
The Design and Implementation of Datagram TLS

Nagendra Modadugu Eric Rescorla
Stanford University RTFM, Inc.

nagendra@cs.stanford.edu ekr@rtfm.com

Abstract

A number of applications have emerged over recent
years that use datagram transport. These applications
include real time video conferencing, Internet telephony,
and online games such as Quake and StarCraft. These ap-
plications are all delay sensitive and use unreliable data-
gram transport. Applications that are based on reliable
transport can be secured using TLS, but no compelling al-
ternative exists for securing datagram based applications.
In this paper we present DTLS, a datagram capable ver-
sion of TLS. DTLS is extremely similar to TLS and there-
fore allows reuse of pre-existing protocol infrastructure.
Our experimental results show that DTLS adds minimal
overhead to a previously non-DTLS capable application.

1. Introduction

TLS [7] is the most widely deployed protocol for se-
curing network traffic. TLS is used to protect Web traffic
(HTTP [9] [25]) and e-mail protocols such as IMAP [6]
and POP [23]. The primary advantage of TLS is that
it provides a secure, transparent channel; it is easy to
provide security for an application protocol by insert-
ing TLS between the application layer and the network
layer—where the session layer is in the OSI model. TLS,
however, requires a reliable transport channel—typically
TCP—and therefore cannot be used to secure datagram
traffic.

When TLS was developed, this limitation was not con-
sidered particularly serious because the vast majority of
applications then ran over TCP. While this is still largely
true today, the situation is changing. Over the past few
years an increasing number of application layer protocols,
such as Session Initiation Protocol (SIP) [26], Real Time
Protocol (RTP) [28], the Media Gateway Control Protocol
(MGCP) [1], and a variety of gaming protocols have been
designed to use UDP transport.

Currently, designers of such applications are faced with

a number of unsatisfactory choices for providing security.
First, they can use IPsec [18]. However, IPsec is not well
suited for client-server application models and is difficult
to package with applications since it runs in the kernel.
Section 2.1 has a detailed discussion of why IPsec has
been found to be a less than satisfactory option. Second,
they can design a custom application layer security pro-
tocol. SIP, for instance, uses a variant of S/MIME [2] to
secure its traffic. Grafting S/MIME into SIP took vastly
more effort than did running the TCP variant of SIP over
TLS. Third, one can rehost the application on TCP and use
TLS. Unfortunately many such applications depend on
datagram semantics and have unacceptable performance
when run over a stream protocol such as TCP.

The obvious alternative is to design a generic channel
security protocol that will do for long lived applications
using datagram transport what TLS did for TCP. Such a
protocol could be implemented in user space for portabil-
ity and easy installation but would be flexible and generic
enough to provide security for a variety of datagram-
oriented applications. Despite initial concerns that this so-
lution would be a large and difficult design project, con-
structing a working protocol was fairly straightforward,
especially with TLS as a starting point and IPsec as a
reference. This paper describes the new protocol, which
we call “Datagram TLS”. DTLS is a modified version of
TLS that functions properly over datagram transport. This
approach has two major advantages over the alternatives.
First, since DTLS is very similar to TLS, preexisting pro-
tocol infrastructure and implementations can be reused.
To demonstrate, we implemented DTLS by adding to the
OpenSSL [30] library; in all, we added about 7000 lines
of code, about 60% of which were cut and pasted from
OpenSSL. Second, since DTLS provides a familiar inter-
face to a generic security layer, it is easy to adapt protocols
to use it. Experience with TLS has shown that this ease of
adaptation is a key to wide deployment.

The basic design principle of DTLS is “bang for the
buck.” We wished to minimize both our design and imple-
mentation effort and that of the designers and implemen-
tors who are potential DTLS users. Thus, in our design of
DTLS we choose not to include any features as “improve-

ments” over TLS; all the features additional to DTLS are
included for the sole purpose of dealing with unreliable
datagram traffic. This design point simplifies the security
analysis of DTLS.

2. Design Overview
The target applications for DTLS are primarily of the

client-server variety. These are the kinds of applications
for which TLS was designed and for which it works well.
The present security model of such applications is that the
server is authenticated by its DNS name and IP address but
the client is either anonymous or authenticates via some
form of credential, typically in the form of a username
and password handled by the application layer protocol.

This practice is not especially secure. However, appli-
cation protocol designers, want to maintain as much of
their protocol and implementation infrastructure as pos-
sible while adding security. This makes a channel secu-
rity protocol such as TLS or IPsec very attractive since
changes are minimized. From this perspective, ideally
a datagram channel security protocol would substitute
strong cryptographic authentication of the server for DNS
and IP-based authentication but leave client authentication
to the application layer protocol.

Our design is not the only possible one that can be used
in this scenario. In the following sections we consider
several alternative approaches and argue that they fit these
requirements less well than does DTLS.

2.1. Why not use IPsec?

IPsec was designed as a generic security mechanism for
Internet protocols. Unlike TLS, IPsec is a peer-to-peer
protocol. For many years IPsec was expected to be a suit-
able security protocol for datagram traffic generated by
client-server applications. In practice, however, there are
a number of problems with using IPsec for securing such
traffic. These problems stem directly from IPsec residing
at the network layer rather than the session or application
layer.

Review of IPsec architecture Unlike TLS, IPsec is
not one protocol but rather three: Authentication Header
(AH) [16] and Encapsulating Security Payload (ESP) [17]
are used for traffic security and Internet Key Exchange
(IKE) [12] is used for the establishment of keying material
and other traffic security parameters. These parameters
are collectively referred to as Security Association (SA).
In host implementations, AH and ESP are typically im-
plemented in the kernel as part of the IP stack, while IKE
is implemented as a user daemon. In network gateways
the architecture varies based on the device programming
model.

IPsec security policy is controlled using the Security
Policy Database (SPD). SPD entries can be created in two
ways. First, administrators can directly create entries in
the SPD. In addition, many host-based implementations
allow applications to set per-socket policies, for instance
using the PF_KEY API [20], thus allowing finer control
of policy.

When a socket is created in a host-based IPsec imple-
mentation, the SPD is consulted to determine the correct
security policy. If IPsec processing is required and an
appropriate SA does not exist, IKE is invoked to create
one. Future packets sent using that socket are protected
using that SA. In network gateway-based IPsec implemen-
tations the stack performs a SPD lookup for each outgoing
packet.

In the remainder of this section, we discuss several as-
pects of IPsec that make it less than ideal for the kind of
applications we are concerned with.

