
Formal Models for C o m p u t e r Secur i ty

CARL E. LANDWEHR

Code 7593, Naval Research Laboratory, Washington, D C. 20375

Efforts to build "secure" computer systems have now been underway for more than a
decade. Many designs have been proposed, some prototypes have been constructed, and a
few systems are approaching the production stage. A small number of systems are even
operating in what the Department of Defense calls the "multilevel" mode some
information contained m these computer systems may have a clasmfication higher than
the clearance of some of the users of those systems.

This paper revmws the need for formal security models, describes the structure and
operation of military security controls, considers how automation has affected security
problems, surveys models that have been proposed and applied to date, and suggests
possible d~rectlons for future models

Keywords and Phrases: security, computer, protection, operating system, data security,
access control, access matrix, capabilltms, confidentiality, privacy, information flow,
security classes, confinement, integmty, aggregation, samtlzatlon, verification

CR Categories: 1.3, 3.53, 3.56, 4.0, 4.35, 8.1

INTRODUCTION

Efforts to build "secure" computer systems
have now been underway for more than a
decade. Many designs have been proposed,
some prototypes have been constructed,
and a few systems are approaching the pro-
duction stage. A small number of systems
in the Department of Defense (DoD) are
even operating in "multilevel" mode: some
information in any of these systems may
have a classification higher than the clear-
ance of some users.

Nearly all of the projects to design or
construct secure systems for processing
classified information have had a formal
mathematical model for security as part of
the top-level definition of the system. The
model functions as a concise and precise
description of the behavior desired of the
security-relevant portions of the system.
These models have been influenced by the
DoD regulations for processing classified
data, by intuitive notions of security, by the
structure of existing computer systems, and
by the capabilities of program-verification
technology. They have not always been
influenced by, or have even recognized, the

ways in which security regulations are ap-
plied in practice.

It is the purpose of this paper to review
the need for formal security models, to de-
scribe briefly the structure and operation of
military security controls, to survey models
that have been proposed and applied to
date, and to suggest possible directions for
future models. All the models described
concern access to information within a com-
puter and the flow of information within
a computer ; t hey are not concerned
with the areas described by the Dennings
[DENN79b] of user authentication, infer-
ence controls, or cryptographic controls.

Our descriptions, whenever possible,
avoid formal notation. The purpose of this
paper is to make the basic concepts of each
model apparent, not to restate each model
in complete detail.

1. WHY FORMAL MODELS?

In order to build a secure system, designers
must first decide exactly what "secure"
means for their particular needs. In a pri-
vate company, security may be related to
the nondisclosure of confidential account-

© 1981 ACM 0010-4892/81/0900-0247 $00 00 Computing Surveys, Vol 13, No 3, September 1981

248 ° Carl E. Landwehr

CONTENTS

I N T R O D U C T I O N
1 W H Y F O R M A L MODELS ~
2. S T R U C T U R E OF MILITARY SECURITY
3. DYNAMICS OF MILITARY SECURITY
4. E F F E C T S OF AUTOMATION

4 1 Old Problems Aggravated
4 2 New Problems
4 3 Potential Benefits

5. FORMAL MODELS FOR C O M P U T E R
SECURITY
5 1 Basic Concepts and Trends
5 2 High-Water -Mark Model
5.3 Access Matr ix Model
5 4 Models Based on Access Matrices
5 5 Bell and LaPadu la Model
5 6 Information-Flow Models
5 7 Extensions and Apphcat lons of the Bell and

LaPadu la Model
5 8 Programs as Channels for Information Trans-

mission
6 DISCUSSION
7 CONCLUSION

ACKNOWLEDGMENTS
REFERENCES

ing data or trade secrets, or to the enforce-
ment of privacy regulations regarding per-
sonal medical or credit records. If national
security data are involved, security be-
comes the protection of classified material,
as detailed in various DoD instructions and
regulations. One might hope for these reg-
ulations to be clear-cut and directly appli-
cable to information stored in computers:
not so. Because most of the regulations
were originally constructed for an environ-
ment where information was recorded on
paper and stored in safes, they have had to
be revised as the use and understanding of
computers within DoD have increased.

Although the DoD regulations can be
said to define the security required for sys-
tems processing classified national security
data, their form is not very helpful to sys-
tem designers. Typically, regulations are
written in English and are descriptive
("safeguards must permit accomplishment
of mission functions while affording an ap-
propriate degree of security" [OPNA79])
rather than prescriptive {"the system shall

have the following design characteristics:
• . . ") .

The point here is not that the regulations
are poorly phrased--indeed, it would be
undesirable for regulations to specify par-
ticular approaches when many of the ques-
tions involved are still research issues--but
that formal models of security are needed
for design. Since the system must not only
be secure, but must be demonstrably so,
designers need formal security models to be
able to convince others of the security of
the system. By constructing a formal model
for security, demonstrating that systems
enforcing this model are secure {according
to the applicable DoD regulations, privacy
laws, or company policy), and then dem-
onstrating that the design to which the
implementation corresponds enforces the
model, the designers can make a convincing
argument that the system is secure.

To date, the need for computer security
has been more apparent in military than in
commercial applications; consequently, the
models discussed below concern military
rather than industrial security. As security
concerns become more important to the
private sector and to the nonmilitary parts
of the government, formal models appro-
priate to these applications will also be
needed.

2. STRUCTURE OF MILITARY SECURITY

Because most of the models described be-
low were constructed with mi l i tary security
in mind, it will be helpful to review briefly
some of the major aspects of military se-
curity for readers unfamiliar with them.

The requirement for military security
arises from the existence of information
that, if known by an enemy, might damage
the national security (by making defenses
more easily penetrable, for example). Be-
cause there are costs associated with pro-
tecting such information, and because not
all information is equally sensitive, different
sensitivity levels of information are distin-
guished. The recognized sensitivity levels,
in increasing order of effect on national
security, are unclassified, confidential, se-
cret, and top secret• Information that has
been assigned any of the three levels above
unclassified is called classified. The clas-

Comput ing Surveys, Vol 13, No 3, September 1981

Formal

sificatmn of information takes into account
its sensitivity level and, in some cases, ad-
ditional factors described below.

