
Lattice-Based Functional Commitments:
Constructions and Cryptanalysis

David Wu

May 2024

based on joint works with Hoeteck Wee

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

𝜋

𝝈

𝑥
Commit

“opening”

“commitment”

𝝈

Functional Commitments

Takes a common reference string and commits to an input 𝑥

Outputs commitment 𝜎 and commitment state st

𝑥
Commit

Commit crs, 𝑥 → 𝜎, st

“commitment”

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Open st, 𝑓 → 𝜋
Takes the commitment state and a function 𝑓 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑓, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 with respect to 𝑓

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥 , 𝑓 𝑥

𝜋

Will consider relaxation where 𝜎 and 𝜋 can grow with depth of the
circuit computing 𝑓

Special Cases of Functional Commitments

Vector commitments:

Polynomial commitments:

𝑥1, 𝑥2, … , 𝑥𝑛 𝑥𝑖

ind𝑖 𝑥1, … , 𝑥𝑛 ≔ 𝑥𝑖

commit to a vector, open at an index

𝛼0, 𝛼1, … , 𝛼𝑑

𝑓𝑥 𝛼0, … , 𝛼𝑑 ≔ 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑑𝑥𝑑

𝑦

commit to a polynomial, open to the evaluation at 𝑥

Succinct Functional Commitments

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

[dCP23] Boolean circuits SIS (non-succinct openings in general)

(not an exhaustive list!)

[BCFL23] Boolean circuits twin 𝑘-𝑅-ISIS (or 𝑞-type pairing assumption)

[WW23a, WW23b] Boolean circuits ℓ-succinct SIS This talk

[KLVW23] Boolean circuits LWE (via batch arguments)

[WW24] Boolean circuits 𝑘-Lin (pairings)

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

short (i.e., low-norm) vector
satisfying 𝑨𝑖𝒖𝑖𝑗 = 𝒕𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

Commitment to 𝒙 ∈ ℤ𝑞
ℓ :

𝒄 =

𝑖∈ ℓ

𝑥𝑖𝒕𝑖

linear combination of target vectors

Opening to value 𝑦 at index 𝑖:

short 𝒗𝑖 such that 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑦 ⋅ 𝒕𝑖

Honest opening:

𝒗𝑖 =

𝑗≠𝑖

𝑥𝑗𝒖𝑖𝑗

Correct as long as 𝒙 is short

𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 =

𝑗≠𝑖

𝑥𝑗𝑨𝑖𝒖𝑖𝑗 + 𝑥𝑖𝒕𝑖 =

𝑗∈ ℓ

𝑥𝑗𝒕𝑗 = 𝒄

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

[PPS21]: 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚 and 𝒕𝑖 ← ℤ𝑞

𝑛 are independent and uniform

[ACLMT21]: 𝑨𝑖 = 𝑾𝑖𝑨 and 𝒕𝑖 = 𝑾𝑖𝒖𝑖 where 𝑾𝑖 ← ℤ𝑞
𝑛×𝑛, 𝑨 ← ℤ𝑞

𝑛×𝑚, 𝒖𝑖 ← ℤ𝑞
𝑛

suffices for vector commitments (from SIS)

generalizes to functional commitments for constant-degree polynomials (from 𝑘-𝑅-ISIS)

(one candidate adaptation to the integer case)

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

𝑰𝑛 denotes the identity matrix

𝑨1 −𝑰𝑛

⋱ ⋮
𝑨ℓ −𝑰𝑛

⋅

𝒗1

⋮
𝒗ℓ

𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

For security and functionality, it
will be useful to write 𝒄 = 𝑮ො𝒄

𝑮 =
1 2 ⋯ 2⌊log 𝑞⌋

⋱
1 2 ⋯ 2 log 𝑞

“powers of two matrix”

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

trapdoor for 𝑩ℓ

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

Trapdoor for 𝑩ℓ can be used to sample short solutions
𝒙 to the linear system 𝑩ℓ𝒙 = 𝒚 (for arbitrary 𝒚)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

𝑩ℓ

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and
𝒗1, … , 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

𝑩ℓ

𝑨𝑖 𝒗𝑖 − 𝒗𝑖
′ = 𝑥𝑖

′ − 𝑥𝑖 𝒕𝑖

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Suppose adversary can break binding

𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

= 𝑨𝑖𝒗𝑖
′ + 𝑥𝑖

′𝒕𝑖

outputs 𝒄, 𝒗𝑖 , 𝑥𝑖 , 𝒗𝑖
′, 𝑥𝑖

′ such that
given 𝑨 ← ℤ𝑞

𝑛×𝑚, hard to find

short 𝒙 ≠ 0 such that 𝑨𝒙 = 𝟎

Short integer solutions (SIS)

How to choose 𝑨𝑖 , 𝒕𝑖?