Server Authentication Client-server applications typi-
cally identify endpoints in terms of domain names. This
is the scenario for which TLS is optimized. In such an en-
vironment, the client has an identifier for the server, typ-
ically of the form of a DNS name or a URL. When the
client connects to the server, it wants the server to authen-
ticate using a credential that matches that identity.

IPsec security policies (as defined in the SPD) are usu-
ally expressed in terms of IP addresses, although there
is nominal support for symbolic names, including DNS
names. IKE supports use of symbolic names, including
DNS names in certificates analogous to TLS. However,
the primary motivation for support of these sorts of iden-
tifiers in IKE was for road warriors, whose IP address
could not be known in advance. Thus use of a DNS
name to securely identify a server, for example, is not
supported by most host IPsec implementations. In prin-
ciple, IPsec could provide verification by DNS name in
two ways. First, DNSSEC [8] could be used to securely
map the server’s DNS name to its IP address. However,
DNSSEC deployment has so far been minimal, making
this option problematic. Second, IPsec certificates could
contain DNS names and the client could use an IPsec API
to verify that the correct certificate was used. Unfortu-
nately, not all IPsec APIs allow certification information
to be determined and so this verification cannot be done
reliably or portably.

Residence in the kernel Because IPsec operates at the
IP layer, it generally must be implemented in the operating
system kernel, either directly compiled in or linked in as
a loadable module. This makes IPsec fairly inconvenient
to install on non-IPsec systems. This is no longer as large
a problem as it once was, since most modern operating

systems contain IPsec stacks. However, a large number of
legacy operating systems still are not IPsec-capable and
installing IPsec on them is generally a major operation.

A related problem is the lack of standardized IPsec
APIs. An IPsec using application which wishes to con-
trol keying policy has no way to portably do so. While
TLS APIs are not standardized either, an application de-
veloper can easily ship a TLS toolkit along with their ap-
plication, thus achieving portability. Increased developer
control does introduce the possibility that the developer
will use the toolkit insecurely. Developers have, however,
historically been willing to bear this risk.

2.2. Key Exchange over TCP?

Key negotiation over an unreliable connection is more
complicated than with a reliable connection. One alter-
native is to complete key negotiation on a TCP connec-
tion and use the negotiated parameters to secure a sepa-
rate datagram channel. This split design is similar to that
used by IPsec but has a number of problems.

The primary virtue of a split design is that it releases
DTLS from having to implement a reliable handshake
layer. In exchange, an application must now manage two
sockets (one TCP, and one UDP). Synchronizing these
sockets is a significant application programming problem.
In particular, session renegotiation is complicated by this
architecture. With the TCP connection closed once key
negotiation is complete, renegotiation messages must be
communicated over the unreliable datagram channel, re-
quiring the implementation of a retransmission mecha-
nism.

If the TCP connection is left open once key negotiation
is complete, unnecessary system resources are consumed.
This is a problem because operating system kernels often
exhibit problems when programs have a large numbers of
sockets open [14]. In particular, select() performs poorly
(if at all) with large numbers of open sockets and replace-
ments are often not portable. In addition, some older oper-
ating systems have tight limits on the number of open files
per process (in older Linux kernels this limit was 1024.)

An ordinary UDP server expects to read and write on
only a single socket. Thus, the use of a TCP handshake
channel could force significant rewriting of server code.
Additionally, error case handling becomes complicated:
say the TCP connection is reset, does that imply that the
bulk transfer channel should be closed?

These considerations lead us to conclude that it is bet-
ter to have the handshake and data transfer occur over
the same channel from the beginning. As we shall see,
DTLS’s reliability requirements are quite primitive, al-
lowing us to make do with a protocol much simpler than
TCP.

2.3. Design Requirements

Once we decided on a user-space protocol that runs
over a single channel, the direct course of action was to
make TLS datagram capable. Although DTLS must be
somewhat different from TLS, in keeping with our basic
principle we have kept TLS unchanged wherever possi-
ble. Where we have had to make changes to TLS, we
have attempted to borrow from preexisting systems such
as IPsec. Similarly, DTLS is explicitly designed to be as
compatible as possible with existing datagram communi-
cation systems, thus minimizing the effort required to se-
cure one’s application.

Datagram Transport DTLS must be able to complete
key negotiation and bulk data transfer over a single data-
gram channel. This property allows applications to sim-
ply replace each datagram socket with a secure datagram
socket managed by DTLS.

Reliable Session Establishment DTLS must provide a
mechanism for authenticating endpoints, reliably estab-
lishing keying material and negotiating algorithms and pa-
rameters. Since DTLS must run entirely over unreliable
datagram transport, it must implement a retransmission
mechanism for ensuring that handshake messages are re-
liably delivered. However, the retransmission mechanism
should be simple and lightweight, ensuring that DTLS is
as portable as possible. Note that the requirement to create
a session means that DTLS is primarily suited for long-
lived “connection-oriented” protocols as opposed to to-
tally connectionless ones like DNS. Connectionless proto-
cols are better served by application layer object-security
protocols.

Security Services DTLS must provide confidentiality
and integrity for the data transmitted over it. It should
optionally provide the ability to detect replayed packets.

Ease of Deployment The ability to implement TLS en-
tirely in user space without changing the kernel has been a
major contributor to TLS deployment. This feature allows
developers to bundle a TLS implementation with their ap-
plication without dependence on operating system ven-
dors. DTLS should similarly be implementable solely in
user space.

Semantics For many TCP based applications it has been
very simple to implement a security layer by using TLS.
One of the main reasons is that TLS semantics mimic
those of TCP. Thus, a TLS API can mimic the well known
socket interface, making network connections appear to
be read-write streams. DTLS semantics should mimic

UDP semantics thus allowing DTLS implementations to
mimic the UDP API.

Minimal Changes DTLS must be as similar to TLS as
possible. Over the years, TLS has become more robust
and has been refined to withstand numerous attacks. Our
goal is for DTLS to be equally robust by inheriting all
the tested and popular features of TLS. By minimizing
changes we reduce the likelihood of introducing any un-
foreseen weaknesses.

Additionally, minimizing changes has the benefit that
DTLS can be easily implemented based on TLS imple-
mentations such as OpenSSL [30]. Hardware implemen-
tations of TLS are optimized to speed up asymmetric and
symmetric cryptographic operations. DTLS should not
introduce new cipher suites or make changes to the key
derivation algorithms. Hence DTLS implementations can
leverage hardware implementations of TLS.

2.4. Non-Requirements
DTLS is not intended to provide any congestion control

functionality. Congestion control needs to be addressed
by a datagram transport using application regardless of
whether a security layer is in place, and hence is beyond
the scope of DTLS. Applications that do not implement
congestion control can use the Datagram Congestion Con-
trol Protocol (DCCP) [19] as the underlying transport pro-
tocol with DTLS providing the security layer.