Since the purpose of the classification
system is to prevent the uncontrolled dis-
semination of sensitive information, mech-
anisms are required to ensure that those
individuals allowed access to classified in-
formation will not distribute it improperly.
In the military security system, the grant-
ing of a clearance to an individual indicates
that certain formal procedures and inves-
tigations have been carried out and that
the individual is considered trustworthy
with information classified up to a certain
sensitivity level. Clearances for higher
levels of information correspond to greater
degrees of trust and correspondingly re-
quire more extensive background investi-
gations. The discretionary power accorded
individuals of increasing clearance levels is
enforced by explicit legal penalities for any
improper handling of classified information.

The smaller the number of people who
know a secret, the easier it is to control
further dissemination. In recognition of this
fact, and of the fact that few individuals
need to be aware of all the information
classified at a given sensitivity level, a finer
grain of classification has been created on
the basis of need-to-know. The general
principle is that classified information
should not be entrusted to an individual
unless he has both the clearance required
for it and some specific job-related need to
know that information. Although this prin-
ciple applies to all classified information, in
some cases information relating to specific
subject areas is formally designated as a
separate compartment of information (e.g.,
all information related to nuclear weapons
might be in a compartment called NU-
CLEAR). Compartment designations are in
addition to the sensitivity level designa-
tions; information might be designated
"confidential, NUCLEAR" or "secret, NU-
CLEAR," for example. Compartments may
overlap, with some information designated
as being in two or more compartments. A
classification or security level then consists
of both a sensitivity level and a {possibly
empty) set of compartments.

Corresponding to these formally desig-
nated need-to-know compartments are ad-

Models for Computer Security • 249

ditional clearances that are used to control
the compartments to which an individual
may have access. If information is desig-
nated with multiple compartments, an in-
dividual must be cleared for all of them
before he can view that information.

In addition to compartments, there are
restrictions known as caveats placed on
some documents. Although these serve a
function quite similar to that of compart-
ments, they are usually broader in scope.
One caveat, for example, is the "Originator
Controlled (ORCON)" caveat, indicating
that its originator must approve any further
dissemination of the information. There are
no specific clearances that correspond to
the caveats; instead, specific properties of
individuals (such as authorship or citizen-
ship) are referred to.

The dissemination of information of a
particular security level {including sensitiv-
ity level and any compartments or caveats)
to individuals lacking the appropriate clear-
ances for that level is prohibited by law;
these statutory restrictions are sometimes
referred to as mandatory access controls.
In distributing information of a given se-
curity level to those who possess the nec-
essary clearances, a cleared individual must
exercise some discretion in determining
whether the recipient has, in addition, a
need to know the information. These im-
precise but important restrictions are re-
ferred to as d~scretionary access controls.

3. DYNAMICS OF MILITARY SECURITY

The structure described above is generally
adequate to describe a static set of infor-
mation recorded on paper. Each piece of
paper can be appropriately classified and
physically protected {e.g., by storage in a
safe). The dynamics of information han-
dling under such a system are more difficult
to model than its static aspects. These in-
clude such operations as creating a new
piece of classified information {perhaps us-
ing a collection of existing information),
sanitizing information by removing the sen-
sitive parts, declassifying information,
copying information, and so on.

Creation of new classified information
can cause a number of problems, the first
of which is determining whether new infor-
mation should in fact be classified. In the

Computing Surveys, Vol 13, No 3, September 1981

250 • Carl E. Landwehr

case of a new document relating to a pre-
viously classified system or topic or to using
information from classified sources, it will
usually be clear to the author tha t the new
document will be classified as well. Gener-
ally, a document can be viewed as a se-
quence of paragraphs, each of which is as-
signed a classification. Because the docu-
ment as a whole also has a classification,
the document is in this sense a multilevel
object, tha t is, it can contain information
classified at various levels.

The level of classification of a document
as a whole is usually tha t of the most clas-
sifted information it contains. In some
cases, however, a collection of information,
each component of which is by itself un-
classified (or classified at a low level) may
yield a more highly classified document .
For example, a picture of the Sta tue of
Liber ty and its caption, "Locat ion of Secret
Particle Beam Weapon," could, if sepa-
rated, bo th be unclassified. Together , they
might be top secret. The problem of detect-
ing whether such a collection exists is called
the aggregation problem. If the new docu-
ment is created by sanitizing an existing
one, the new document may be classified at
a lower level than the original. Determina-
tion of when the information in a document
has been sufficiently "desensit ized" is called
the sanitization problem. Proper identifi-
cation of aggregated or sanitized informa-
tion is the obligation of the document cre-
ator, in cooperat ion with his securi ty offi-
cer. If a document is found to have been
more highly classified than required, it may
be downgraded (given a lower security
level without changing its contents).

As long as the principal storage medium
for the information is paper, and the prin-
cipal tools for creating it are manual (e.g.,
pens, pencils, typewriters}, the control of
these operations is not too difficult. When
a document is not in a safe, it is in the
custody of some individual t rusted not to
distribute it improperly. A draft document
with an as-yet-undetermined classification
can be protec ted by storing it in a safe and
nei ther declaring a specific classification
nor entering it into the formal system for
control of classified documents. The tools
used to create and modify documents are
simple and generally passive; they cannot

easily al ter a classified document or be t ray
its contents to an unauthorized person
without the knowing cooperat ion of the tool
user.

