Evaluating 2-DNF Formulas on Ciphertexts

Dan Boneh,
Eu-Jin Goh,
and Kobbi Nissim

Theory of Cryptography Conference 2005

Homomorphic Encryption

Enc. scheme is homomorphic to function f if

- from $E[A], E[B]$, can compute $E[f(A, B)]$

$$
\text { e.g. } f \text { can be }+, \times, \oplus, \ldots
$$

Ideally, want $f=$ NAND, or $f=\{+, x\}$

- Called doubly homomorphic encryption

Can do universal computation on ciphertext!

Why is doubly homomorphic encryption useful?

Gives efficient solutions for many problems. e.g.

1. 2 party Secure Function Evaluation
2. Computing on encrypted databases

App: Database Computation

Outsourced server with database containing encrypted data

- User wants to compute function g on encrypted data
- e.g. data mining, data aggregation

With doubly homomorphic encryption,

- Database encrypted with doubly hom. enc.
- User sends g to server
- Server computes g on encrypted database
- Encrypted result returned to user

These applications are pretty cool,

so where can I get a fully homomorphic encryption scheme?

Sorry, it doesn't exist (yet).

- Long standing open problem [RAD78]
- Existing schemes hom. to 1 function
- E.g. ElGamal (×), Paillier (+), GM (\oplus)

But some progress ...

Main Result

Homomorphic encryption scheme that supports one \times and arbitrary + .

- Based on finite bilinear groups with composite order
- Semantic security based on natural decision problem

Related Work

Sander et al. [SYY99]

- Enc. scheme - NC1 circuit eval. on CTs \Rightarrow Can evaluate 2-DNFs on CTs

But CT len. exponential in circuit depth

- CT size doubles for every + op
- Poly. len. 2-DNF gives poly. size CT
- Our scheme - constant size CT
- crucial for our apps
- G: bilinear group order $n=q_{1} q_{2}$ on ell. curve over F_{p}.
- Pick rand $g, u \in G$. Set $h=u^{q_{2}}$.
- $\quad \mathrm{PK}=\left(\mathrm{n}, \mathrm{G}, \mathrm{G}_{1}, \mathrm{e}, \mathrm{g}, \mathrm{h}\right)$

$$
\mathrm{SK}=\mathrm{q}_{1}
$$

Encrypt(PK, m):

$m \in\{1, \ldots, T\}$

- Pick random r from Z_{n}.
- Output $C=g^{m} h^{r} \in G$.

Decrypt(SK, C):

- Let

$$
C^{q_{1}}=\left(g^{m} h^{r}\right)^{q_{1}}=\left(g^{q_{1}}\right)^{m} \quad ; \quad v=g^{q_{1}}
$$

- Output $m=$ Dlog of $\mathrm{C}^{\mathrm{a}_{1}}$ base v .

Note: decrypt time is $O(\sqrt{ } T)$.

Homomorphisms

Given $A=g^{a} h^{r}$ and $B=g^{b} h^{s}$:
To get encryption of $a+b$

- pick random $t \in Z_{n}$
- compute $\mathrm{C}=\mathrm{AB} \cdot \mathrm{h}^{\mathrm{t}}=\mathrm{g}^{\mathrm{a}+\mathrm{b}} \mathrm{h}^{\mathrm{r}+\mathrm{s}+\mathrm{t}} \in \mathrm{G}$

To get encryption of $a \times b$

- let $h=g^{\alpha q_{2}}, g_{1}=e(g, g), h_{1}=e(g, h)$
- pick random $t \in Z_{n}$
- compute

$$
\mathrm{C}=\mathrm{e}(\mathrm{~A}, \mathrm{~B}) \cdot \mathrm{h}_{1}^{\mathrm{t}}=\mathrm{g}_{1}^{\mathrm{ab}} \mathrm{~h}_{1}^{\mathrm{r}^{\prime}} \in \mathrm{G}_{1}
$$

Complexity Assumption

Subgroup assumption:

Gen. rand. bilinear group G of order $n=q_{1} q_{2}$, then following two distributions indistinguishable:

- x is uniform in G
- x is uniform in q_{1}-subgroup of G .

Thm: system is semantically secure, unless the subgroup assumption is false.

Why not use Pallier directly?

- Paillier CT: C = gm $^{m} r^{n}\left(\bmod n^{2}\right)$
- Can we directly apply bilinear map to C?

Short ans: No.

- Miller's alg. for pairing needs order of curve.
- Fact: Knowing order of curve mod n allows factoring of n .

Applications

what can you do with $1 \times$ and arbitrary + ?