3. TLS Overview
Since DTLS is based on TLS, it is useful for the reader

to be familiar with TLS. In this section we provide a brief
overview of TLS.

3.1. TLS Features
TLS is a generic application layer security protocol that

runs over reliable transport. It provides a secure channel
to application protocol clients. This channel has three pri-
mary security features:

1. Authentication of the server.

2. Confidentiality of the communication channel.

3. Message integrity of the communication channel.

Optionally TLS can also provide authentication of the
client.

In general, TLS authentication uses public key based
digital signatures backed by certificates. Thus, the server
authenticates either by decrypting a secret encrypted un-
der his public key or by signing an ephemeral public key.
The client authenticates by signing a random challenge.
Server certificates typically contain the server’s domain
name. Client certificates can contain arbitrary identities.

3.2. Protocol

TLS is a layered protocol consisting of four pieces,
shown in Figure 1.

Application
DataHandshake Alert

Change
Cipher
Spec

Record
Layer

TCP

Figure 1. The Structure of TLS

At the bottom is the TLS Record Layer which handles
all data transport. The record layer is assumed to sit di-
rectly on top of some reliable transport such as TCP. The
record layer can carry four kinds of payloads:

1. Handshake messages—used for algorithm negotia-
tion and key establishment.

2. ChangeCipherSpec messages—really part of the
handshake but technically a separate kind of mes-
sage.

3. Alert messages—used to signal that errors have oc-
curred

4. Application layer data

We focus on describing the record and handshake layers
since they are of the most relevance to DTLS.

3.3. Record Protocol

The TLS record protocol is a simple framing layer with
record format as shown below (see RFC 2246 [7] for a
description of the specification language):

struct {
ContentType type;
ProtocolVersion version;
uint16 length;
opaque payload[length];

} TLSRecord;

Each record is separately encrypted and MACed. In or-
der to prevent reordering and replay attacks a sequence
number is incorporated into the MAC but is not carried
in the record itself. Since records are delivered using a
reliable transport, the sequence number of a record can
be obtained simply by counting the records seen. Simi-
larly, encryption state (CBC residues or RC4 keystream)

ClientHello −−−−−−→

ServerHello
Certificate

←−−−−−− ServerHelloDone
ClientKeyExchange
[ChangeCipherSpec]
Finished −−−−−−→

[ChangeCipherSpec]
←−−−−−− Finished

Figure 2. The simple RSA TLS handshake

is chained between records. Thus, a record cannot be
independently decrypted if for some reason the previous
record is lost.

3.4. Handshake Protocol

The TLS handshake is a conventional two round-trip al-
gorithm negotiation and key establishment protocol. For
illustration, we show the most common RSA-based vari-
ant of the handshake in Figure 2.

A TLS client initiates the handshake by sending the
ClientHello message. This message contains the TLS ver-
sion, a list of algorithms and compression methods that
the client will accept and a random nonce used for anti-
replay.

The server responds with three messages. The Server-
Hello contains the server’s choice of version and algo-
rithms and a random nonce. The Certificate contains the
server’s certificate chain. The ServerHelloDone is sim-
ply a marker message to indicate that no other messages
are forthcoming. In more complicated handshakes other
messages would appear between the Certificate and the
ServerHelloDone messages.

The client then chooses a random PreMasterSecret
which will be used as the basis for each side’s keying ma-
terial. The client encrypts the PreMasterSecret under the
server’s RSA public key and sends it to the server in the
ClientKeyExchange message. The client then sends the
ChangeCipherSpec message to indicate that it is chang-
ing to the newly negotiated protection suite. Finally, the
client sends the Finished message which contains a MAC
of the previous handshake messages. Note that the Fin-
ished message is encrypted under the new protection suite.
The server responds with its own ChangeCipherSpec and
Finished messages.

As with the record layer, the handshake protocol as-
sumes that data is carried over reliable transport. The or-
der of the messages is precisely defined and each message
depends on previous messages. Any other order is an error
and results in protocol failure. In addition, no mechanism
is provided for handling message loss. Retransmission in
case of loss must be handled by the transport layer.

4. DTLS Design

DTLS reuses almost all the protocol elements of TLS,
with minor but important modifications for it to work
properly with datagram transport. TLS depends on a sub-
set of TCP features: reliable, in-order packet delivery and
replay detection. Unfortunately, all of these features are
absent from datagram transport. In this section we de-
scribe the DTLS protocol and how it copes with the ab-
sence of these features. Note that although we believe that
IPsec is the wrong tool for providing this type of security,
many of its techniques for handling these effects are quite
useful and are borrowed for DTLS.

4.1. Record Layer

As with TLS, all DTLS data is carried in records. In
both protocols, records can only be processed when the
entire record is available. In order to avoid dealing with
fragmentation, we require DTLS records to fit within a
single datagram. There are three benefits to this require-
ment. First, since the DTLS layer does not need to buffer
partial records, host memory can be used more efficiently,
which makes the host less susceptible to a DoS attack.
Second, it is quite possible that datagrams carrying the
remaining record fragments are lost, in which case the
received fragments are useless and cannot be processed.
Third, it is not clear how long received fragments should
be buffered before being discarded. Buffering record frag-
ments would unnecessarily complicate a DTLS imple-
mentation without providing any obvious benefits. Note
that DTLS will still operate correctly with IP fragmenta-
tion and re-assembly, since IP re-assembly is transparently
handled by the kernel.

The DTLS record format is shown below. The boxed
fields are introduced by DTLS and are absent from TLS
records.

struct {
ContentType type;
ProtocolVersion version;
uint16 epoch;

uint48 sequence_number;
uint16 length;
opaque payload[length];

} DTLSRecord;

Epoch Epoch numbers are used by endpoints to de-
termine which cipher state has been used to protect the
record payload. Epoch numbers are required to resolve
ambiguity that arises when data loss occurs during a ses-
sion renegotiation. To illustrate, consider a client trans-
mitting data records 7, 8 and 9, followed by ChangeCi-
pherSpec message in record 10. Suppose the server re-
ceives records 7 and 9 (8 and 10 are lost). From the

server’s point of view, record 8 could have been the
ChangeCipherSpec message, in which case record 9 is
(incorrectly) assumed to be associated with the pending
cipher state. Since epoch numbers are incremented upon
sending a ChangeCipherSpec message, the server can use
the epoch number to resolve the ambiguity. In this case,
records 7 and 9 have the same epoch, implying that record
8 must have been a data record.