Looks like an SIS solution…

(short) (non-zero)

set 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚

set 𝒕𝑖 = 𝒆1 = 1,0, … , 0 T

(cannot set 𝒕𝒊 = 𝟎 as otherwise, it could be 𝒗𝑖 = 𝒗𝑖
′)

𝒗𝑖 − 𝒗𝑖
′ is a SIS solution for 𝑨𝑖

without the first row

𝑨𝑖 𝒗𝑖 − 𝒗𝑖
′ = 𝑥𝑖

′ − 𝑥𝑖 𝒆1

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Suppose adversary can break binding

𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

= 𝑨𝑖𝒗𝑖
′ + 𝑥𝑖

′𝒕𝑖

outputs 𝒄, 𝒗𝑖 , 𝑥𝑖 , 𝒗𝑖
′, 𝑥𝑖

′ such that
given 𝑨 ← ℤ𝑞

𝑛×𝑚, hard to find

short 𝒙 ≠ 0 such that 𝑨𝒙 = 𝟎

Short integer solutions (SIS)

set 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚

set 𝒕𝑖 = 𝒆1 = 1,0, … , 0 T

(cannot set 𝒕𝒊 = 𝟎 as otherwise, it could be 𝒗𝑖 = 𝒗𝑖
′)

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖

(technically 𝑨𝑖 without the first row – which is equivalent to SIS with dimension 𝑛 − 1)

but… adversary also gets additional information beyond 𝑨𝑖

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Adversary sees
trapdoor for 𝑩ℓ

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖

SIS is hard with respect to 𝑨𝑖
 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Basis-augmented SIS (BASIS) assumption:

Can simulate CRS from BASIS challenge:

trapdoor for 𝑩ℓ

matrices 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to 𝑨𝑖 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

When 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚 are uniform and independent:

hardness of SIS implies hardness of BASIS
(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

auxiliary data: trapdoor for 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to a vector 𝒙 ∈ ℤ𝑞
ℓ : sample solution (𝒗1, … , 𝒗ℓ, ො𝒄)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒆1

⋮
−𝑥ℓ𝒆ℓ

Commitment is 𝒄 = 𝑮ො𝒄 Openings are 𝒗1, … , 𝒗ℓ

Can commit and open to
arbitrary ℤ𝑞 vectors

Commitments and openings
statistically hide unopened
components

Linearly homomorphic:
𝒄 + 𝒄′ is a commitment to

𝒙 + 𝒙′ with openings 𝒗𝑖 + 𝒗𝑖
′

Extending to Functional Commitments

Goal: commit to 𝒙 ∈ 0,1 ℓ, open to function 𝑓 𝒙

Suppose 𝑓 𝒙 = σ𝑖∈ ℓ 𝛼𝑖𝑥𝑖 is a linear function

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]

Can also view 𝒄 as commitment to vector 𝑥𝑖𝒕𝑖 with respect to 𝑨𝑖 and opening 𝒗𝑖

Suppose 𝒄𝟏, 𝒄𝟐 are commitments to vectors 𝒖1, 𝒖2 with respect to the same 𝑨

𝒄1 = 𝑨𝒗1 + 𝒖1

𝒄2 = 𝑨𝒗2 + 𝒖2
𝒄1 + 𝒄2 = 𝑨 𝒗1 + 𝒗2 + 𝒖1 + 𝒖2

Extending to Functional Commitments

𝒄1 = 𝑨𝒗1 + 𝑥1𝒕
⋮

𝒄ℓ = 𝑨𝒗ℓ + 𝑥ℓ𝒕

Desired correctness relation

Cannot define commitment to be 𝒄1, … , 𝒄ℓ since this is long

Instead, suppose 𝒄𝑖 = 𝑾𝑖𝒄 can be derived from a (single) 𝒄

𝑾1𝒄 = 𝑨𝒗1 + 𝑥1𝒕
⋮

𝑾ℓ𝒄 = 𝑨𝒗ℓ + 𝑥ℓ𝒕
Our approach: rewrite ℓ relations as a single linear

system (and publish a trapdoor for it)

