Lattice-Based Functional Commitments: Constructions and Cryptanalysis

David Wu May 2024

based on joint works with Hoeteck Wee

 $Commit(crs, x) \rightarrow (\sigma, st)$

Takes a common reference string and commits to an input xOutputs commitment σ and commitment state st

Commit(crs, x) \rightarrow (σ , st) Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

Verify(crs,
$$\sigma$$
, (f, y) , π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

Binding: efficient adversary cannot open σ to two different values with respect to the same f

$$\pi_{0} (f, y_{0}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{0}), \pi_{0}) = 1$$

$$\pi_{1} (f, y_{1}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{1}), \pi_{1}) = 1$$

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma| = poly(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|, |f(x)|)$

Will consider relaxation where $|\sigma|$ and $|\pi|$ can grow with **depth** of the circuit computing *f*

Special Cases of Functional Commitments

Vector commitments:

$$[x_1, x_2, \dots, x_n] \qquad \qquad \text{ind}_i(x_1, \dots, x_n) \coloneqq x_i$$

commit to a vector, open at an index

Polynomial commitments:

commit to a polynomial, open to the evaluation at x

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	k- R -ISIS assumption (falsifiable)
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[dCP23]	Boolean circuits	SIS (non-succinct openings in general)
[KLVW23]	Boolean circuits	LWE (via batch arguments)
[BCFL23]	Boolean circuits	twin <i>k-R</i> -ISIS (or <i>q</i> -type pairing assumption)
[WW23a, WW23b]	Boolean circuits	<i>ℓ</i> -succinct SIS This talk
[WW24]	Boolean circuits	k-Lin (pairings)

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ): matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ target vectors $t_1, ..., t_\ell \in \mathbb{Z}_q^n$ *auxiliary data:* cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$ short (i.e., low-norm) vector satisfying $A_i u_{ij} = t_j$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $\boldsymbol{u}_{ij} \leftarrow A_i^{-1}(\boldsymbol{t}_j) \in \mathbb{Z}_q^m$ where $i \neq j$

Commitment to $x \in \mathbb{Z}_q^{\ell}$:

Opening to value y at index i:

 $\boldsymbol{c} = \sum_{i \in [\ell]} x_i \boldsymbol{t}_i$

linear combination of target vectors

short \boldsymbol{v}_i such that $\boldsymbol{c} = \boldsymbol{A}_i \boldsymbol{v}_i + y \cdot \boldsymbol{t}_i$

Honest opening:

$$\boldsymbol{v}_i = \sum_{j \neq i} x_j \boldsymbol{u}$$

$$\begin{bmatrix} x_j \boldsymbol{u}_{ij} \\ A_i \boldsymbol{v}_i + x_i \boldsymbol{t}_i = \sum_{j \neq i} x_j A_i \boldsymbol{u}_{ij} + x_i \boldsymbol{t}_i = \sum_{j \in [\ell]} x_j \boldsymbol{t}_j = \boldsymbol{c} \end{bmatrix}$$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

[PPS21]: $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ and $t_i \leftarrow \mathbb{Z}_q^n$ are independent and uniform suffices for vector commitments (from SIS)

[ACLMT21]: $A_i = W_i A$ and $t_i = W_i u_i$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$, $A \leftarrow \mathbb{Z}_q^{n \times m}$, $u_i \leftarrow \mathbb{Z}_q^n$ (one candidate adaptation to the integer case)

<u>generalizes</u> to functional commitments for constant-degree polynomials (from k-R-ISIS)

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i$$
 $\forall i \in [\ell]$
for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | & -I_n \\ & \ddots & & & & | & \vdots \\ & & A_\ell & & -I_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_\ell \\ c \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_\ell t_\ell \end{bmatrix}$$

$$I_n \text{ denotes the identity matrix}$$

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i$$
 $\forall i \in [\ell]$
for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & -G \\ & \ddots & & & & \\ & & A_{\ell} & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_{\ell} t_{\ell} \end{bmatrix}$$
For security and functionality, it will be useful to write $c = G\hat{c}$

$$G = \begin{bmatrix} 1 & 2 & \cdots & 2^{\lfloor \log q \rfloor} \\ & \ddots & \\ & 1 & 2 & \cdots & 2^{\lfloor \log q \rfloor} \end{bmatrix}$$

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i$$
 $\forall i \in [\ell]$
for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_\ell \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_\ell t_\ell \end{bmatrix}^{C}$$

Common reference string: matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ target vectors $t_1, ..., t_\ell \in \mathbb{Z}_q^n$ *auxiliary data:* cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j)$

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i$$
 $\forall i \in [\ell]$
for a short v_i