An alternative to epoch numbers would be to simply
use random initial sequence numbers for records. The se-
quence numbers are sufficiently large that the chance of
collision of active sequence number ranges is vanishingly
small. However, this would probably require slightly
more code to implement than the epoch strategy and is
less in keeping with the style of TLS, which uses zero-
based sequence numbers.

Sequence Number TLS employs implicit record se-
quence numbers (RSN) for replay protection. RSNs play
a similar role in DTLS, but must be explicitly specified
since records can get lost or be delivered out of order. As
with TLS, RSNs are incremented by 1 for each record and
are reset to zero whenever the cipher state is rolled over
due to a session renegotiation. Note that DTLS sequence
numbers are 48 bits (TLS’s are 64 bits) and therefore the
total space occupied by epoch and sequence number is the
same as the sequence number in TLS.

Replay detection is performed using the replay window
mechanism of RFC 2401 [18]. If datagrams always ar-
rived in order, it would be sufficient for a DTLS end point
to keep track of the most recent record seen in order to
detect replays. But since datagrams may also arrive out
of order, a replay window mechanism is required. This
is most easily implemented as a bitmap where the set bits
represent the most recently received records. RSNs that
are too old to be checked against the bitmap are discarded.

Note, however, that replay detection can be undesirable
in some applications since packet duplication may be an
unintentional network effect. If replay detection is turned
off, then sequence numbers are not of any significance in
MAC computation, but can be useful for counter mode
ciphers.

Payload Length DTLS requires that a record fit entirely
within a single datagram. This means that DTLS records
will often be smaller than TLS records. The largest packet
that can be transmitted between two hosts—the Path Max-
imum Transmission Unit (PMTU)—is typically less than
the maximum size of a TLS record.

4.2. Ciphering Modes
DTLS cannot use any of the TLS 1.0 cipher modes,

since they all maintain residual state between records re-

quiring records to be processed in order without loss.
However, the CBC mode proposed for TLS 1.1 is com-
patible with DTLS, as we describe in this section. We
also explain why RC4 is unsuitable for use in DTLS.

DTLS can also make use of counter mode AES, once
this mode has been standardized.

CBC Mode An attack [31] against CBC mode ciphers
as employed by TLS 1.0 has resulted in the use of a
slightly modified version of CBC that requires explicit ini-
tialization vectors (IVs). The new version is likely to be a
feature of TLS 1.1 and is well suited for use in DTLS.

R M2 M3

E

C1

E

C2

E

C3

IV

Figure 3. CBC Encryption with Explicit IV

As shown above, in explicit IV mode a random data
block is prepended to record data. All the encrypted
blocks are transmitted, and the receiver simply discards
the first plaintext block to retrieve record data. With an ex-
plicit IV, each record can be separately decrypted. Triple-
DES and AES can be used with DTLS in this mode.

RC4 RC4 has been the cipher of choice for securing
TLS 1.0 connections due to its computational efficiency.
Unfortunately, RC4 is not easily applied to lossy datagram
traffic: random access implies that the key stream needs
to be buffered. Alternatively, the RC4 engine can be re-
seeded for each incoming record, which is also fairly inef-
ficient especially considering that work by Mironov [21]
recommends that the first 512 bytes of RC4 keystream be
discarded due to a weakness in the RC4 key scheduling
algorithm [10].

We conclude that RC4 is an unsuitable cipher for use in
DTLS.

4.3. Handshake Protocol

The DTLS handshake, shown in Figure 4, is nearly
identical to that of TLS. There are two major changes:

1. Stateless cookie exchange to prevent denial of ser-
vice.

2. Message fragmentation and re-assembly

We begin by describing the modifications to protect the
handshake exchange from denial of service.

Handshake Exchange Because the DTLS handshake
takes place over datagram transport, it is vulnerable to
two denial of service attacks that TLS is not. The first
attack is the standard resource consumption attack. The
second attack is an amplification attack where the attacker
sends a ClientHello message apparently sourced by the vic-
tim. The server then sends a Certificate message—which
is much larger—to the victim.

To mitigate these attacks, DTLS uses the cookie ex-
change technique that has been used in protocols such as
Photuris [13]. Before the handshake proper begins, the
client must replay a “cookie” provided by the server in or-
der to demonstrate that it is capable of receiving packets
at its claimed IP address.

Figure 4 shows the DTLS protocol.

ClientHello −−−−−−→

←−−−−−− HelloVerifyRequest

ClientHello −−−−−−→

ServerHello
Certificate

←−−−−−− ServerHelloDone
ClientKeyExchange
[ChangeCipherSpec]
Finished −−−−−−→

[ChangeCipherSpec]
←−−−−−− Finished

Figure 4. The simple DTLS RSA handshake

The DTLS ClientHello message contains a cookie field.
The initial ClientHello contains an empty (zero-length)
cookie or potentially one cached from a prior exchange.
A server that is unable to verify the incoming cookie and
wishes to establish the liveness of the DTLS client sends
a HelloVerifyRequest message. Servers that are more sen-
sitive to overall handshake latency can skip the HelloVeri-
fyRequest message and instead respond with ServerHello
messages, in which case the protocol flow is the same as
in TLS. Note that servers which choose to make this op-
timization can still be used as denial of service amplifiers
and should therefore only do so in environments where
amplification attack is known not to be a problem.

The HelloVerifyRequest message contains a cookie.
This cookie should be generated in such a way that it
does not require keeping state on the server, thus avoid-
ing memory consumption denial of service attacks. For
example, the cookie can be generated from a keyed hash
of the client IP address, using a global key. Techniques for
generating and verifying this kind of stateless cookie are

well known, see for instance Photuris [13].
Servers that are willing to resume sessions can skip the

cookie exchange phase if a valid session ID is presented
by the client, since the identity of the client must have
been previously established. One possible optimization
for servers that do not support session resumption is to
maintain a cache of recent (client, cookie) pairs, so that
cookie exchange can be skipped if a match is made on the
first ClientHello .

The formats of the ClientHello and HelloVerifyRequest
messages are provided below.
opaque Cookie<0..32>;

struct {
ProtocolVersion client_version;
Random random;
SessionID session_id;
Cookie cookie;
CipherSuite cipher_suites<2..2^16-1>;
CompressionMethod comp_meth<1..2^8-1>;

} ClientHello;

struct {
ProtocolVersion server_version;
Cookie cookie;

} HelloVerifyRequest;

Unlike application data, handshake messages (including
the ChangeCipherSpec message) must be reliably deliv-
ered since all handshake messages are necessary for suc-
cessful session negotiation. This creates three problems.
First, messages may be lost on the network. Second, they
may be reordered, confusing the receiving peer. Third,
some handshake messages are too large to fit in a sin-
gle DTLS record and therefore must be fragmented across
multiple records. The DTLS handshake layer is responsi-
ble for reassembling these records into a coherent stream
of complete handshake messages. This necessitates the
addition of retransmission as well as a more complicated
message format.