𝑨 −𝑾𝟏

⋱ ⋮
𝑨 −𝑾ℓ

⋅

𝒗1

⋮
𝒗ℓ

𝒄

=

−𝑥1𝒕
⋮

−𝑥ℓ𝒕

𝑩ℓ

Extending to Functional Commitments

To commit to 𝒙 ∈ 0,1 ℓ, use trapdoor for 𝑩ℓ to sample 𝒄, 𝒗1, … , 𝒗ℓ where

𝑾1𝒄 = 𝑨𝒗1 + 𝑥1𝒕
⋮

𝑾ℓ𝒄 = 𝑨𝒗ℓ + 𝑥ℓ𝒕

𝑨 −𝑾𝟏

⋱ ⋮
𝑨 −𝑾ℓ

⋅

𝒗1

⋮
𝒗ℓ

𝒄

=

−𝑥1𝒕
⋮

−𝑥ℓ𝒕

𝑩ℓ

CRS contains 𝑨, 𝑾1, … , 𝑾ℓ, 𝒕
and trapdoor for 𝑩ℓ

Opening to value 𝑦 = 𝑓 𝒙 = σ𝑖∈ ℓ 𝛼𝑖𝑥𝑖 is 𝒗𝑓 ≔ σ𝑖∈ ℓ 𝛼𝑖𝒗𝑖

Verification relation

𝑖∈ ℓ

𝛼𝑖𝑾𝑖𝒄 = 𝑨𝒗𝑓 + 𝑦 ⋅ 𝒕

Functional Commitments from Lattices

Security follows from ℓ-succinct SIS assumption [Wee24]:

SIS is hard with respect to 𝑨 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

Falsifiable assumption but does not appear to reduce to standard SIS

ℓ = 1 case does follow from plain SIS (and when 𝑾𝑖 is very wide)

Open problem: Understanding security or attacks when ℓ > 1

where 𝑨 ← ℤ𝑞
𝑛×𝑚 and 𝑾𝑖 ← ℤ𝑞

𝑛×𝑚

Functional Commitments from Lattices

Security follows from ℓ-succinct SIS assumption [Wee24]:

SIS is hard with respect to 𝑨 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

where 𝑨 ← ℤ𝑞
𝑛×𝑚 and 𝑾𝑖 ← ℤ𝑞

𝑛×𝑚

Equivalent formulation:

SIS is hard with respect to 𝑨 given 𝑨−1 𝑾𝑖𝑹 along with 𝑾𝑖 , 𝑹

where 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝑾𝑖 ← ℤ𝑞

𝑛×𝑚, and 𝑹 ← 𝐷ℤ,𝑠
𝑚×𝑘 where 𝑘 ≥ 𝑚 ℓ + 1

Functional Commitments from Lattices

Linear functional commitments extends readily to support (bounded-depth) circuits

𝑾1𝒄 = 𝑨𝒗1 + 𝑥1𝒕
⋮

𝑾ℓ𝒄 = 𝑨𝒗ℓ + 𝑥ℓ𝒕

Supports openings to
linear functions

𝑾1𝑪 = 𝑨𝑽1 + 𝑥1𝑮
⋮

𝑾ℓ𝑪 = 𝑨𝑽ℓ + 𝑥ℓ𝑮

Supports openings to
Boolean circuits

In this setting, 𝑾1𝑪, … , 𝑾ℓ𝑪 is a [GVW14]
homomorphic commitment to 𝒙 (can be opened to any

function 𝑓 𝒙 of bounded depth)

[see paper for details]
Can be sampled using same trapdoor for 𝐵ℓ

(security still reduces to ℓ-succinct SIS)

Summary of Functional Commitments

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation (𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖)
2. Publish a trapdoor for the linear system induced by the verification relation

Security analysis relies on new 𝑞-type variants of SIS:

SIS with respect to 𝑨 is hard given a trapdoor for a related matrix 𝑩

“Random” variant of the assumption implies vector commitments and reduces to SIS

“Structured” variant (ℓ-succinct SIS) implies functional commitments for circuits
• Structure also enables aggregating openings [see paper for details]

Cryptanalysis of Lattice-Based Knowledge Assumptions

Extractable Functional Commitments

Binding: efficient adversary cannot open 𝜎 to two different values with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

Scheme could be binding, but still allow an efficient
adversary to construct (malformed) commitment 𝜎 and

opening to value 1 with respect to the all-zeroes function

Extractable Functional Commitments

Binding: efficient adversary cannot open 𝜎 to two different values with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝝈 𝜋
𝑓, 𝑦