4. EFFECTS OF AUTOMATION

The use of computers to store and modify
information can simplify the composition,
editing, distribution, and reading of mes-
sages and documents. These benefits are
not free, however. Par t of the cost is the
aggravation of some of the securi ty prob-
lems just discussed and the introduct ion of
some new problems as well. Most of the
difficulties arise precisely because a com-
puter shared by several users cannot be
viewed as a passive object in the same sense
tha t a safe or a pencil is passive.

For example, consider a computer pro-
gram tha t displays portions of a document
on a terminal. Th e user of such a program
is very likely not its author. I t is, in general,
possible for the au thor to have wri t ten the
program so tha t it makes a copy of the
displayed information accessible to himself
(or a third party) wi thout the permission or
knowledge of the user who requested the
execution of the program. If the au thor is
not cleared to view this information, secu-
ri ty has been violated.

Similarly, recording the securi ty level of
a d o c u m e n t - - a straightforward task in a
manual sys t em- -can be a complex opera-
tion for a document stored in a computer .
I t may require cooperat ion among several
programs (e.g., terminal handler, line edi-
tor, file system, disk handler) wri t ten by
different individuals in different program-
ming languages using different compilers. I t
is much more difficult to establish tha t the
computer program(s) for recording a clas-
sification behaves in accordance with its
user's wishes than it is to establish the same
criterion for a pen or a pencil.

Information contained in an au tomated
system must be protec ted from three kinds
of threats: (1) the unauthorized disclosure
of information, (2) the unauthorized mod-
iftcation of information, and (3) the unau-
thortzed withholding of information (usu-
ally called denial of service). Each of the
problems discussed below reflects one or
more of these dangers.

Computmg Surveys, Vol 13, No 3, September 1981

Formal Models for Computer Security • 251

4.1 Old Problems Aggravated

4 1.1 Aggregabon

T h e aggregation problem exists in a com-
puter-based system just as it does in a
manual one. Forming aggregate objects
may be easier, though, because users may
be able to search many documents more
quickly and correlate the information in
them more easily than could be done man-
ually. Database management systems tha t
include numerous files of information in-
dexed in several different ways and tha t
can respond to user queries have no direct
analog in the world of documents and safes.
The response to a single query can aggre-
gate information from a wide variety of
sources in ways tha t would be infeasible in
a manual system. A closely related problem
is the inference problem. Studies have
shown tha t database systems, if they pro-
vide almost any statistical information
(such as counts of records, average values)
beyond the raw data values stored, are rel-
atively easy to compromise [DEMI77,
DENN79a, DENN79b, DOBK79, SCHW79].
By carefully constructing queries and using
only small amounts of outside information,
a user can often infer the values of data he
is unauthorized to obtain directly.

4.1.2 Authenbcatlon

In the manual system, keys and safe com-
binations are entrusted to humans by other
humans; it is not generally difficult to rec-
ognize the t rusted individual. A person
opening a safe and examining its contents
is likely to be observed by other people who
will know whether tha t person is authorized
to do so. Further , an individual with access
to a safe must have a clearance sufficient
for him to see every document stored in the
safe without violating security. Individuals
with different clearance levels may have
access to the computer system, and so the
system must be able to distinguish among
its users and restrict information access to
qualified users. Since the computer will
have access to all the information it stores
and since it must provide access to those
documents only to authorized individuals,
the authentication problem is aggravated:

the computer system must have a reliable
way of determining with whom it is con-
versing.

4 1.3 Browsing

Computers generally maintain directories
for files to facilitate searching large bodies
of information rapidly: rarely is there a
similar catalog of all the information con-
tained in even a single safe. Unless a com-
puter system implements strict need-to-
know access controls, it may be possible for
a user to examine secretly all documents
stored in the system at or below his clear-
ance level (this is called the browsingprob-
lem). Browsing through all the documents
in a safe would be a much more difficult
activity to conceal.

4.1.4 Integrity

Undetec ted modification of information is
much easier to accomplish if the informa-
tion is stored on electronic media than if it
is stored on paper, both because changes
are harder to detect and because there is
often only a single copy of the information
tha t need be altered. Protect ing informa-
tion against unauthorized modification is
called the mtegrtty problem.

4 1.5 Copymg

Although paper documents may be copied
without altering the original, making such
a copy entails removing the original from
the safe. Undetec ted copying of files within
most computer systems presents no similar
barrier and usually can be done much more
rapidly.

4.1 6 Dental of Servtce

In the manual system, the combination for
a safe or a cipher lock may be forgotten or
misplaced, or the lock may malfunction. In
ei ther case the legitimate users of the infor-
mat ion in the safe may be denied access to
it for a time. Such occurrences, however,
are rare. Denial of service is a much more
notorious characteristic of computer sys-
tems, which can be vulnerable to power
outages (or even fluctuations) and to hard-
ware and software problems.

Computmg Surveys, Vol 13, No 3, September 1981

252 • Carl E. Landwehr

4.2 New Problems

4.2.1 Conhnement

Storage of information in a computer can
also cause new kinds of security problems.
In a computer system, programs are exe-
cuted by the active entities in the system,
usually called processes or jobs. Generally,
each process is associated with a user, and
programs are executed by the process in
response to the user's requests. A program
tha t accesses some classified data on behalf
of a process may leak those data to other
processes or files (and thus to o ther users).
The prevent ion of such leakage is called the
confinement problem [LAMP73]. Lampson
identifies three kinds of channels tha t can
be used to leak information. Legitimate
channels are those tha t the program uses
to convey the results of its computat ion
(e.g., the printed output from the program
or a bill for the services of the program). It
is possible, for example, by varying line
spacing, to hide additional information in
these channels. Storage channels are those
that utilize system storage such as tempo-
rary fries or shared variables (other than
the legitimate channels) to pass informa-
tion to another process. Covert channels
are paths not normally intended for infor-
mat ion transfer at all, but which could be
used to signal some information. For ex-
ample, a program might vary its paging rate
in response to some sensitive data it ob-
serves. Another process may observe the
variations in paging rate and "decipher"
them to reveal the sensitive data. Because
they generally depend on the observat ion
of behavior over time, covert channels are
also referred to as timing channels.