4.4. Timeout and Retransmission
Because DTLS handshake messages may be lost,

DTLS needs a mechanism for retransmission. DTLS im-
plements retransmission using a single timer at each end-
point. Each end-point keeps retransmitting its last mes-
sage until a reply is received. The state machine that im-
plements the timer and resulting retransmissions is shown
in Figure 5. In the balance of this section, we describe
the operation of the timer state machine and explain how
timer expiry values are picked.

State Machine Once in the Read Message Fragment
state, transitions are triggered by the arrival of data frag-
ments or the expiry of the retransmission timer. If a data

INIT, reset
timer

Done

Want
message?

No

Yes

Expected
fragment?

Fragment
received

Reset
timer

Yes

Return fragment

No

Reset
Timer Retransmit

Read
message
fragment

Timer
expired

Finished
message?

Fragment
received

Retransmit
Finished

No

Yes

Figure 5. Timer state machine

fragment is the expected next handshake message then the
fragment is returned to the higher layers and the timer
is cancelled. Otherwise, the fragment is buffered or dis-
carded as appropriate and the timer is allowed to continue
ticking. When the retransmit timer expires, the implemen-
tation retransmits the last flight of messages that it trans-
mitted.

Timer Values Picking appropriate timer values is a dif-
ficult problem due to the heterogeneous nature of the In-
ternet and the wide variance in round trip times (RTT).
While estimating RTT would allow for estimating a timer
value, requiring that DTLS estimate RTT is an unneces-
sary burden, given the simplicity of the handshake pro-
tocol. Deciding on the exact timer value is especially
tricky because the peer is often doing some kind of cryp-
tographic computation, which can take a substantial frac-
tion of the RTT. Thus, one wishes to set one’s timer values
conservatively to avoid unnecessary retransmissions.

We recommend that DTLS implementations use timer
values between 500 to 1000ms. In general, well-behaving
implementations should back off their retransmission
timers.

Are ACKs necessary? When a retransmission event
happens, the entire flight of un-answered messages is re-
transmitted. If that flight is large, like a Certificate mes-
sage, a nontrivial amount of network bandwidth (though
probably less than 5k) is wasted. In addition, the desire
to avoid unnecessary retransmission motivates large timer
values which result in high latency. An alternative strategy
would be to allow receivers to transmit an ACK value that
indicated that they have received the message and were
processing it. This would allow timers to be set lower
as well as reducing the number of packets that have to
be retransmitted (since the sender would know that some
had already been received.) In the interest of simplicity,
we decided not to add an ACK feature to DTLS, but fu-
ture measurement may indicate that ACKs provide a large
enough improvement to be worthwhile adding.

4.5. Handshake Message Ordering and Fragmen-
tation

Because handshake messages may be too large to fit into
a single DTLS record, we need to modify the handshake
messages to be able to span records. The new format is
shown below.

struct {
HandshakeType msg_type;
uint24 length;
uint16 message_seq;

uint24 frag_offset;

uint24 frag_length;
HandshakeMessage msg_frag[frag_length];

} Handshake;

Message Length The handshake message header con-
tains the overall message length. This makes it easy to
allocate buffer space for the message regardless of which
fragment is received first.

Message Sequence Number Handshake (and Change
Cipher Spec) messages include their own message se-
quence numbers (MSN), independent of record sequence
numbers (RSN). Since the record layer assigns unique se-
quence numbers to each record, it is possible that a DTLS
end-point receives a handshake message and its retrans-
mitted version under different RSNs. In the absence of the
MSN, it is not possible for the handshake layer to detect
duplicates. All fragments of a handshake message carry
the same MSN.

It is worthwhile considering whether retransmits can
reuse the original RSN, and hence make do without the
MSN. As it turns out, there are two problems with reusing
RSNs. First, it is a layering violation: the handshake layer
is a client of the record layer, just like the application

layer, and should not receive different treatment. Second,
the original handshake message may have been dropped
due to the packet size exceeding PMTU. In this case the
handshake message needs to be fragmented, which im-
plies that it spans multiple records, each with their own
unique RSN.

Fragment Offset and Length As previously men-
tioned, handshake messages may be fragmented when
they are larger than PMTU. In fact such fragmentation
is fairly likely since certificates can easily be a couple of
kilobytes in size. We chose to use fragment offset and
length rather than fragment sequence numbers to aid in
handling messages which are fragmented twice in two dif-
ferent ways. With this scheme, it is easy to reassemble the
original message provided at least one copy of each byte
is received.

Finished Message The purpose of Finished messages is
to verify that parties have correctly negotiated keys and
algorithms. In TLS, the Finished message contains MD5
and SHA1 hashes of all the handshake messages, sequen-
tially appended to each other (including their message
headers). The DTLS algorithm for computing finished
hashes has to be slightly different due to the presence of
message fragmentation headers. Since the message might
have been fragmented multiple times with different frag-
ment sizes, this creates a potential inconsistency. In or-
der to remove this inconsistency, the handshake hashes are
computed as if handshake messages had been received as
a single fragment.

Alert Messages DTLS reuses all of the TLS alerts.
Most TLS alerts signal the end of the connection–either
graceful or abortive–and therefore no data should come
after them. Under no circumstances should a record be
accepted with a sequence number postdating that of an
alert which closed the connection.

There is, however, a complication introduced by a
sender transmitting data followed by an alert but have
them arrive in the reverse order. We have not analyzed
this situation, but believe that it is safer for implementa-
tions to reject such data records.

5. Security Analysis
Considering the complexity of modern security pro-

tocols and the current state of proof techniques, it is
rarely possible to completely prove the security of a proto-
col without making at least some unrealistic assumptions
about the attack model.

Instead of attempting to rigorously prove the security of
DTLS, one of our main goals in the design of DTLS is

to follow the TLS specification as closely as possible. As
a result, DTLS does not offer any “improvements” over
TLS. All the features introduced into DTLS are for the
sole purpose of dealing with unreliable datagram trans-
port.

We argue that DTLS does not reveal any additional
information beyond TLS during the handshake or bulk
transfer phase—all the additional information in a DTLS
stream can be derived by passively monitoring a TLS
stream. To justify this argument, consider the additional
information that is available from a DTLS stream.