Extractability: efficient adversary that opens 𝜎 to 𝑦 with respect to 𝑓 must know an 𝑥 such
that 𝑓 𝑥 = 𝑦

𝑥 such that 𝑦 = 𝑓(𝑥)
efficient extractor

Note: 𝑓 could have multiple outputs

Extractable Functional Commitments

Binding: efficient adversary cannot open 𝜎 to two different values with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝝈 𝜋
𝑓, 𝑦

Extractability: efficient adversary that opens 𝜎 to 𝑦 with respect to 𝑓 must know an 𝑥 such
that 𝑓 𝑥 = 𝑦

𝑥 such that 𝑦 = 𝑓(𝑥)
efficient extractor

Note: 𝑓 could have multiple outputs

Notion is equivalent to SNARKs, so will be
challenging to build from a falsifiable

assumption

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

𝑨 𝑫

𝒁
𝑻

given (tall) matrices 𝑨, 𝑫 and short preimages 𝒁 of a random target 𝑻

if adversary can produce a short vector 𝒗 such that 𝑨𝒗 is in the image of 𝑫 (i.e.,
𝑨𝒗 = 𝑫𝒄), then there exists an extractor that outputs short 𝒙 where 𝒗 = 𝒁𝒙

Observe: 𝑨𝒗 for a random (short) 𝒗 is outside the image of 𝑫 (since 𝑫 is tall)

short
random

[ACLMT22]

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

𝑨 𝑫

𝒁
𝑻

Observe: 𝑨𝒗 for a random (short) 𝒗 is outside the image of 𝑫 (since 𝑫 is tall)

short

given (tall) matrices 𝑨, 𝑫 and short preimages 𝒁 of a random target 𝑻

if adversary can produce a short vector 𝒗 such that 𝑨𝒗 is in the image of 𝑫 (i.e.,
𝑨𝒗 = 𝑫𝒄), then there exists an extractor that outputs short 𝒙 where 𝒗 = 𝒁𝒙

[ACLMT22]
For extractable functional commitments:
• 𝒁 is in the CRS
• Commitment is 𝒄 = 𝑻𝒙
• Opening is 𝒗 where 𝑨𝒗 = 𝑫𝒄
Extractable since valid opening can be associated with an
honestly-generated commitment

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

𝑨 𝑫

𝒁
𝑻

Our work: algorithm to obliviously sample a solution 𝑨𝒗 = 𝑫𝒄 without knowledge of a linear
combination 𝒗 = 𝒁𝒙

Rewrite 𝑨𝒁 = 𝑫𝑻 as

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

If 𝒁 and 𝑻 are wide enough, we
(heuristically) obtain a basis for 𝑨 ∣ 𝑫𝑮

short

[ACLMT22]

Obliviously Sampling a Solution

Our work: algorithm to obliviously sample a solution 𝑨𝒗 = 𝑫𝒄 without knowledge of a linear
combination 𝒗 = 𝒁𝒙

Rewrite 𝑨𝒁 = 𝑫𝑻 as

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

If 𝒁 and 𝑻 are wide enough, we
(heuristically) obtain a basis for 𝑨 ∣ 𝑫𝑮

Oblivious sampler (Babai rounding):
1. Take any (non-zero) integer solution 𝒚 where 𝑨 ∣ 𝑫𝑮 𝒚 = 𝟎 mod 𝑞
2. Assuming 𝑩∗ is full-rank over ℚ, find 𝒛 such that 𝑩∗𝒛 = 𝒚 (over ℚ)
3. Set 𝒚∗ = 𝒚 − 𝑩∗ 𝒛 = 𝑩∗ 𝒛 − 𝒛 and parse into 𝒗, 𝒄

𝑩∗

Correctness: 𝑨 ∣ 𝑫𝑮 ⋅ 𝒚∗ = 𝑨 ∣ 𝑫𝑮 ⋅ 𝑩∗(𝒛 − ⌊𝒛⌉) = 𝟎 mod 𝑞 and 𝒚∗ is short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution 𝑨𝒗 = 𝑫𝒄 without knowledge of a linear
combination 𝒗 = 𝒁𝒙

Rewrite 𝑨𝒁 = 𝑫𝑻 as

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

If 𝒁 and 𝑻 are wide enough, we
(heuristically) obtain a basis for 𝑨 ∣ 𝑫𝑮

Oblivious sampler (Babai rounding):
1. Take any (non-zero) integer solution 𝒚 where 𝑨 ∣ 𝑫𝑮 𝒚 = 𝟎 mod 𝑞
2. Assuming 𝑩∗ is full-rank over ℚ, find 𝒛 such that 𝑩∗𝒛 = 𝒚 (over ℚ)
3. Set 𝒚∗ = 𝒚 − 𝑩∗ 𝒛 = 𝑩∗ 𝒛 − 𝒛 and parse into 𝒗, 𝒄