4 2.2 Trolan Horses and Trapdoors

A program tha t masquerades as a useful
service but surrepti t iously leaks data is
called a Trojan horse 2. A trapdoor is a

l A l though these t e rms had been in use for some t ime,
L a m p s o n was apparent ly the first to in t roduce th is
nomenc la tu re for kinds of leakage channe l s into the
open li terature. We will employ his defimtions, us ing
" t iming channel" in place of "covert channel ." T h e
reader m caut ioned t ha t usage in the l i tera ture is no t
uniform.
2 Th i s t e rm was in t roduced by D a n Edwards m
ANDE72.

hidden piece of code tha t responds to a
special input, allowing its user access to
resources without passing through the nor-
mal security enforcement mechanism. For
example, a t rapdoor in a password checking
routine might bypass its checks if called by
a user with a specific identification number.

4.2.3 Other Threats

Another class of threats in t roduced by au-
tomat ion is related to the electrical char-
acteristics of computers. Wiretapping and
monitoring of electromagnetic radiat ion
generated by computers fall into this class.
The formal models described below do not
address this class of threats, nor do they
cover problems of authenticat ion, infer-
ence, or denial of service.

4.3 Potential Benefits

In compensat ion for the added complexities
automat ion brings to security, an auto-
mated system can, if properly constructed,
bestow a number of benefits as well. For
example, a computer system can place
stricter limits on user discretion. In the
paper system, the possessor of a document
has complete discretion over its fur ther dis-
tribution. An au tomated system tha t en-
forces need-to-know constraints strictly can
prevent the recipient of a message or doc-
ument from passing it to others. Of course,
the recipient can always copy the informa-
tion by hand or repeat it verbally, but the
inability to pass it on directly is a significant
barrier.

The sanitization of documents can be
simplified in an au tomated system. Remov-
ing all uses of a part icular word or phrase,
for example, can be done more quickly and
with fewer errors by a computer than by a
person (presuming, of course, tha t the ed-
iting programs work correctly!). Although
it is doubtful whether a completely general
sanitization program is feasible, au tomated
techniques for sanitizing highly format ted
information should be available in a few
years.

Automated sytems can apply a finer
grain of protection. Instead of requiring
tha t an entire document be classified at the
level of the most sensitive information it
contains, a computer-based system can
maintain the document as a multilevel ob-

Computing Surveys, Vol 13, No 3, September 1981

Formal Models for Computer Security • 253

ject, enforcing the appropriate controls on
each subsection. The aggregation and san-
itization problems remain; nevertheless, the
oppor tuni ty exists for more flexible access
controls.

An automated system can also offer new
kinds of access control. Permission to exe-
cute certain programs can be granted or
denied so tha t specific operations can be
restricted to designated users. Controls can
be designed so tha t some users can execute
a program but cannot read or modify it
directly. Programs protected in this way
might be allowed to access information not
directly available to the user, sanitize it,
and pass the results back to the user. Nat-
urally, great care would be needed in the
construction of such a sanitization program
and the controls protecting it.

Although these benefits are within reach
of current technology, they have been dif-
ficult to realize in practice. Securi ty is a
relative, not an absolute, concept, and gains
in security often come only with penalties
in performance. To date, most systems de-
signed to include security in the operating
system structure have exhibited ei ther slow
response times or awkward user inter-
faces- -or both.

5. FORMAL MODELS FOR COMPUTER
SECURITY

The formal s t ructures described below can
be used to model the mili tary security en-
vironment. These same structures can also
be used as the basis for specifying programs
tha t cause a computer to simulate the se-
curi ty controls of the mili tary environment.
Because it is difficult to capture the com-
plexities of the real world in a formal struc-
ture, each model deviates from reality in
some respects. Generally, the models en-
force controls tha t are more rigid than the
controls in the actual environment; any
computer operations tha t obey the struc-
tures of the model will be secure according
to the conventional definitions, and some
operations disallowed by the model would
nevertheless be considered secure outside
the formal model. Although this is the
"safe" side on which to err, use of overly
restrictive models to improve the security
of a system can lead to systems tha t are

unacceptable to their intended users
[WILS79] .

The models presented in this section are
diverse in several ways: they have been
developed at different times, they t rea t the
problem from different perspectives, and
they provide different levels of detail in
their specifications. We have tr ied to con-
sider bo th chronology and formal similarity
in organizing our presentation. Since
models with different formal bases some-
t imes influence each other over time, it is
hard to provide an ordering tha t both re-
spects formal similarity and avoids forward
references. Consequently, we include a brief
discussion of some useful concepts and his-
torical t rends before presenting the individ-
ual models.

5.1 Basic Concepts and Trends

The finite-state machine model for com-
putat ion views a computer system as a fi-
nite set of states, together with a transit ion
function to determine what the next state
will be, based on the current state and the
current value of the input. The transition
function may also determine an output
value. Transi t ions are viewed as occurring
instantaneously in this model; therefore
certain potential information channels (e.g.,
those related to observing the t ime spent in
a certain state) in real systems tend to be
hidden by it. Different security models ap-
ply different interpretat ions of this general
model, but this s t ructure is the basis for all
of those surveyed below.