Record Layer The DTLS record layer reveals the cur-
rent epoch and sequence number. This is public informa-
tion to an adversary monitoring a TLS session: the se-
quence numbers are implicit in TLS, but nonetheless may
be inferred, and epoch numbers may also be derived from
the stream since session renegotiations may be detected
(by observing Handshake records being exchanged during
an established session.)

Handshake Layer Handshake messages reveal mes-
sage number, fragment length and fragment offset. Once
again, this information is easily derived by an eavesdrop-
per monitoring a TLS session. Message number is ob-
tained by counting exchanged messages, fragment length
is obtained from record length and fragment offset is de-
rived from the length of preceding message fragments.
Only the Finished message is encrypted during the ini-
tial handshake phase, and since it is of a fixed format, its
fragment length and offset are obvious.

Handshake messages exchanged due to session renego-
tiation are completely encrypted in both DTLS and TLS.

Timing information Recently, timing information has
been used as the basis for attacks on TLS [4][5]. Therefore
it is critical to consider what information is revealed by
timing.

DTLS receive record processing is essentially the same
as that of TLS. On reception, records and handshake mes-
sages are not processed until available in entirety, and
therefore the processing of DTLS records and messages
is identical to the processing procedure of TLS.

DTLS transmit processing leaks a small amount of tim-
ing information when compared to TLS. In general, when
applications issue TLS or DTLS writes, this causes a sin-
gle DTLS/TLS record to be generated. The time when
the packet is delivered to the network potentially reveals
information about the plaintext [29]. With TLS, TCP con-
gestion and flow control hides this information to some
extent, especially if the Nagle algorithm [24] is used. With
DTLS, however, records are likely to be transmitted as

soon as they are generated. Users who wish to prevent
this kind of traffic analysis should buffer writes.

Implementation We implemented DTLS based on the
OpenSSL toolkit and reuse much of the code already used
in production TLS servers. As a result, DTLS inherits well
tested and stable code.

6. Implementation

We implemented DTLS based on the popular OpenSSL
library [30]. OpenSSL is the de facto standard open source
TLS/SSL implementation. Additionally, OpenSSL has
proven to be stable and is used by numerous production
quality servers such as the Apache Web server.

We modified the demo server and client applications
that are part of the OpenSSL distribution to be UDP capa-
ble. We also implemented a UDP proxy application that
is capable of dropping, delaying and duplicating packets.
Results from our experiments are listed in Section 8. Our
implementation was tested and run on the Linux 2.4.21
kernel.

Our implementation required adding about 7000 lines
of additional code to the OpenSSL base distribution.
Considering that this line count includes libraries, data
structures and socket management needed for DTLS, our
code makes up only a small portion of the 240,000 line
OpenSSL package. Conveniently, we were able to lever-
age a number of OpenSSL features that were designed
for different use. For example, OpenSSL provides an I/O
buffering layer that causes TLS to only make send()
system calls when it has serialized all data to be sent on
a particular round of the handshake. We are able to reuse
the buffering code to maximize handshake packet payload
size.

In the remainder of this section we describe some de-
tails of our implementation.

OpenSSL Architecture OpenSSL implements SSLv2,
SSLv3 and TLSv1. Each of these protocols are imple-
mented by sharing as much code as possible, with vir-
tual functions handling protocol differences. From the li-
brary’s standpoint, DTLS appears to be another version of
the TLS protocol.

As a result of implementing DTLS in this way,
we can reuse much of the utility, state machine and
record/message generation code of OpenSSL. In a num-
ber of cases we found it was inconvenient to write spe-
cial cases into TLS processing code, and as a result we
copied many functions and modified them appropriately.
Roughly 60% of the 7000 lines of additional code were
actually copied from the other protocol implementations

in OpenSSL. With some effort it should be possible to re-
duce the amount of duplicated code substantially.

One of the nice side effects of implementing DTLS
this way is that DTLS can be accessed through the same
functions used by TLS, for example SSL_connect(),
SSL_read(), SSL_write() and, SSL_close().

Below we describe some issues encountered in our im-
plementation.

PMTU Path Maximum Transmission Unit (PMTU) is
the maximum sized packet that can travel on a path with-
out requiring fragmentation. In general, paths consist of
heterogeneous networks that have links with varying lim-
its on maximum packet size. Therefore the PMTU for a
given path is set by the limiting link on the path. Previous
work [15] shows that fragmentation is undesirable. Frag-
mentation results in inefficient use of network and rout-
ing resources, and lost fragments cause degraded perfor-
mance. Additionally, IP fragments interact poorly with
firewalls and NAT devices, which often discard fragments.
Therefore it is useful to know the PMTU.

RFC 1191 [22] specifies the process by which PMTU is
discovered. In short, hosts send out IP packets with the DF
(Don’t Fragment) bit set, iteratively reducing the size of
packets until the host is reached. Therefore, it is difficult
for the kernel to know a priori what the appropriate PMTU
is without incurring a significant probing cost–though it
can guess it after enough traffic has been transmitted. In
general, kernel support for PMTU is quite poor. On the
Linux system, where we developed our implementation,
the kernel keeps track of its PMTU estimate and returns
an error if an application attempts to send a larger packet.

DTLS needs to be agnostic about such kernel behav-
ior so as to not get caught using an excessive PMTU
value. Unless an application explicitly sets a PMTU
value we turn on the DF bit in outgoing datagrams via
setsockopt() and query the kernel for the MTU. If
the PMTU is unavailable, we guess a PMTU starting
with 1500 (the ethernet MTU), successively reducing the
PMTU estimate if the current setting happens to be too
large. We can detect that PMTU has been exceeded if
send() returns -1 and sets errno to EMSGSIZE.

On some operating systems, even this level of
PMTU support is unavailable and the only feedback that
the PMTU has been exceeded is packet loss. It’s not clear
what the best approach for dealing with such an environ-
ment is, but our intention is to start with a large packet size
and then back off the packet size with each successive re-
transmit.

Note however, that performance sensitive datagram ap-
plications are generally PMTU aware anyway, in which
case DTLS can be relieved of having to guess PMTU.

During the handshake phase, DTLS attempts to send the

largest packets possible, which includes packing multiple
records into a single packet.

Buffering Because retransmits may be necessary, we
buffer a copy of outbound handshake messages. Option-
ally, handshake messages may be reconstructed whenever
a retransmit request is received, but this is unnecessarily
computation intensive, especially when memory is avail-
able. Buffered messages need only be buffered until the
next expected handshake message is received. This is be-
cause the handshake protocol is executed in lock-step and
the incoming message provides an implicit acknowledg-
ment for all the buffered messages. Our implementation
of DTLS also buffers out-of-order handshake messages,
since the handshake layer expects messages to be deliv-
ered in order.