𝑩∗

Correctness: 𝑨 ∣ 𝑫𝑮 ⋅ 𝒚∗ = 𝑨 ∣ 𝑫𝑮 ⋅ 𝑩∗(𝒛 − ⌊𝒛⌉) = 𝟎 mod 𝑞 and 𝒚∗ is short

This solution is obtained by “rounding” off a long solution

Question: Can we explain such solutions as taking a short
linear combination of 𝒁 (i.e., what the knowledge
assumption asserts)

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by

the verification equation
3. Use components in the CRS to derive a basis for the related lattice

𝑨𝒗 = 𝑫𝒄
1 2

𝑨 ∣ 𝑫𝑮
𝒗

−𝑮−1 𝒄 = 𝟎

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

3

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by

the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:
• Oblivious sampler for integer variant of knowledge 𝑘-𝑅-ISIS assumption from [ACLMT22]
 Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

• Breaks extractability of the (integer variant of the) linear functional commitment from
[ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor
for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by

the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:
• Oblivious sampler for integer variant of knowledge 𝑘-𝑅-ISIS assumption from [ACLMT22]
 Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

• Breaks extractability of the (integer variant of the) linear functional commitment from
[ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor
for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

The SNARK considers extractable commitment for quadratic
functions while our current oblivious sampler only works for

linear functions in the case of [ACLMT22]

Open Questions

Cryptanalysis of lattice-based SNARKs based on knowledge 𝑘-𝑅-ISIS [ACLMT22, CLM23, FLV23]
Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids attacks

Thank you!

Understanding the hardness of ℓ-succinct SIS/LWE (hardness reductions or cryptanalysis)?

New applications of ℓ-succinct SIS/LWE?

Martin Albrecht’s blog post: https://malb.io/sis-with-hints.html

Broadcast encryption, succinct ABE, succinct laconic function evaluation [Wee24]

https://eprint.iacr.org/2022/1515

https://eprint.iacr.org/2024/028

	Slide 1: Lattice-Based Functional Commitments: Constructions and Cryptanalysis
	Slide 2: Functional Commitments
	Slide 3: Functional Commitments
	Slide 4: Functional Commitments
	Slide 5: Functional Commitments
	Slide 6: Functional Commitments
	Slide 7: Special Cases of Functional Commitments
	Slide 8: Succinct Functional Commitments
	Slide 9: Framework for Lattice Commitments
	Slide 10: Framework for Lattice Commitments
	Slide 11: Framework for Lattice Commitments
	Slide 12: Our Approach
	Slide 13: Our Approach
	Slide 14: Our Approach
	Slide 15: Our Approach
	Slide 16: Our Approach
	Slide 17: Proving Security
	Slide 18: Proving Security
	Slide 19: Proving Security
	Slide 20: Basis-Augmented SIS (BASIS) Assumption
	Slide 21: Basis-Augmented SIS (BASIS) Assumption
	Slide 22: Vector Commitments from SIS
	Slide 23: Extending to Functional Commitments
	Slide 24: Extending to Functional Commitments
	Slide 25: Extending to Functional Commitments
	Slide 26: Functional Commitments from Lattices
	Slide 27: Functional Commitments from Lattices
	Slide 28: Functional Commitments from Lattices
	Slide 29: Summary of Functional Commitments
	Slide 30: Cryptanalysis of Lattice-Based Knowledge Assumptions
	Slide 31: Extractable Functional Commitments
	Slide 32: Extractable Functional Commitments
	Slide 33: Extractable Functional Commitments
	Slide 34: Cryptanalysis of Lattice-Based Knowledge Assumptions
	Slide 35: Cryptanalysis of Lattice-Based Knowledge Assumptions
	Slide 36: Obliviously Sampling a Solution
	Slide 37: Obliviously Sampling a Solution
	Slide 38: Obliviously Sampling a Solution
	Slide 39: Template for Analyzing Lattice-Based Knowledge Assumptions
	Slide 40: Template for Analyzing Lattice-Based Knowledge Assumptions
	Slide 41: Template for Analyzing Lattice-Based Knowledge Assumptions
	Slide 42: Open Questions