The lattice model for securi ty levels is
widely used to describe the s t ructure of
mili tary security levels. A lattice is a finite
set together with a partial ordering on its
elements such tha t for every pair of ele-
ments there is a least upper bound and a
greatest lower bound [BmK70]. Th e simple
linear ordering of sensitivity levels has al-
ready been defined. Compar tment sets can
be partially ordered by the subset relation:
one compar tment set is greater than or
equal to another if the lat ter set is a subset
of the former. Classifications, which include
a sensitivity level and a (perhaps empty}
compar tment set, can then be partially or-
dered as follows: for any sensitivity levels a
and b and any compar tment sets c and d

(a, c) _> (b, d)

Computing Surveys, Vol 13, No 3, September 1981

254 • Carl E. Landwehr

if and only if a _> b and c _ d. That each
pair of classifications has a greatest lower
bound and a least upper bound follows from
these definitions and the facts that the clas-
sification "unclassified, no compartments"
is a global lower bound and that we can
postulate a classification "top secret, all
compartments" as a global upper bound.
Because the lattice model matches the mil-
itary classification structure so closely, it is
widely used. The high-water-mark model
[WEIS69], one of the earliest formal models,
includes a lattice of security levels, though
it is not identified as such.

The access matrix model, described in
detail below, was developed in the early
1970s as a generalized description of oper-
ating system protection mechanisms. It
models controls on users' access to infor-
mation without regard to the semantics of
the information in question. A reference
monitor checks the validity of users' ac-
cesses to objects. Models based on access
matrices continue to be of interest because
of their generality; recent examples include
studies of take-grant models [BISH79] and
the model of data security used by Popek
[POPE78a].

When classified information is involved,
the semantics of the information must be
considered: the classification of the infor-
mation and the clearance of the user must
be known before access can be granted. For
this purpose, models based on the access
matrix have been extended to include clas-
sifications, clearances, and rules concerning
the classifications. The best known such
model is the Bell and LaPadula model
[BELL73a], which may be summarized in
two axioms:

(a) No user may read information classi-
fied above his clearance level ("No read
up");

(b) No user may lower the classification of
information ("No write down").

The full statement of the model includes
several more axioms and is quite complex.

In the early 1970s, Roger Schell con-
ceived an approach to computer security
based on defining a small subset of a system
that would be responsible for its security
and assuring that this subset would monitor
all accesses (i.e., it would provide complete
validation of program references), that it

would be correct, and that it would be
isolated (so that its behavior could not be
tampered with). This mechanism would be
called a security kernel [ANDE72, SCHE73].
Similar considerations motivated the work
of Price and Parnas [PRIC73, PARN74] on
virtual memory mechanisms for protection.
The Bell and LaPadula model grew out of
work on the security kernel concept.

This idea fit well with the notions of
operating system kernels and layered ab-
stract machines that were being circulated
widely at that time. The security kernel
would be the innermost layer of the system
and would implement all of the security-
relevant operations in the system; for the
access-matrix model, the kernel would im-
plement the functions of the reference mon-
itor. Because the security kernel would be
of minimal size and functionality, it would
be feasible to examine it closely for flaws
and perhaps even to verify its correctness
(or at least its security properties} formally.
In practice, it has been difficult to identify
and isolate all of the security-relevant func-
tions of a general-purpose operating system
without creating a fairly large, fairly slow
"kernel."

Information-flow models, based partly
on work by Fenton [FENT74], and first in-
troduced by Denning [DENN75], recognize
and exploit the lattice structure of security
levels. Instead of requiring a list of axioms
governing users' accesses, an information-
flow model simply requires that all infor-
mation transfers obey the flow relation
among the security classes. The informa-
tion-flow properties of each statement type
in a programming language can be defined,
and proofs can be developed about the
flows caused by executing a particular pro-
gram. By focusing on the flow of informa-
tion instead of on individual accesses to
objects, the models achieve an elegance
lacking in the Bell and LaPadula model.

Because of continuing DoD interest,
work on developing and applying the Bell
and LaPadula model has continued. The
original model dealt only with the unau-
thorized disclosure of data, but an extension
of it by Biba [BIBA77] added the concept
of integrity to deal with the unauthorized
modification of data. The model was refor-
mulated for use with automated tools for
program verification by Feiertag and others

Computing Surveys, Vol 13, No 3, September 1981

Formal Models for Computer Security • 255

[FEIE77]. This reformulat ion actually fo-
cuses on the information flow possible in a
formally specified set of functions, and in
this respect is similar to the information-
flow models. Efforts have also been made
to model security in database management
systems using the Bell and LaPadula model
[HI~K75, GROH76].

Finally, several authors [JoNE75,
COHE77, FURT78a, MILL78b] have devel-
oped models that, in a variety of ways, view
programs as channels for information trans-
fer. These models are generally fur ther
from the mains t ream of computer security
than the others, but they provide some
interesting comments on the fundamental
question of what it means for a program or
a computer system to be secure.

5.2 High-Water-Mark Model

The ADEPT-50 t ime-sharing system, con-
structed at the System Development Cor-
porat ion in the late 1960s, was one of the
first systems tha t a t t empted to implement
software controls for classified information
[WEIS69]. Although the system was never
certified by the DoD for operat ion as a
multilevel secure system, its controls were
based on a formal model of mili tary secu-
rity.

Four types of objects are defined by the
ADEPT-50 security model: users, termi-
nals, jobs, and files. Each object is described
by an ordered triple of properties, called
Authori ty (A), Category (C), and Franchise
(F). The first two of these correspond co a
sensitivity level and a compar tment set; the
third consists of a set of user designations.
The Franchise sets are used to implement
discretionary need-to-know controls, but
they are formally equivalent to an exten-
sion of the compar tment set tha t allows a
compar tment for each user. The model also
defines an ordering on these triplets tha t
corresponds to the lattice model (though
the s tructure is not identified as a lattice).
"His tory functions" are defined for the au-
thor i ty and category properties of an object.
These functions record the highest author-
ity assigned to the object and the union of
all categories assigned to the object since
its creation. These are referred to as the
high-water mark of the object, from which
the model takes its name.