1. Evaluate multi-variate polynomials of total degree 2

- Caveat: result in small set e.g. $\{0,1\}$

2. Evaluate 2-DNF formulas $\vee\left(b_{i, 1} \wedge b_{i, 2}\right)$

- By arithmetizing 2-DNF formulas to multi-variate poly. with deg 2

1) Evaluating Quadratic Poly.

polynomials of total deg 2

- $x_{1} x_{2}+x_{3} x_{4}+\ldots$
-,$+ \times$ hom. allow eval. of such poly. on CT
- but to decrypt, result must be in known poly. size interval.
- evaluate dot products

2) 2 Party SFE for 2-DNF

Bob

$A=\left(a_{1}, \ldots, a_{n}\right)$

$$
\in\{0,1\}^{n}
$$

Alice

$$
\begin{gathered}
\phi\left(x_{1}, \ldots, x_{n}\right)=v^{k}{ }_{i=1}\left(y_{i, 1} \wedge y_{i, 2}\right) \text { s.t. } \\
y_{i, *} \in\left\{x_{1}, \neg x_{1}, \ldots, x_{n}, \neg x_{n}\right\} .
\end{gathered}
$$

Get Arithmetization Φ :

- replace \vee by,$+ \wedge$ by $\times, \neg x_{i}$ by ($1-x_{i}$).
- Φ is poly. with total deg 2 !

2-DNF Protocol (Semi-Honest)

Bob

$$
A=\left(a_{1}, \ldots, a_{n}\right)
$$

Alice

$$
\begin{gathered}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\vee_{\mathrm{k}=1}\left(\mathrm{y}_{\mathrm{i}, 1} \wedge \mathrm{y}_{\mathrm{i}, 2}\right) \\
\Phi=\text { arith. of } \phi
\end{gathered}
$$

Invoke $\operatorname{Keygen}(\tau) \quad \mathrm{PK}, \mathrm{E}\left[\mathrm{a}_{1}\right], \ldots, \mathrm{E}\left[\mathrm{a}_{\mathrm{n}}\right]$
Encrypt A
If decrypt = 0,

$$
E[r \cdot \Phi(A)]
$$

Eval. E[r • Ф(A)] for random r

Bob's Security: Alice cannot distinguish bet. Bob's possible inputs - from semantic security of E.
Alice's Security: Bob only knows if A satisfies $\phi()$ - by design, Bob output distrib. depends only on this.

SFE for 2-DNF

Communication Complexity $=O(\mathrm{n} \cdot \tau)$

- garbled circuit comm. comp. $=\Theta\left(n^{2}\right)$

Secure against unbounded Bob

- garbled circuit (Alice garbles ϕ) secure against unbounded Alice

Prove security against malicious Bob (details in paper)

Concrete applications

1. Improve basic step in Kushilevitz-Ostrovsky PIR protocol from $\sqrt{ }$ n to $\sqrt[3]{ } \sqrt{n}$
2. Gadget: "check" if CT contains 1 of 2 values.

- Most voter efficient E-voting scheme
- Universally verifiable computation

PIR/SPIR

Bob: wants $D(R, S)$

Set assignment A:

$$
\begin{gathered}
x_{R}=y_{S}=1, \\
x_{i}=x_{j}=0
\end{gathered}
$$

for $i \neq R, j \neq S$
Do 2-DNF SFE
with A and ϕ
Get $\phi(A)=D(R, S)$

Database D

$$
\sqrt{n} \quad|D|=n
$$

$\sqrt{ } n$

$$
\begin{aligned}
& \phi\left(x_{1}, \ldots, x_{\sqrt{ } n}, y_{1}, \ldots, y_{\sqrt{ } n}\right) \\
& \quad=V_{D(i, j)=1}\left(x_{i} \wedge y_{j}\right)
\end{aligned}
$$

Comm. Complexity $=O(\tau \cdot \sqrt{ } n) \quad[O(\tau \cdot 3 \sqrt{ } n)$ balanced $]$ Alternative scheme - each db entry $O(\log n)$ bits

Suppose CT: C = E[v].

Gadget

Given 2 messages v_{0}, v_{1} and random r, anyone can compute

$$
E\left[r \cdot\left(v-v_{0}\right)\left(v-v_{1}\right)\right]
$$

- If $\mathrm{v} \neq \mathrm{v}_{0}, \mathrm{v}_{1}$, result is $\mathrm{E}[$ random]
- Otherwise, result is E[0]
- can ensure/verify that CT is enc. of v_{0} or v_{1}

Applications:
 1. 2-DNF SFE secure against malicious Bob
 2. E-voting: voter ballots need no ZK proofs
 3. Universally Verifiable Computation
 - Anyone can check comp. public function on private inputs done correctly without learning anything else

Conclusions

Adding even limited additional homomorphism has many uses.

Open Problems:

- Extend encryption scheme to

1. efficiently handle arbitrary messages
2. arbitrary \# of multiplications

- Find n-linear maps
- allow eval. of polynomials with total deg n

Questions?