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

$$\begin{bmatrix} A_{1} & & & & | & -G \\ & \ddots & & & & | & \cdot \\ & & A_{\ell} & & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_{1} \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_{1}t_{1} \\ \vdots \\ -x_{\ell}t_{\ell} \end{bmatrix} \xrightarrow{\text{matrices } A_{1}, \dots, A_{\ell} \in \mathbb{Z}_{q}^{n \times m} \\ \text{target vectors } t_{1}, \dots, t_{\ell} \in \mathbb{Z}_{q}^{n} \\ \text{auxiliary data: cross-terms } u_{ij} \leftarrow A_{i}^{-1}(t_{j}) \\ \text{trapdoor for } B_{\ell} \end{bmatrix}$$

$$B_{\ell}$$
Trapdoor for B_{ℓ} can be used to sample short solutions x to the linear system $B_{\ell}x = y$ (for arbitrary y)

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

$$\begin{bmatrix} A_1 & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_{\ell} t_{\ell} \end{bmatrix}$$
$$\underbrace{B_{\ell}}$$

Committing to an input x: Use trapdoor for B_{ℓ} to jointly sample a solution $v_1, \dots, v_{\ell}, \hat{c}$ $c = G\hat{c}$ is the commitment and v_1, \dots, v_{ℓ} are the openings

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i$ $\forall i \in [\ell]$ for a short v_i

Suppose adversary can break binding

outputs \boldsymbol{c} , (\boldsymbol{v}_i, x_i) , $(\boldsymbol{v}_i', x_i')$ such that

$$\boldsymbol{c} = \boldsymbol{A}_i \boldsymbol{v}_i + \boldsymbol{x}_i \boldsymbol{t}_i$$

$$= \boldsymbol{A}_i \boldsymbol{\nu}_i' + \boldsymbol{x}_i' \boldsymbol{t}_i$$

set $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ set $t_i = e_1 = [1, 0, ..., 0]^T$ (cannot set $t_i = 0$ as otherwise, it could be $v_i = v'_i$) Short integer solutions (SIS)

given $A \leftarrow \mathbb{Z}_q^{n \times m}$, hard to find short $x \neq 0$ such that Ax = 0

$$\begin{array}{l} \mathbf{A}_{i}(\boldsymbol{v}_{i}-\boldsymbol{v}_{i}')=(x_{i}'-x_{i})\boldsymbol{t}_{i}\\ \text{(short)} \qquad (non-zero) \end{array}$$

Looks like an SIS solution... How to choose A_i , t_i ?

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i$ $\forall i \in [\ell]$ for a short v_i

Suppose adversary can break binding

outputs \boldsymbol{c} , (\boldsymbol{v}_i, x_i) , $(\boldsymbol{v}_i', x_i')$ such that

$$\boldsymbol{c} = \boldsymbol{A}_i \boldsymbol{v}_i + \boldsymbol{x}_i \boldsymbol{t}_i$$

$$= \boldsymbol{A}_i \boldsymbol{\nu}_i' + \boldsymbol{x}_i' \boldsymbol{t}_i$$

set $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ set $t_i = e_1 = [1, 0, ..., 0]^T$ (cannot set $t_i = 0$ as otherwise, it could be $v_i = v'_i$) Short integer solutions (SIS)

given $A \leftarrow \mathbb{Z}_q^{n \times m}$, hard to find short $x \neq 0$ such that Ax = 0

$$\boldsymbol{A}_{i}(\boldsymbol{v}_{i}-\boldsymbol{v}_{i}')=(x_{i}'-\boldsymbol{x}_{i})\boldsymbol{e}_{1}$$

 $v_i - v_i'$ is a SIS solution for A_i without the first row

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i$ $\forall i \in [\ell]$ for a short v_i

Adversary that breaks binding can solve SIS with respect to A_i

(technically A_i without the first row – which is equivalent to SIS with dimension n - 1)

but... adversary also gets additional information beyond A_i

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & | & -\boldsymbol{G} \\ & \ddots & & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

Adversary sees trapdoor for B_{ℓ}

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$ for a short v_i

Adversary that breaks binding can solve SIS with respect to A_i Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to **A**_i given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & & | & -\boldsymbol{G} \\ & \ddots & & & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

Can simulate CRS from BASIS challenge: matrices $A_1, \dots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ trapdoor for B_ℓ

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & | & -\boldsymbol{G} \\ & \ddots & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

When $A_1, ..., A_{\ell} \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ auxiliary data: trapdoor for $B_\ell = \begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & & | & \vdots \\ & & & & A_\ell & | & -G \end{bmatrix}$

To commit to a vector $x \in \mathbb{Z}_q^{\ell}$: sample solution $(v_1, ..., v_{\ell}, \hat{c})$

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 e_1 \\ \vdots \\ -x_{\ell} e_{\ell} \end{bmatrix}$$

Commitment is $\boldsymbol{c} = \boldsymbol{G} \boldsymbol{\widehat{c}}$ Openings are $\boldsymbol{v}_1, \dots, \boldsymbol{v}_\ell$