The values of the current A, C, and F
propert ies and the history functions are
used to control the propert ies assigned to
new objects (e.g., newly created files) and
to determine whether requested operations
will be allowed. To access the system from
a terminal, a user must present a user ID
and a password. The system then checks a
list stored at system start t ime to see tha t
this ID is known to the system, tha t it is in
the franchise set for this terminal, and tha t
the password is correct. If the log-in suc-
ceeds, the given user ID is assigned to the
job servicing the user's terminal. The job is
assigned the minimum of the authori t ies
assigned to the user and the terminal, and
is assigned a category set corresponding to
the intersection of the user and terminal
category sets. Permission for this job to
access a file is granted if and only if the
level of the job in the lattice is at least tha t
of the file. Granting access to a file causes
the history functions to be updated accord-
ing to the author i ty and category set for
tha t file. New files created by this job are
assigned an author i ty and a category set
based on the history functions: the author-
ity is set to tha t of the highest file accessed
by this job since log-in, and the category is
the union of the category sets of all files
accessed since log-in. The franchise is set
to tha t of the job.

The ADEPT-50 t ime-sharing system, us-
ing the security model just described, was
implemented on an IBM/360 model 50 and
installed in several locations in the Penta-
gon. In addition to enforcing this model, a
number of other security provisions (e.g.,
audit trails, clearing of newly acquired stor-
age} were included in the implementat ion.

The principal reason the high-water-
mark policy is of interest is tha t it is one of
the few policies actually implemented on
an operational computer system. Th e
ADEPT-50 system, operating with this
model, provided an acceptable interface to
its users. The authori ty, category, and fran-
chise elements of the model are sufficient
to describe the static s t ructure of military
security. Th e restriction tha t a user can
only have access to a file at or below his
level in the lattice ensures tha t he cannot
directly read information contained in a file
classified above his clearance level. It is
possible, however, for a Tro jan horse to

Computing Surveys, Vol 13, No 3, September 1981

256 • Carl E. Landwehr

copy classified information to a {preexist-
ing) file that is unclassified. This copying
can be done because the rules of the model
allow authorized "downward" flows of in-
formation. Consequently, information can
flow out of the system via legitimate, stor-
age, or timing channels. Control of saniti-
zation and aggregation is provided by user
vigilance and by audit mechanisms that
record the explicit downgrading of infor-
mation. The controls over the classification
of new files are helpful but can lead to the
overclassification of data, since the high-
water mark can never decrease during a
given run. Routine overclassification is
likely to lead to routine downgrading of
classified data, which would make errors or
intentional violations in downgrading
harder to detect. 3

5.3 Access Matrix Model

The access matrix model for computer pro-
tection is based more on abstraction of op-
erating system structures than on military
security concepts. One of the earliest de-
scriptions of this model is provided by
Lampson [LAMP71]; Denning and Graham
[DENN71, GRAH72] describe and extend it.
Because of its simplicity and generality,
and because it allows a variety of imple-
mentation techniques, it has been widely
used.

There are three principal components in
the access matrix model: a set of passive
objects, a set of active subjects, which may
manipulate the objects, and a set of rules
governing the manipulation of objects by
subjects. Objects are typically files, termi-
nalS, devices, and other entities imple-
mented by an operating system. A subject
is a process and a domain (a set of con-
straints within which the process may ac-
cess certain objects). It is important to note
that every subject is also an object; thus it
may be read or otherwise manipulated by
another subject. The access matrix is a
rectangular array with one row per subject
and one column per object. The entry for a
particular row and column reflects the
mode of access between the corresponding

3 Pa r t of the informat ion m this pa ragraph (in partic-
ular, t he a s se s smen t s of the uti l i ty of the user interface
and the securi ty model) is derived from conversa t ions
with Marv Schaefer and Clark W e i s s m a n of SDC.

subject and object. The mode of access
allowed depends on the type of the object
and on the functionality of the system; typ-
ical modes are read, write, append, and
execute. In addition, flags may be used to
record ownership of a particular object.

The access matrix can be viewed as re-
cording the protection state of the system.
Certain operations invoked by subjects can
alter the protection state--for example, if
the owner of a file deletes it, the column
corresponding to that file is removed from
the access matrix. In addition, some modes
of access may permit users to alter the
contents of particular entries of the matrix.
If the owner of a file grants another user
permission to read it, for example, the per-
mission must be recorded in the appropri-
ate access matrix entry. Graham and Den-
ning provide an example set of rules--for
creating and deleting objects and granting
or transferring access permissions--that al-
ter the access matrix. These rules, together
with the access matrix, are at the heart of
the protection system, since they define the
possible future states of the access matrix.

All accesses to objects by subjects are
assumed to be mediated by an enforcement
mechanism that refers to the data in the
access matrix. This mechanism, called a
reference monitor [ANDE72], rejects any
accesses {including improper attempts to
alter the access matrix data) that are not
allowed by the current protection state and
rules. Graham and Denning [GRAH72] con-
sider each object to be an instance of a
particular object type. References to ob-
jects of a given type must be validated by
the monitor for that type. Each type mon-
itor then uses the data in the access matrix
to validate the requested operations. In this
view, there is a separate monitor that con-
trols requests to change the access mat-
rix. If all accesses of the access matrix
pass through the access matrix monitor,
that monitor is equivalent to the reference
monitor.

Because the access matrix model speci-
fies only that there are rules (and subjects
and objects and access modes) but not what
the rules (or subjects or objects or access
modes) are in detail, the model has great
flexibility and wide apphcability. It is diffi-
cult, however, to prove assertions about the
protection provided by systems that follow

Computing Surveys, Vol 13, No. 3, September 1981

Formal

this model without looking in detail at the
particular subjects, objects, modes of ac-
cess, and rules for transforming the access
ma t r ix . H a r r i s o n , Ruzzo, and U l l m a n
[HARR76] investigated an access matrix
model with six rules similar to the examples
posed by Graham and Denning and found
undecidable the question of whether, given
an initial access matrix configuration, an
arbitrary access right can later appear at an
arbitrary location in the access matrix.

