component of the private key (7).

The components gr1 , . . . , grk1−1 are easily computed by raising g to the powers of r1, . . . , rk1−1,

all of which B knows. The component grk1 is simply y
1/(I(k1,k2)−I∗

(k1,k2)
)

k2
· gr̃k1 , which B can

also compute. Finally, observe that

h
rk1
k2+i =

(
gγk2+i

/
y`2−k2−i+1

) αk2
(I(k1,k2)−I∗

(k1,k2)
)
+r̃k1

=
(
y

γk2+i

k2

/
y`2−i+1

) 1
(I(k1,k2)−I∗

(k1,k2)
)
+r̃k1

,

which B can compute for all i = 1, . . . , `2 − k2 because there are no y`2+1 terms.

Thus, B can derive a valid private key for IDk. Algorithm B derives a private key for the
requested ID from this private key and gives A the result.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ G1 on which
it wishes to be challenged. Algorithm B picks a random bit b ∈ {0, 1} and responds with the
challenge ciphertext

CT =
(
Mb · T · e(y1, h

γ), h, h
δ1+

P`2
j=1 I∗

(1,j)
γj , h

δ2+
P`2

j=1 I∗
(2,j)

γj , . . . , h
δ`1

+
P`2

j=1 I∗
(`1,j)

γj

)
where h and T are from the input tuple given to B. First note that if h = gc (for some
unknown c in Zp) then

h
δi+

P`2
j=1 I∗

(i,j)
γj =

(
h

I∗
(i,1)

1 · · ·h
I∗
(i,`2)

`2
· fi

)c

Therefore, if T = e(g, h)(α
`2+1), (i.e., when the input tuple is sampled from PwBDHI∗) then

the challenge ciphertext is:

CT =
(
Mb · e(g1, g2)c, gc,

(
h

I∗
(1,1)

1 · · ·h
I∗
(1,`2)

`2
· f1

)c

, . . . ,

(
h

I∗
(`1,1)

1 · · ·h
I∗
(`1,`2)

`2
· f`1

)c)
which is a valid encryption of Mb under the public key ID∗ = (I∗1, . . . , I

∗
`). On the other hand,

when T is uniform and independent in G∗
1 (when the input tuple is sampled from RwBDHI∗),

then CT is independent of b in the adversary’s view.

24

Phase 2. A continues to issue queries not issued in Phase 1. Algorithm B responds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own game by outputting
a guess as follows. If b = b′ then B outputs 1 meaning T = e(g, h)(α

`2+1). Otherwise, it
outputs 0 meaning T is random in G1.

When the input tuple is sampled from PwBDHI∗ (where T = e(g, h)(α
`2+1)), then A’s view is

identical to its view in a real attack game and therefore A satisfies |Pr[b = b′]− 1/2| ≥ ε. When the
input tuple is sampled from RwBDHI∗ (where T is uniform in G∗

1) then Pr[b = b′] = 1/2. Therefore,
with g, h uniform in G∗, α uniform in Zp, and T uniform in G1 we have that∣∣∣∣Pr

[
B
(
g, h, ~yg,α,`2 , e(g, h)

(α`2+1)
)

= 0
]
− Pr

[
B
(
g, h, ~yg,α,`2 , T

)
= 0
]∣∣∣∣ ≥ |(1/2± ε)− 1/2| = ε

as required, which completes the proof of the theorem.

C An fs-HIBE Linear in All Components

Using an idea related to the hybrid HIBE presented in Section 4.2, we now construct a forward secure
HIBE system with a different complexity trade-off than that of Section 5.2. In the forthcoming
scheme, ciphertexts, private keys, and public parameters all have “linear” O(`+ log T) complexity,
where ` is the depth of the identity hierarchy and T is the number of time slices for purposes of
forward security. The scheme supports all the requirements set forth by Yao et al. [YFDL04], and
in particular the “dynamic-join” ability for any identity at any level to generate private keys for
any subordinate identities at any time.

The proposed fs-HIBE scheme, like the aforementioned hybrid HIBE, takes advantage of the
complementarity and orthogonality of our basic HIBE (call it BBG) and that of Boneh and Boyen
(BB). The main difference with the hybrid HIBE is that, here, each subsystem independently
contributes its own hierarchy (time or identity) — something that Yao et al. [YFDL04] could not
do based solely on the Gentry-Silverberg HIBE — so there is no need to consider a cross-product
hierarchy. This fact allows us to achieve a complexity of O(` + log T) — rather than O(` · log T)
— for all components.