Can commit and open to **arbitrary** \mathbb{Z}_q vectors

Commitments and openings statistically **hide** unopened components

Linearly homomorphic: c + c' is a commitment to x + x' with openings $v_i + v'_i$

Extending to Functional Commitments

Goal: commit to $x \in \{0,1\}^{\ell}$, open to function f(x)

Suppose $f(\mathbf{x}) = \sum_{i \in [\ell]} \alpha_i x_i$ is a **linear** function

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Can also view \boldsymbol{c} as commitment to vector $x_i \boldsymbol{t}_i$ with respect to \boldsymbol{A}_i and opening \boldsymbol{v}_i

Suppose c_1, c_2 are commitments to vectors u_1, u_2 with respect to the same A

Extending to Functional Commitments

$$c_1 = Av_1 + x_1t$$

$$\vdots$$

$$c_\ell = Av_\ell + x_\ell t$$

Cannot define commitment to be $(c_1, ..., c_\ell)$ since this is long Instead, suppose $c_i = W_i c$ can be **derived** from a (single) c

Desired correctness relation

$$W_1 c = A v_1 + x_1 t$$
$$\vdots$$
$$W_\ell c = A v_\ell + x_\ell t$$

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

Extending to Functional Commitments

CRS contains $A, W_1, ..., W_\ell, t$ and trapdoor for B_ℓ

To commit to $x \in \{0,1\}^{\ell}$, use trapdoor for B_{ℓ} to sample c, v_1, \dots, v_{ℓ} where

$$W_1 c = A v_1 + x_1 t$$

$$\vdots$$

$$W_\ell c = A v_\ell + x_\ell t$$

Opening to value
$$y = f(\mathbf{x}) = \sum_{i \in [\ell]} \alpha_i x_i$$
 is $\mathbf{v}_f \coloneqq \sum_{i \in [\ell]} \alpha_i \mathbf{v}_i$

 $\frac{\text{Verification relation}}{\sum_{i \in [\ell]} \alpha_i W_i c} = A v_f + y \cdot t$

Functional Commitments from Lattices

Security follows from *l*-succinct SIS assumption [Wee24]:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A} & & & & | \boldsymbol{W}_1 \\ & \ddots & & & | \vdots \\ & & \boldsymbol{A} & | \boldsymbol{W}_{\ell} \end{bmatrix}$$

where $A \leftarrow \mathbb{Z}_q^{n \times m}$ and $W_i \leftarrow \mathbb{Z}_q^{n \times m}$

Falsifiable assumption but does not appear to reduce to standard SIS

 $\ell = 1$ case does follow from plain SIS (and when W_i is very wide)

Open problem: Understanding security or attacks when $\ell > 1$

Functional Commitments from Lattices

Security follows from *l*-succinct SIS assumption [Wee24]:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A} & & & & | \boldsymbol{W}_1 \\ & \ddots & & & | \vdots \\ & & \boldsymbol{A} & | \boldsymbol{W}_{\ell} \end{bmatrix}$$

where $A \leftarrow \mathbb{Z}_q^{n \times m}$ and $W_i \leftarrow \mathbb{Z}_q^{n \times m}$

Equivalent formulation:

SIS is hard with respect to A given $A^{-1}(W_i R)$ along with W_i , Rwhere $A \leftarrow \mathbb{Z}_q^{n \times m}$, $W_i \leftarrow \mathbb{Z}_q^{n \times m}$, and $R \leftarrow D_{\mathbb{Z},s}^{m \times k}$ where $k \ge m(\ell + 1)$

Functional Commitments from Lattices

Linear functional commitments extends readily to support (bounded-depth) circuits

$$W_1 c = A v_1 + x_1 t$$

$$\vdots$$

$$W_{\ell} c = A v_{\ell} + x_{\ell} t$$

Supports openings to linear functions

Can be sampled using same trapdoor for B_{ℓ} (security still reduces to ℓ -succinct SIS)

$$W_1 C = AV_1 + x_1 G$$

:
$$W_{\ell} C = AV_{\ell} + x_{\ell} G$$

Supports openings to Boolean circuits

In this setting, $(W_1C, ..., W_\ell C)$ is a [GVW14] homomorphic commitment to x (can be opened to any function f(x) of bounded depth)

[see paper for details]

Summary of Functional Commitments

New methodology for constructing lattice-based commitments:

- 1. Write down the main verification relation ($c = A_i v_i + x_i t_i$)
- 2. Publish a trapdoor for the linear system induced by the verification relation

Security analysis relies on new q-type variants of SIS:

SIS with respect to **A** is hard given a trapdoor for a **related** matrix **B**

"Random" variant of the assumption implies vector commitments and reduces to SIS

"Structured" variant (*l*-succinct SIS) implies functional commitments for circuits