Retransmit Timer Our implementation uses a timer
value of 750ms, which is more than sufficient given that
our experiments were run on a LAN. When using block-
ing sockets, the timeout (set via setsockopt()) causes
recv() to return with an explicit timeout error if data is
not received during the time period. While we chose a
value suitable to our environment, our DTLS API allows
applications to set their own read and write timeout val-
ues.

Sockets that run in non-blocking mode cause DTLS to
return either SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE which are effectively
equivalent to EAGAIN, signalling that data was not im-
mediately available for reading or writing (this is the same
behavior as the TLS API). Non-blocking DTLS appli-
cations are required to call DTLS1_get_timeout()
to determine when the next DTLS I/O call should be
invoked and use their own timers to arrange for the call at
that time.

7. Programmer Experience

The DTLS API is very similar to the API provided by
OpenSSL for operating TLS connections. The only ad-
ditional calls provided by DTLS are related to datagram
transport: setting and getting PMTU, timer values and
datagram socket connection options. For testing purposes,
we ported the s_server and s_client programs that
are part of the OpenSSL distribution to use DTLS. Almost
all the effort required to port these applications to DTLS
was concentrated on making them UDP-capable.

At a high level, one can take an ordinary UDP ap-
plication and render it DTLS-capable by simply replac-
ing all calls to send() and recv() with calls to
SSL_write() and SSL_read(), the default I/O calls
of the OpenSSL library. As with OpenSSL’s ordinary be-

havior, the first call to the read or write functions attempts
to negotiate a DTLS connection. This simple approach
works well for applications which use a blocking I/O dis-
cipline but does not work well for those which want to op-
erate in non-blocking mode. Thus, applications that wish
to have a more complicated I/O control discipline need to
either use threads or non-blocking mode.

Thread-based I/O discipline In case of threaded appli-
cations, calls to the DTLS library are blocking, and the
library is fully responsible for handling timer expiry and
dispatching retransmits. Thus, the application can essen-
tially be oblivious to DTLS being in use, provided that it
uses a separate thread for each DTLS “connection.”

One consequence of protocol logic being abstracted
from applications is a slight break from blocking-socket
convention. In the case of blocking datagram sockets,
recv() either returns -1 on error, or a non-zero number
of bytes read. However, SSL_read() can return 0. This
happens when the data available on the incoming socket
is not application data, but control information, an Alert
message for example. This behavior of SSL_read() in-
terface is not specific to DTLS. The TLS programmer has
a similar experience when using OpenSSL.

Non-blocking I/O discipline When DTLS is used in
the context of a non-blocking event driven application,
the application needs to be prepared for timeouts dur-
ing handshake processing. Effectively, any I/O call to
DTLS can return with SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE, signalling that an I/O op-
eration blocked. An application receiving such an error
needs to determine the current DTLS timeout by calling
DTLS1_get_timeout() and restart the I/O call when
the timer expires. Once the handshake is complete, DTLS
returns a value of 0 for the timer, signalling that it does
not have any pending I/O events. For simplicity, applica-
tions may choose to call DTLS1_get_timeout() re-
gardless of whether the handshake is in progress.

8. Experiments and Results

Our results from comparing network traffic gen-
erated by TLS and DTLS are listed in Tables 1
and 2. The cipher negotiated in these tests was
EDH-RSA-DES-CBC3-SHA. This cipher results in a to-
tal of 10 records being exchanged between client and
server for TLS. The DTLS negotiation had at least two
more records due to the cookie exchange phase and the
rest due to message fragmentation.

Each DTLS handshake message fragment has 25 bytes
of overhead from headers (13 for record header and 12 for
message fragment), compared to 9 bytes for TLS. In all,

the headers contribute to most of the overhead in DTLS
(the remainder comes from the the extra padding block
required by CBC with explicit IV). Even though the over-
head for DTLS is close to 35%, the actual size of the over-
head is quite small, since even exchanges with large cer-
tificates generate less than 3 KB of data. It should also
be noted that the results provided are only for the hand-
shake phase; overhead for data records is lower due to the
absence of the fragment header.

DTLS TLS
Packets Bytes Packets Bytes

Client 3 446 2 228
Server 3 1015 2 857
Total 6 1461 4 1085

Table 1. Bytes and Packets transferred with PMTU
1500, Certificate size 562 bytes

DTLS TLS
Packets Bytes Packets Bytes

Client 3 446 2 228
Server 4 2313 3 2105
Total 7 2759 5 2333

Table 2. Bytes and Packets transferred with PMTU
1500, Certificate size 1671 bytes

8.1. Latency
We measured latency of the TLS and DTLS handshakes

on a local machine. DTLS and TLS handshakes took
42.9 ms and 41.5 ms respectively. The difference between
these results is small due to the negligible RTT. In order
to differentiate the two protocols, we introduced a 150 ms
delay element, after which the DTLS handshake took 927

ms and the TLS handshake took 627 ms. This is exactly
as expected, since DTLS results include one extra RTT for
cookie exchange. Our measurements do not include the
time taken for TCP connection establishment. Since ses-
sion establishment requires a minimum of one RTT, this
virtually eliminates the latency difference.

9. Related Work
9.1. IPsec

The design of DTLS is probably closest to that of IPsec.
A number of the techniques that we used to make DTLS
records safe for datagram transport were borrowed from
IPsec. However, DTLS differs from IPsec in two impor-
tant respects. First, DTLS is an application layer proto-
col rather than a network layer protocol. Thus, it is far

easier to incorporate DTLS into an application since the
DTLS implementation can simply be delivered with the
application. This ease of deployment is to a great extent
responsible for the wide use of TLS.

Second, DTLS uses the familiar TLS programming
model in which security contexts are application con-
trolled and have a one-to-one relationship with communi-
cation channels. By contrast, there is no standard IPsec
API or programming model and the widely deployed
IPsec implementations are all extremely difficult to pro-
gram to. As previously noted, this is primarily a result of
the fact that the IPsec key management model is extremely
complex compared to that of TLS.

9.2. WTLS

There has been at least one previous attempt to add data-
gram capability to TLS: the Wireless Application Protocol
Forum’s WTLS [11]. However, WTLS made a large num-
ber of other changes, including integrating network trans-
port with the security protocol, thus making it unsuitable
for deployment on the Internet. In addition, WTLS does
not appear to handle small path MTUs. Finally, the WTLS
designers appear to have made a number of optimizations
that lead to security flaws not in TLS [27] and is therefore
not widely used.