Consider a forward secure HIBE setting with T = 2t time periods and ` levels in the ID hierarchy.
We construct such a fs-HIBE based on a t-level BB scheme for the time stamps and an `-level BBG
scheme for the identity hierarchy. Informally, each fs-HIBE private key consists of t private BB
subkeys corresponding to selected nodes in a “time tree” à la Canetti et al. [CHK03]. Each subkey
contains between 3 and t+2 elements, but because BB leaves most private key elements unchanged
from parent to child, the whole set contains only about 2t elements (instead of the t2/2 one would
have expected). Then, viewing each BB subkey as a black box master key for a BBG system
(exploiting the strong algebraic similarities between both systems), we use BBG to derive from this
master key a subkey for the designated identity. Again, this adds up to ` elements to the subkey,
but because the same ` elements can be shared among all t subkeys, the entire identity hierarchy
ends up costing only a mere ` extra terms (instead of t ` as one would have expected). We end up
with a total private key size ≈ 2t+ ` = O(`+ log T), a public key size ≈ t+ ` = O(`+ log T), and
a ciphertext size ≈ t = O(log T), which notably remains independent of the ID hierarchy depth.

C.1 Linear fs-HIBE Construction

As before, we assume a bilinear group G and a map e : G×G→ G1, where G and G1 have prime
order p. Let t = log T be the depth of the time tree and ` be the depth of the ID hierarchy. As

25

usual we let ID = (I1, . . . , Ik) ∈ Zk
p be an identity of depth k ≤ `. The linear fs-HIBE system is

described as follows.

Setup(t, `): To generate system parameters for an fs-HIBE of maximum depth ` and a maximum
of 2t time periods: select a random generator g in G, a random α ∈ Zp, and set g1 = gα;
then, pick random elements g2, g3, f1, . . . , ft, h1, . . . , h` ∈ G, and set g4 = gα

2 . The public
parameters params and the secret master-key are given by

params = (g, g1, g2, g3, f1, . . . , ft, h1, . . . , h`) , master-key = g4 = gα
2 .

KeyGen(dID|k−1, ID): To generate the private key d(τ)
ID for an identity ID = (I1, . . . , Ik) ∈ Zk

p of depth
k ≤ ` for the time period τ < 2t with binary representation τ = 〈τt−1| · · · |τ0〉 ∈ {0, 1}t, pick
random r1, . . . , rt, r

′
1, . . . , r

′
t, r ∈ Zp, and compute

y = gα
2 ·
(
hI1

1 · · ·h
Ik
k · g3

)r
,

to produce the output dID ∈ G2+t+2t̄+(`−k) (where t̄ = |{τi = 0 : 0 ≤ i < t}|), given by

d
(τ)
ID =



y ·
(
g

τt−1

1 · f1

)r1 ·
(
g

τt−2

1 · f2

)r2 · · · ·
(
gτ1
1 · ft−1

)rt−1 ·
(
gτ0
1 · ft

)rt ,

gr,

gr1 , gr2 , . . . , grt−1 , grt ,

y ·
(
g

τt−1

1 · f1

)r1 ·
(
g

τt−2

1 · f2

)r2 · · · ·
(
gτ1
1 · ft−1

)rt−1 ·
(
g1 · ft

)r′t , if τ0 = 0
y ·
(
g

τt−1

1 · f1

)r1 ·
(
g

τt−2

1 · f2

)r2 · · · ·
(
g1 · ft−1

)r′t−1 , if τ1 = 0
...

...
y ·
(
g

τt−1

1 · f1

)r1 ·
(
g1 · f2

)r′2 , if τt−2 = 0
y ·
(
g1 · f1

)r′1 , if τt−1 = 0

gr′1 , gr′2 , . . . , gr′t−1 , gr′t , restricted to the gr′i such that τt−i = 0

hr
k+1, hr

k+2, . . . , hr
`−1, hr

`



.

Observe that the private key for ID at time interval τ can be generated from a private key
for ID|k−1 = (I1, . . . , Ik−1) ∈ Zk−1

p with time index τ ′ ≤ τ , as required. We separately show

how to derive d(τ)
ID respectively from dID

(τ)
|k−1 and from d

(τ ′)
ID ; the general case can be obtained

by composing the two types of derivations in either order. The two cases are as follows.