• Structure also enables **aggregating** openings

[see paper for details]

Cryptanalysis of Lattice-Based Knowledge Assumptions

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Scheme could be binding, but still allow an efficient adversary to construct (malformed) commitment σ and opening to value 1 with respect to the **all-zeroes** function

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

$$\pi_{0} \quad (f, y_{0}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{0}), \pi_{0}) = 1$$

$$\pi_{1} \quad (f, y_{1}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{1}), \pi_{1}) = 1$$

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that f(x) = yx such that y = f(x)

efficient extractor f such that y = f(x) f efficient extractor f such that y = f(x)f efficient extractor f could have multiple outputs

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Notion is equivalent to SNARKs, so will be challenging to build from a falsifiable assumption

σ

 $Verify(crs, \sigma, (f, y_0), \pi_0) = 1$

Verify(crs,
$$\sigma$$
, $(f, y_1), \pi_1$) = 1

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that f(x) = yefficient extractor x such that y = f(x)

Note: *f* could have multiple outputs

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

given (tall) matrices A, D and short preimages Z of a random target T

if adversary can produce a short vector v such that Av is in the image of D (i.e., Av = Dc), then there exists an extractor that outputs short x where v = Zx

Observe: Av for a random (short) v is outside the image of D (since D is tall)

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

22

given (tall) matrices A, D and short preimages Z of a random target T

if adversary can produce a short vector v such that Av is in the image of D (i.e., Av = Dc), then there exists an extractor that outputs short x where v = Zx

Observe: Av for a random (short) v is outside the image of D (since D is tall)

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

Our work: algorithm to **obliviously** sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as

$$[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$$

If Z and T are wide enough, we (heuristically) obtain a basis for [A | DG]

Obliviously Sampling a Solution

Our work: algorithm to **obliviously** sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite
$$AZ = DT$$
 as
 $[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$ (heur
 B^*

If Z and T are wide enough, we (heuristically) obtain a basis for [A | DG]

Oblivious sampler (Babai rounding):

- 1. Take any (non-zero) integer solution y where $[A \mid DG]y = 0 \mod q$
- 2. Assuming B^* is full-rank over \mathbb{Q} , find z such that $B^*z = y$ (over \mathbb{Q})
- 3. Set $y^* = y B^*[z] = B^*(z [z])$ and parse into v, c

Correctness: $[A \mid DG] \cdot y^* = [A \mid DG] \cdot B^*(z - \lfloor z \rfloor) = 0 \mod q$ and y^* is short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as If **Z** and **T** are wide enough, we (heuristically) obtain a basis for [**A** | **DG**] $\begin{bmatrix} A \mid DG \end{bmatrix} \cdot \begin{vmatrix} Z \\ -G^{-1}(T) \end{vmatrix} = \mathbf{0}$ This solution is obtained by "rounding" off a long solution R^* **Oblivious sampler (Babai round Question:** Can we explain such solutions as taking a <u>short</u> 1. Take any (non-zero) inte linear combination of Z (i.e., what the knowledge 2. Assuming B^* is full-rank assumption asserts) 3. Set $y^* = y - B^* |z| = B$

Correctness: $[A \mid DG] \cdot y^* = [A \mid DG] \cdot B^*(z - \lfloor z \rfloor) = 0 \mod q$ and y^* is short

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

$$\begin{array}{c}
1\\
Av = Dc \quad \blacksquare \quad & \\
\end{array} \quad \begin{bmatrix}
2\\
[A \mid DG] \begin{bmatrix}
v\\
-G^{-1}(c)\end{bmatrix} = 0\\
\end{array}$$

$$\begin{array}{c}
3\\
[A \mid DG] \cdot \begin{bmatrix}
Z\\
-G^{-1}(T)\end{bmatrix} = 0
\end{array}$$

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge *k*-*R*-ISIS assumption from [ACLMT22] Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)
- **Open question:** Can we extend the attacks to break soundness of the SNARK?

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for intege Implementation by Martin Albred
- Breaks extractability of the [ACLMT22] assuming hardn

The SNARK considers extractable commitment for quadratic functions while our current oblivious sampler only works for linear functions in the case of [ACLMT22]

for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

Open Questions

Understanding the hardness of *l*-succinct SIS/LWE (hardness reductions or cryptanalysis)? Martin Albrecht's blog post: https://malb.io/sis-with-hints.html

New applications of ℓ -succinct SIS/LWE?

Broadcast encryption, succinct ABE, succinct laconic function evaluation [Wee24]

Cryptanalysis of lattice-based SNARKs based on knowledge k-R-ISIS [ACLMT22, CLM23, FLV23] Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids attacks

Thank you!

https://eprint.iacr.org/2022/1515
https://eprint.iacr.org/2024/028