Evaluating 2-DNF Formulas on Ciphertexts

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim

Theory of Cryptography Conference 2005

Homomorphic Encryption

Enc. scheme is homomorphic to function f if
from E[A], E[B], can compute E[f(A,B)] e.g. f can be +, ×, ⊕, ...

Ideally, want f = NAND, or $f = \{+, \times\}$

Called doubly homomorphic encryption

Can do universal computation on ciphertext!

Why is doubly homomorphic encryption useful?

Gives efficient solutions for many problems. e.g.

2 party Secure Function Evaluation
 Computing on encrypted databases

App: Database Computation

Outsourced server with database containing encrypted data

 User wants to compute function g on encrypted data

• e.g. data mining, data aggregation

With doubly homomorphic encryption,

- Database encrypted with doubly hom. enc.
- User sends g to server
- Server computes g on encrypted database
- Encrypted result returned to user

These applications are pretty cool,

so where can I get a fully homomorphic encryption scheme?

Sorry, it doesn't exist (yet).
Long standing open problem [RAD78]
Existing schemes hom. to 1 function

E.g. ElGamal (×), Paillier (+), GM (⊕)

But some progress ...

Main Result

Homomorphic encryption scheme that supports one × and arbitrary +.

 Based on finite bilinear groups with composite order

 Semantic security based on natural decision problem

Related Work

Sander et al. [SYY99]

Enc. scheme — NC¹ circuit eval. on CTs
 ⇒ Can evaluate 2-DNFs on CTs

But CT len. exponential in circuit depth
CT size doubles for every + op

Poly. len. 2-DNF gives poly. size CT

Our scheme – constant size CT

crucial for our apps

Keygen(τ):

Enc. Scheme

- G: bilinear group order $n = q_1q_2$ on ell. curve over F_p .
- Pick rand $g, u \in G$. Set $h = u^{q_2}$.
- $PK = (n, G, G_1, e, g, h)$ $SK = q_1$

Encrypt(PK, m): $m \in \{1,...,T\}$

- Pick random r from Z_n.
- Output $C = g^m h^r \in G$.

Decrypt(SK, C):

- Let $C^{q_1} = (g^m h^r)^{q_1} = (g^{q_1})^m$; $v = g^{q_1}$
- Output m = Dlog of C^{q1} base v.

Note: decrypt time is $O(\sqrt{T})$.

Homomorphisms

Given A = $g^a h^r$ and B = $g^b h^s$: To get encryption of a + b • pick random t $\in Z_n$ • compute $C = AB \cdot h^t = g^{a+b} h^{r+s+t} \in G$

To get encryption of $a \times b$ • let $h = g^{\alpha q_2}$, $g_1 = e(g,g)$, $h_1 = e(g,h)$ • pick random $t \in Z_n$ • compute $C = e(A,B) \cdot h_1^t = g_1^{ab} h_1^{r'} \in G_1$

Complexity Assumption

Subgroup assumption:

Gen. rand. bilinear group G of order $n = q_1q_2$, then following two distributions indistinguishable:

- x is uniform in G
- x is uniform in q_1 —subgroup of G.

Thm: system is semantically secure, unless the subgroup assumption is false.

Why not use Pallier directly?

Paillier CT: C = g^mrⁿ (mod n²)

Can we directly apply bilinear map to C?

Short ans: No.

• Miller's alg. for pairing needs order of curve.

• Fact: Knowing order of curve mod n allows factoring of n.

Applications

what can you do with $1 \times and arbitrary + ?$

- 1. Evaluate multi-variate polynomials of total degree 2
 - Caveat: result in small set e.g. {0,1}
- 2. Evaluate 2-DNF formulas $\vee (b_{i,1} \wedge b_{i,2})$
 - By arithmetizing 2-DNF formulas to multi-variate poly. with deg 2

1) Evaluating Quadratic Poly.

polynomials of total deg 2

• $x_1 x_2 + x_3 x_4 + \dots$

• +, × hom. allow eval. of such poly. on CT

- but to decrypt, result must be in known poly. size interval.
- evaluate dot products

2) 2 Party SFE for 2-DNF

Bob A = $(a_1, ..., a_n)$ $\in \{0, 1\}^n$ Alice $\phi(x_1,...,x_n) = \bigvee_{i=1}^k (y_{i,1} \land y_{i,2}) \text{ s.t.}$ $y_{i,*} \in \{x_1, \neg x_1, ..., x_n, \neg x_n\}.$

Get Arithmetization Φ :

- replace ∨ by +, ∧ by ×, ¬x_i by (1- x_i).
- Φ is poly. with total deg 2!

2-DNF Protocol (Semi-Honest) Alice Bob $\phi(x_1,...,x_n) = \bigvee_{i=1}^k (y_{i,1} \land y_{i,2})$ $A = (a_1, ..., a_n)$ Φ = arith. of ϕ Invoke Keygen(τ) PK, E[a₁],...,E[a_n] Encrypt A Eval. E[$\mathbf{r} \cdot \Phi(\mathbf{A})$] $E[r \cdot \Phi(A)]$ If decrypt = 0, for random r emit 0. Else, 1.

Bob's Security: Alice cannot distinguish bet. Bob's possible inputs – from semantic security of E.
Alice's Security: Bob only knows if A satisfies φ() – by design, Bob output distrib. depends only on this.

SFE for 2-DNF

Communication Complexity = O(n·τ)
 garbled circuit comm. comp. = Θ(n²)

Secure against unbounded Bob

- garbled circuit (Alice garbles φ) secure against unbounded Alice

Prove security against malicious Bob (details in paper)

Concrete applications

- 1. Improve basic step in Kushilevitz-Ostrovsky PIR protocol from \sqrt{n} to $\sqrt[3]{n}$
- 2. Gadget: "check" if CT contains 1 of 2 values.
 - Most voter efficient E-voting scheme
 - Universally verifiable computation

Comm. Complexity = $O(\tau \cdot \sqrt{n})$ [$O(\tau \cdot \sqrt{3}\sqrt{n})$ balanced] Alternative scheme — each db entry $O(\log n)$ bits

Suppose CT: C = E[v]. Given 2 messages v_0, v_1 and random r, anyone can compute E [$r \cdot (v - v_0) (v - v_1)$]

- If $v \neq v_0, v_1$, result is E[random]
- Otherwise, result is E[0]
- can ensure/verify that CT is enc. of v_0 or v_1

Applications:

- 1. 2-DNF SFE secure against malicious Bob
- 2. E-voting: voter ballots need no ZK proofs
- 3. Universally Verifiable Computation
 - Anyone can check comp. public function on private inputs done correctly without learning anything else

Conclusions

Adding even limited additional homomorphism has many uses.

Open Problems:

- Extend encryption scheme to
 - 1. efficiently handle arbitrary messages
 - 2. arbitrary # of multiplications
- Find n-linear maps
 - allow eval. of polynomials with total deg n

Questions?