1. [dID
(τ)
|k−1 → d

(τ)
ID]. The private key for ID|k−1 with time index τ can be written as

dID
(τ)
|k−1 =



y′ · a′0 ,
z′ ,

b1, . . . , bt,

y′ · c′t, . . . , y′ · c′1, where y′ · c′i = ⊥ unless τt−i = 0
d1, . . . , dt, where di = ⊥ unless τt−i = 0
hr

k, . . . , hr
`


= (a0, a1, b1, . . . , bt, ct, . . . , c1, d1, . . . , dt, ek, . . . , e`) ∈ G2+t+2t̄+(`−k+1),

where a′0, b1, . . . , bt, c
′
1, . . . , c

′
t, d1, . . . , dt are independent of ID, and y′ and z′ can be written

as, for unknown r′,

y′ = gα
2 ·
(
hI1

1 · · ·h
Ik
k · g3

)r′
, z′ = gr′ .

26

To generate d(τ)
ID from dID

(τ)
|k−1, pick a random r∗ ∈ Zp, and compute

y∗ = eIkk ·
(
hI1

1 · · ·h
Ik
k · g3

)r∗
, z∗ = gr∗ .

then, output

d
(τ)
ID =



a0 · y∗,
a1 · g∗,
b1, . . . , bt,

ct · y∗, . . . , c1 · y∗,
d1, . . . , dt,

ek+1 · hr∗
k+1, . . . , e` · hr∗

`


∈ G2+t+2t̄+(`−k).

If we set r = r′ + r∗, it is easy to see that this tuple is a correctly distributed private key for
identity ID and timestamp τ .

2. [d(τ ′)
ID → d

(τ)
ID]. The private key for ID with time index τ ′ < τ can be written as, for unknown

exponents r1, . . . , rt, r′1, . . . , r
′
t,

d
(τ ′)
ID =



y ·
(
g

τt−1

1 · f1

)r1 · · · ·
(
gτ1
1 · ft−1

)rt−1 ·
(
gτ0
1 · ft

)rt ,

z, gr1 , . . . , grt ,

y ·
(
g

τt−1

1 · f1

)r1 · · · ·
(
g1 · ft

)r′t , if τ0 = 0
...

...

y ·
(
g

τt−1

1 · f1

)r1 ·
(
g1 · f2

)r′2 , if τt−2 = 0

y ·
(
g1 · f1

)r′1 , if τt−1 = 0

gr′1 , . . . , gr′t , for gr′i where τt−i = 0

ek+1, . . . , e`


= (a0, a1, b1, . . . , bt, ct, . . . , c1, d1, . . . , dt, ek+1, . . . , e`) ∈ G2+t+2t̄+(`−k),

where y and ek+1, . . . , e` are independent of the time index τ ′.
We need to compute the private key

d
(τ)
ID = (â0, â1, b̂1, . . . , b̂t, ĉt, . . . , ĉ1, d̂1, . . . , d̂t, êk+1, . . . , ê`).

The expression of d(τ)
ID is more clearly described in reference to an instantiation of the HIBE

system of Boneh and Boyen [BB04a] where the master key is y (as opposed to explicitly
formalizing d

(τ)
ID in terms of d(τ ′)

ID). Indeed, the (t + 1)-tuple [a0, b1, . . . , bt] can be viewed
as a private key in the BB system for the level-t identity 〈τ ′t−1| . . . |τ ′0〉. Similarly, for all
j = t, . . . , 1, the (j+1)-tuple [cj , b1, . . . , bj−1, dj] is a private key for 〈τ ′t−1| . . . |τ ′t−j+1, 1〉 when
it is defined. It is easy to see that these private keys form a O(t)-size “cover set” for the time
periods [τ ′, 2t − 1], i.e., for the set of BB-identities ∈ {0, 1}t that represent binary integers
≥ τ ′. Furthermore, for any τ > τ ′ it is easy to transform this cover set into a O(t)-size
cover set for the interval [τ, 2t − 1] using no more than 2t invocations of the (single step)
Boneh-Boyen HIBE key derivation procedure.

27

The abstract transformation from one cover set the other is elementary and is omitted. As for
the single-step BB key derivation that implements this transformation, we briefly describe it
using the following case as an example. Suppose that the binary expansions of τ ′ and τ agree
on their j − 1 most significant bits, but differ on the j-th one (then necessarily τ ′t−j = 0 and
τt−j = 1). Our cover set for [τ ′, 2t − 1] must contain the BB private key [cj , b1, . . . , bj−1, dj]
corresponding to the BB identity 〈τ ′t−1| . . . |τ ′t−j+1, 1〉. We need to generate the private keys
of 〈τ ′t−1| . . . |τ ′t−j+1, 1, β〉 where β = 0, 1 (we typically need both). To do so, for each β select
a random r(β) ∈ Zp and compute the BB private key components:(

cj · (gβ
1 · fj+1)r∗ , b1, . . . , bj−1, dj , gr∗

)
.