9.3. SRTP

The Real Time Protocol (RTP) is widely used to carry
multimedia traffic such as voice and video. RTP has
no support for security. The IETF is currently consid-
ering standardization of the Secure Real Time Protocol
(SRTP) [3] which is an application-specific security pro-
tocol for RTP. SRTP is substantially more limited than
DTLS. First, it cannot be used to protect traffic other than
RTP. Second, it relies on an external signaling protocol
such as SIP to set up the keying material. By contrast,
DTLS can be used to set up its own channel. However, in
extremely bandwidth constrained applications SRTP has
advantages over DTLS because its tight integration with
RTP allows it to have lower network overhead. In situa-
tions where bandwidth is less limited DTLS would be a
potential substitute for SRTP.

10. Future Work
Future work on TLS focuses mostly on integration with

other protocols. Currently, we have an implementation of
DTLS at the early toolkit stage. Our next step is to inte-
grate it with some common datagram-based applications,
which will give us feedback as to the suitability of our de-
sign. Our initial target is SIP. Since SIP already uses TLS
in TCP mode, integrating DTLS in UDP mode is an attrac-
tive design choice and open source SIP implementations

are readily available. Following SIP, we are considering
integrating DTLS with a number of gaming and multime-
dia protocols. Moreover, integrating DTLS with a variety
of other protocols will give us an opportunity to observe
its performance behavior and make changes as appropri-
ate.

We would also like to perform additional performance
tuning on DTLS. Although TLS works well, subsequent
performance analysis has uncovered some unfortunate
interactions with TCP, especially with the Nagle algo-
rithm [24]. As DTLS allows finer control of timers and
record sizes, it is worth doing additional analysis to deter-
mine the optimal values and backoff strategies. Finally,
we intend to do further analysis in an attempt to more
tightly define the security bounds of DTLS.

11. Summary
We have described Datagram Transport Layer Security,

a generic channel security protocol designed for use in
datagram environments. DTLS is based on the well under-
stood TLS protocol and like TLS is designed to provide a
secure channel that mimics the semantics expected by ex-
isting application protocols. Due to simplicity and ease of
deployment, DTLS provides an attractive alternative to IP
security or custom application layer protocols. We have
implemented DTLS as part of the popular OpenSSL cryp-
tographic library and find that it provides acceptable per-
formance and is relatively easy to program to.

12. Acknowledgements
The authors would like to thank Dan Boneh, Eu-Jin

Goh, Constantine Sapuntzakis, and Hovav Shacham for
discussions and comments on the design of DTLS. Thanks
to the anonymous reviewers for their comments, which
helped us improve the paper. Also thanks to Steve Kent
for feedback that helped clarify many points. Dan Boneh,
Lisa Dusseault, and Eu-Jin Goh provided comments on
the paper.

The first author is supported by the NSF.

References
[1] F. Andreasen and B. Foster. Media Gateway Control Pro-

tocol (MGCP). RFC 3435, January 2003.
[2] E. B. Ramsdell. S/MIME Version 3 Message Specifica-

tion. RFC 2633, June 1999.
[3] M. Baugher, D. McGrew, D. Oran, R. Blom,

E. Carrara, M. Naslund, and K. Norrman.
The Secure Real-time Transport Protocol.
draft-ietf-avt-srtp-08.txt, May 2003.

[4] D. Boneh and D. Brumley. Remote Timing Attacks are
Practical. Proceedings of the 12th USENIX Security Sym-
posium, August 2003.

[5] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux.
Password Interception in a SSL/TLS Channel. In Proceed-
ings of the Crypto, August 2003.

[6] M. Crispin. Internet Message Access Protocol - Version
4rev1 (IMAP). RFC 3501, March 2003.

[7] T. Dierks and C. Allen. The TLS Protocol, Version 1.0.
RFC 2246, January 1999.

[8] D. Eastlake. Domain Name System Security Extensions
(DNSSEC). RFC 2535, March 1999.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol
(HTTP). RFC 2616, June 1999.

[10] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the
Scheduling Algorithm of RC4. In Proceedings of SAC,
August 2001.

[11] W. A. P. Forum. WAP WTLS. WAP Forum protocol stan-
dard, November 1999.

[12] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). RFC 2409, November 1998.

[13] P. Karn and W. Simpson. Photuris: Session-Key Manage-
ment Protocol. RFC 2522, March 1999.

[14] D. Kegel. The C10K Problem.
http://www.kegel.com/c10k.html.

[15] C. A. Kent and J. C. Mogul. Fragmentation considered
harmful. In Proceedings of ACM SIGCOMM, August
1987.

[16] S. Kent and R. Atkinson. IP Authentication Header (AH).
RFC 2402, November 1998.

[17] S. Kent and R. Atkinson. IP Encapsulating Security Pay-
load (ESP). RFC 2406, November 1998.

[18] S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol (IPsec). RFC 2401, November 1998.

[19] E. Kohler, M. Handley, S. Floyd, and J. Pad-
hye. Datagram Congestion Control Protocol (DCCP).
draft-ietf-dccp-spec-04.txt, June 2003.

[20] C. Metz and B. Phan. PF_KEY Key Management API,
Version 2. RFC 2367, May 1998.

[21] I. Mironov. (Not So) Random Shuffles of RC4. In Pro-
ceedings of Crypto, August 2002.

[22] J. Mogul and S. Deering. Path MTU Discovery. RFC
1191, November 1990.

[23] J. Myers and M. Rose. Post Office Protocol - Version 3
(POP). RFC 1939, May 1996.

[24] J. Nagle. Congestion Control in IP/TCP Internetworks.
RFC 896, January 1984.

[25] E. Rescorla. HTTP Over TLS. RFC 2818, May 2000.
[26] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,

J. Peterson, R. Sparks, and M. H. E. Schooler. SIP: Session
Initiation Protocol. RFC 3261, June 2002.

[27] M.-J. O. Saarinen. Attacks against the WAP WTLS proto-
col. CMS 99, 1999.

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications.
RFC 3550, July 2003.

[29] D. Song, D. Wagner, and X. Tian. Timing Analysis of
Keystrokes and SSH Timing Attacks. Proceedings of the
10th USENIX Security Symposium, August 2001.

[30] The OpenSSL Project. http://www.openssl.org/.
[31] S. Vaudenay. Security Flaws Induced by CBC Padding -

Applications to SSL, IPSEC, WTLS In Proceedings
of Eurocrypt, April 2002.