In actual computer systems, the access
matrix would be very sparse if it were im-
plemented as a two-dimensional array.
Consequently, implementations that main-
tain protection data tend to store them
either rowwise, keeping with each subject
a list of the objects and access modes al-
lowed it, or columnwise, storing with each
object a list of those subjects that may
access it and the access modes allowed
each. The former approach is called the
capabili ty list approach, the latter, the ac-
cess control list approach. These ap-
proaches are often used together, as in
MULTICS [ORGA72] and other virtual
memory systems. Virtual memory ad-
dresses can act as capabilities; possession of
the address (and of the corresponding
translation tables) in this sense suffices to
authorize access to the corresponding data.
And files in the system may have access
control lists attached to control which sub-
jects may actually read or alter the data in
the file (even though all users may know
the name of the file).

The access matrix model, properly inter-
preted, corresponds very well to a wide
variety of actual computer system imple-
mentations. Without some additions, how-
ever, it does not include mechanisms or
rules corresponding to the requirements for
military security. In systems based on this
model, the protection of a file of informa-
tion is the responsibility of the file's owner.
He can grant access to any user, and, typi-
cally, any user granted read-access to the
file can copy and distribute the information
any way he pleases. Thus, without special-
izing the model, it would be very difficult
to prove any theorems concerning the flow
of information. On the other hand, the
model neatly separates the mechanisms for
enforcement from the policy enforced: the
mechanisms of the system are the enfor-

Models for Computer Security • 257

cers, and the current policy is contained in
the current state of the access matrix. Note,
however, that this interpretation of "pol-
icy" implies that any subject with the abil-
ity to create or delete objects or to grant or
revoke object-access can alter the policy
enforced. The simplicity of the model, its
definition of subjects, objects, and access
control mechanisms, is very appealing.
Consequently, it has served as the basis for
a number of other models and development
efforts, described below.

5.4 Models Based on Access Matrices

This section presents two models that are
based on the concept of an access matrix.
Both are intended to represent the behavior
of a capability-based operating system. The
first was developed as part of an effort to
construct a prototype security kernel; the
second, developed in terms of graph theory,
has had tittle practical application.

5.4 1 UCLA Data Secure UNIX 4 M o d e l

The efforts at UCLA to design, implement,
specify, and verify a security kernel for
UNIX have been described in numerous
papers and technical reports [POPE75,
PoPE78a, PoPE78b, POPE79, WALK80]. The
approach taken by Popek and his group is
based on a concept they call data security:
direct access to data must be possible only
if the recorded protection policy permits it.
The kernel is intended to enforce only this
notion of security; it does not embody a
particular security policy (in contrast to the
kernels based directly on the Bell and
LaPadula model). In the UCLA implemen-
tation, the protection policy is embodied in
a separate process called the policy man-
ager. A particular request from a user (e.g.,
to open a file) must be approved by the
policy manager before the kernel will honor
it. The kernel supports a form of capabili-
ties, and the policy manager informs the
security kernel of security policy by issuing
the "grant-capability" kernel call.

The specification of the kernel is given
in four increasingly abstract levels
[WALK80]. The lowest level is the kernel

4 UNIX Is a trademark of Bell Laboratories.

Computing Surveys, Vol 13, No. 3, September 1981

258 • Carl E. Landwehr

implementation in an extended PASCAL;
next is a "low-level specification" in the
language of the XIVUS verification system
[YONK76], organized as a "data-defined
specification." Then comes an "abstract-
level specification" formulated as a finite-
sta~,, machine with the effect of each kernel
cM' :'eflected in the transition function; fi-
nmi:,, there is a "top-level specification,"
also given as a finite-state machine. Map-
ping functions are provided from each lower
level to the next higher one, so that a chain
exists from the implementation to the top-
level specification.

The security model implemented by the
UCLA Data Secure Unix (DSU) corre-
sponds to the data security property re-
quired of the top-level specification. The
simplest description of the top-level model
for DSU is given in WALK80. It is a finite-
state machine model, with the state defined
by the following four components:

(a) process objects;
(b) protection-data objects, with values

being sets of capabilities;
(c) general objects (comprising both pages

and devices); and
(d) a current-process-name object, whose

value is the name of the currently run-
ning process.

The security criterion is given in terms of
the state: a component of the state is ac-
tually modified or referenced only if the
protection data for the process named by
the current-process-name object allow such
access. In PoPE78a, a more formal and de-
tailed definition of data security is given. It
has three assertions, stated informally be-
low:

($1) Protected objects may be modified
only by explicit request.

($2) Protected objects may be read only by
explicit request.

($3) Specific access to protected objects is
permitted only when the recorded pro-
tection data allow it.

In POPE78a and in KEMM79, these asser-
tions concern the abstract-level specifica-
tion; the top-level specification was appar-
ently added later.

The UCLA DSU model is in one sense
more general than the Bell and LaPadula
model. It includes no mention of classifica-
tions, clearances, or the security lattice. All
of these could be introduced, presumably,
by an appropriately specified policy man-
ager. The policy manager described in
PoPE78b, though, is based on "colors."
Each user and file has an associated color
list, and for a user to access a file, his color
list must cover the color list of the file. This
access control technique also extends to
processes and devices. Formally, this model
appears equivalent to the military com-
partment structure, and it could be used to
implement a lattice structure.

The UCLA DSU model was constructed
only with the goal of preventing unauthor-
ized direct references to or modification of
protected data; it is not concerned with
storage or timing channels.

5 4 2 Take-Grant Models

Take-grant models use graphs to model
access control. They have been described
and studied by several people [JONE76,
LIPT77, SNYD77, JONE78a, B]SH79,
SNYD79]. Although couched in the terms of
graph theory, these models are fundamen-
tally access matrix models. The graph
structure can be represented as an adja-
cency matrix, and labels on the arcs can be
coded as different values in the matrix.
Because it is the most recently published
and because it deals with a wider class of
security problems than previous versions,
the particular model of BISH79 will be de-
scribed here.