For β = 1, we get the vector [ĉj+1, b1, . . . , bj−1, b̂j , d̂j+1] whose components can directly be
inserted in the appropriate slots in the d(τ)

ID ; we also need to insert the value d̂j+1 = gr(β)
in

d
(τ)
ID . For β = 0, we only need to insert the value b̂j+1 = gr(β)

in d
(τ)
ID ; the other components

of the private key vector are not directly stored in d(τ)
ID , but are used to obtain the remaining

elements of the set cover in a hierarchical manner.
Encrypt(params, ID,M): To encrypt a message M ∈ G1 under the public key ID = (I1, . . . , Ik) ∈ Zk

p

with timestamp τ = 〈τt−1| · · · |τ0〉 < 2t, pick a random s ∈ Zp and output

CT =
(
e(g1, g2)s ·M, gs,

(
hI1

1 · · ·h
Ik
k · g3

)s
,
(
g

τt−1

1 · f1

)s
, . . . ,

(
gτ0
1 · ft

)s)
∈ G1 ×G2+t.

Decrypt(dID,CT): To decrypt a ciphertext CT = (A,B,C,D1, . . . , Dt) for identity ID = (I1, . . . , Ik)
with timestamp τ , using a private key dID = (a0, a1, b1, . . . , bt, ct, . . . , c1, d1, . . . , dt, ek+1, . . . , e`)
for matching ID and τ , output

A · e(a1, C) ·
t∏

i=1

e(di, Di)
/
e(B, a0) = M.

The private key components b1, . . . , b`, ct, . . . , c1, and ek+1, . . . , e` are not used for decryption.

C.2 Security and Complexity

We now mention a few key properties of the linear fs-HIBE scheme.

Security. The security of the fs-HIBE scheme follows immediately from that of the main HIBE
presented earlier in this paper (used for the ID hierarchy in the fs-HIBE) and that of the Boneh-
Boyen HIBE (used for the temporal set cover construction). We mention that the “reuse” of the
BB exponents r1, . . . , rt−1 in multiple components of d(τ)

ID is a feature of the subkey generation in
the BB system, which is exploited here to reduce the overall size of the full fs-HIBE key; without
it, the private key size would incur an extra log T multiplicative factor.

The proof of security is essentially based on the orthogonality of the two HIBE subsystems in the
fs-HIBE construction, from which a reduction to the security of either system is easily obtained. For
example, private key derivation in the time coordinate is completely oblivious to the ID-dependent
blinding: indeed, as far as the BB subsystem is concerned, the ID-dependent blinding is part of the
unknown master secret and left untouched by sub-level key derivation. The same can be said of the

28

timestamp-dependent blinding factors implemented by the BB subsystem, which are unaffected by
the key derivations operations in the ID hierarchy. The only place where the two subsystems meet
is at decryption, which requires the blinding coefficients from both subsystems to be lifted in order
to proceed.

Complexity. For a maximum of T time slices and ` levels in the hierarchy, all functions in the
fs-HIBE above have time complexity O(`+ t) = O(`+log T). Similarly, the ciphertexts, the private
keys, and the public parameters all have linear size O(`+ log T).

C.3 “Logarithmic” Forward Secure Public Key Encryption

We note that the above linear fs-HIBE scheme immediately provides a linear (in t) or logarithmic
(in T = 2t) forward secure public key encryption scheme, or fs-PKE. We derive our logarithmic
fs-PKE by dropping the ID hierarchy in the above fs-HIBE. In other words, all ciphertexts and
private keys are issued to the root of the ID hierarchy. It follows that private keys and ciphertexts
in the resulting scheme have complexity O(log T). Notice that the resulting fs-PKE is entirely
based on the Boneh-Boyen IBE scheme from [BB04a], and thus depends only on the decisional
BDH assumption.

A difference with the fs-PKE proposed by Canetti et al. [CHK03] is that we achieve logarithmic
complexity without resorting to updateable public storage. Recall that in the CHK construc-
tion [CHK03], private keys are natively of size O(log2 T), and can be compressed down to O(log T)
size at the cost of maintaining polylogarithmic O(log2 T) extra information in updateable public
storage. The present approach does not require any such public storage.

29

