Towards Universal Computation on Ciphertext

Dan Boneh,
Eu-Jin Goh,
and Kobbi Nissim

Stanford Security Workshop 2005

Homomorphic Encryption

Enc. scheme is homomorphic to function f if

from E[A], E[B], can compute E[f(A,B)]
 e.g. f can be +, ×, ⊕, ...

Ideally, want f = NAND, or $f = \{+, \times\}$

Called doubly homomorphic encryption

Can do universal computation on ciphertext!

Why is doubly homomorphic encryption useful?

Gives efficient solutions for many problems. e.g.

- 1. 2 party Secure Function Evaluation
 - Alice and Bob have inputs a , b
 - Both want f(a,b) w/o the other learning input
- 2. Computing on encrypted databases
- 3. Grid Computing on Sensitive Data

App: Database Computation

Outsourced server with database containing encrypted data

- User wants to compute function g on encrypted data
 - e.g. data mining, data aggregation

With doubly homomorphic encryption,

- Database encrypted with doubly hom. enc.
- User sends g to server
- Server computes g on encrypted database
- Encrypted result returned to user

App: Distributed Computing on Sensitive Data

Company A has massive amount of data

- Need large computer cluster for computation
 - e.g. DNA analysis, protein folding
- Unwilling to outsource : data leakage

With doubly homomorphic encryption,

- Data encrypted with doubly hom. enc. scheme
- Server sends enc data to cluster computers
- Cluster computes on enc data segments
- Encrypted results returned to server

These applications are pretty cool,

so where can I get a fully homomorphic encryption scheme?

Sorry, it doesn't exist (yet).

- Long standing open problem [RAD78]
- Existing schemes hom. to 1 function
 - E.g. ElGamal (\times), Paillier (+), GM (\oplus)

But some progress ...

Main Result

Homomorphic encryption scheme that supports one × and arbitrary +.

- Based on finite bilinear groups with composite order
- Semantic security based on natural decision problem

Keygen(τ):

Enc. Scheme

- G: bilinear group order $n = q_1q_2$ on ell. curve over F_p .
- Pick rand $g,u \in G$. Set $h = u^{q_2}$.
- $PK = (n, G, G_1, e, g, h)$

$$SK = q_1$$

Encrypt(PK, m): $m \in \{1,...,T\}$

$$m \in \{1,...,T\}$$

- Pick random r from Z_n .
- Output $C = g^m h^r \in G$.

Decrypt(SK, C):

- Let $C^{q_1} = (g^m h^r)^{q_1} = (g^{q_1})^m$; $V = g^{q_1}$
- Output $m = Dlog of C^{q_1} base v$.

Note: decrypt time is $O(\sqrt{T})$.

Homomorphisms

Given $A = g^a h^r$ and $B = g^b h^s$:

To get encryption of a + b

- pick random $t \in Z_n$
- compute $C = AB \cdot h^t = g^{a+b}h^{r+s+t} \in C$

$$e: G \times G \rightarrow G_1$$
.

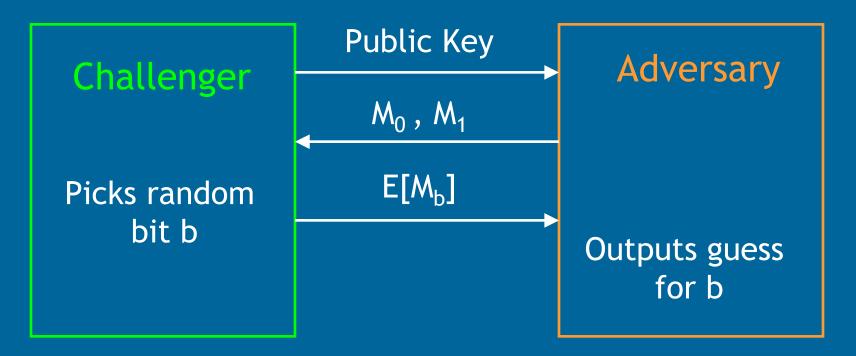
$$e(g^{a},g^{b}) = e(g,g)^{ab} = e(g,g)^{ba} = e(g^{b},g^{a})$$

To get encryption of $a \times b$

- let $h = g^{\alpha q_2}$, $g_1 = e(g,g)$, $h_1 = e(g,h)$
- pick random $t \in Z_n$
- compute $C = e(A,B) \cdot h_1^t = g_1^{ab} h_1^{r'} \in G_1$

Semantic Security

Standard notion of security for enc:



Enc scheme is semantically secure if A guesses b with prob no better than 1/2

Rules out deterministic encryption

Complexity Assumption

Subgroup assumption:

Gen. rand. bilinear group G of order $n = q_1q_2$, then following two distributions indistinguishable:

- x is uniform in G
- x is uniform in q₁—subgroup of G.

Thm: system is semantically secure, unless the subgroup assumption is false.

Applications

what can you do with $1 \times \text{and arbitrary} + ?$

- 1. Evaluate multi-variate polynomials of total degree 2
 - Caveat: result in small set e.g. {0,1}
- 2. Evaluate 2-DNF formulas \vee ($b_{i,1} \wedge b_{i,2}$)
 - By arithmetizing 2-DNF formulas to multi-variate poly. with deg 2

1) Evaluating Quadratic Poly.

polynomials of total deg 2

- $X_1 X_2 + X_3 X_4 + ...$
- +, × hom. allow eval. of such poly. on CT
- but to decrypt, result must be in known poly. size interval.
- evaluate dot products

2) 2 Party SFE for 2-DNF

Bob

$$A = (a_1,...,a_n)$$

 $\in \{0,1\}^n$

Alice

$$\phi(x_1,...,x_n) = \vee_{i=1}^k (y_{i,1} \wedge y_{i,2}) \text{ s.t.}$$

$$y_{i,*} \in \{x_1, \neg x_1, ..., x_n, \neg x_n\}.$$

Get Arithmetization Φ :

- replace \vee by +, \wedge by \times , $\neg x_i$ by (1- x_i).
- Φ is poly. with total deg 2!

2-DNF Protocol (Semi-Honest)

Bob

$$A = (a_1, ..., a_n)$$

Alice

$$\phi(x_1,...,x_n) = \vee_{i=1}^k (y_{i,1} \wedge y_{i,2})$$

$$\Phi = \text{arith. of } \phi$$

Invoke Keygen(τ)
Encrypt A

If decrypt = 0,

emit 0. Else, 1.

PK, $E[a_1],...,E[a_n]$ $E[r \cdot \Phi(A)]$

Eval. $E[r \cdot \Phi(A)]$ for random r

Bob's Security: Alice cannot distinguish bet. Bob's possible inputs — from semantic security of E.

Alice's Security: Bob only knows if A satisfies $\phi()$ — by design, Bob output distrib. depends only on this.

Concrete applications

- 1. Improve basic step in Kushilevitz-Ostrovsky PIR protocol from \sqrt{n} to $\sqrt[3]{n}$
- 2. Gadget: "check" if CT contains 1 of 2 values.
 - Most voter efficient E-voting scheme
 - Universally verifiable computation

PIR/SPIR

Bob: wants D(R,S)

Set assignment A:

$$x_R = y_S = 1,$$

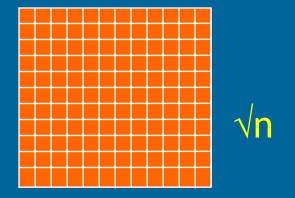
 $x_i = x_j = 0$
for $i \neq R$, $j \neq S$

Do 2-DNF SFE with **A** and **φ**

Get $\phi(A) = D(R,S)$

Database D

$$\sqrt{n}$$
 $|D| = n$



D uses 2-DNF

$$\phi(x_1,...,x_{\sqrt{n}}, y_1,...,y_{\sqrt{n}}) \\
= \vee_{D(i,j)=1} (x_i \wedge y_j)$$

Comm. Complexity = $O(\tau \cdot \sqrt{n})$ [$O(\tau \cdot \sqrt{3}\sqrt{n})$ balanced] Alternative scheme — each db entry $O(\log n)$ bits

Conclusions

Adding even limited additional homomorphism has many uses.

Open Problems:

- Extend encryption scheme to
 - 1. efficiently handle arbitrary messages
 - 2. arbitrary # of multiplications
- Find n-linear maps
 - allow eval. of polynomials with total deg n

Questions?