In a take-grant model, the protection
state of a system is described by a directed
graph that represents the same information
found in an access matrix. Nodes in the
graph are of two types, one corresponding
to subjects and the other to objects. An arc
directed from a node A to another node B
indicates that the subject (or object) A has
some access right(s) to subject (or object)
B. The arc is labeled with the set of A's
rights to B. The possible access rights are
read (r), write (w), take (t), and grant (g).
Read and write have the obvious meanings.
"Take" access implies that node A can take

Computing Surveys, Vol 13, No 3, September 1981

Formal Models for Computer Security • 259

Q t Q r,g @

Intttal Graph ~t L

r,g

Graph following A takes (r, g to C)

Figure 1. Example of take.

I 0 .®
>-

A grants (w to D) to B

F,gure 2. Example of grant.

node B 's access rights to any other node.
For example, if there is an arc labeled (r, g)
f rom node B to node C, and if the arc f rom
A to B includes a " t" in its label, then an
arc f rom A to C labeled (r, g) could be
added to the graph (see Figure 1). Con-
versely, if the arc f rom A to B is marked
with a "g," B can be granted any access
right A possesses. Thus, i fA has (w) access
to a node D and (g) access to B, an arc f rom
B to D marked (w} can be added to the
graph (see Figure 2).

Because the graph need only include arcs
corresponding to nonnull entries in the ac-
cess matrix, it provides a compac t way to
present the same information given in a
relat ively sparse access matrix. Capabi l i ty
sys tems are thus pr ime candidates for this
modeling technique; each arc would then
represent a part icular capabili ty.

Toge the r with the protect ion graph, the
model includes a set of rules for adding and
deleting bo th nodes and arcs to the graph.
Two of these, corresponding to the exercise
of " take" and "grant" access rights, have
already been described. A "crea te" rule al-
lows a new node to be added to the graph.
I f subject A creates a new node Y, both the
node Y and an arc A Y are added to the
graph. T h e label on A Y includes any subset
of the possible access rights. A " remove"
rule allows an access right to be removed
f rom an arc; if all r ights are removed f rom
an arc, the arc is r emoved as well. An early
version of the model [LIPT77] also included
a "call" rule to model invocation of a pro-
g ram as a separa te process. Other rules can
be added, depending on the proper t ies of
the sys tem being modeled, but in the pub-
lished l i terature, take, grant, create, and
remove are the key operations.

The questions first asked of this model

were of the form: "Given an initial protec-
tion graph and the set of rules, is it possible
for a subject A to gain a par t icular access
right to an object B?" Note tha t this is a
question about the possibility of the initial
graph being t rans formed into one contain-
mg a specific arc through some sequence of
rule applications. The work of Harrison,
Ruzzo, and Ul lman [HARR76] showed this
p rob lem to be undecidable for an a rb i t ra ry
set of rules and an initial graph but decid-
able for a specific set of rules. T h e answer
is s ta ted as a t heo rem in SNYD77: A can
acquire the right in quest ion if and om:y .f
there is some subject or object tha t alren-N.
has the right and A and B are conne~'.¢ :l
by a pa th with a certain structure. For the
rules of the t ake -g ran t model, this answ,~r
can be computed in a t ime directly propc. ~-
t ional to the size of the graph [JoNE76J.

In BISH79, Bishop and Snyder recognize
tha t information about an object can som ~-
t imes be t ransferred to a subject wi thout
the subject ' s gaining a direct access right
for tha t object. For example, informat ion
can be copied f rom one object to another
and access to the copy can be granted to
others wi thout ever granting others direct
access to the original file. An information
t ransfer of this type is called de facto, while
the t ransfer of au thor i ty according to the
rules discussed earlier is called de jure. Four
" representa t ive" graph rewrit ing rules to
model de facto transfers are described and
studied. Edges added to the graph by ap-
plication of de facto rules are called implicit
edges to distinguish t h e m from the explicit
edges added by the de jure rules. Predicates
called can-know and can-tell are defined to
characterize the possibility tha t an edge can
be constructed between two nodes by ap-
plication of the de facto rules.

Computing Surveys, Vol 13, No 3, September 1981

260 • Carl E. Landwehr

An objection sometimes made to take-
grant models is tha t they are too "weak" to
provide useful inferences about protect ion
systems: it is claimed that the result of
applying a take-grant model to a "real"
system will be a fully connected graph--a l l
subjects can gain access to all objects. Cer-
tainly, this will be the case in any system in
which a user can create a file and grant
access to it to all users. The problem is tha t
the model makes a worst case assumption
about the behavior of users- - i f a user can
grant access rights for an object to some
other user, the model assumes tha t at some
time he will do so. In some cases, of course,
this may be the appropriate assumption. If
the users of the system cannot be trusted,
for example, and if the system itself can
enforce no finer controls than those on ca-
pabilities, this model may yield useful re-
sults. It does seem limited with respect to
its ability to model controlled sharing of
information, though.

Snyder partially addressed this problem
[SNYD77] by defining a predicate can-steal
to distinguish cases in which a subject can
gain an access right to an object without
the collusion of another subject who al-
ready has tha t right. This t r ea tmen t deals
only with de jure access. Jones [JosE78a],
in applying the model to demonst ra te a
security flaw in MULTICS, extended the
model to provide a finer control on user
discretion. She introduced the concept of
proper ty sets as a restriction on the behav-
ior of subjects and added procedure objects
(a new node type) and rights for creating
and invoking them.

Like the UCLA DSU model, the take-
grant model does not include securi ty
classes. Subjects and objects are not distin-
guished according to clearance levels or
security levels. The levels could be added
by labeling subjects and objects and by
restricting the graph rewriting rules accord-
ing to the lattice relations. The likely result,
in the case of the military security lattice,
would be a graph-theoret ic formulat ion of
the Bell and LaPadula model.

5.5 Bell and LaPadula Model

As par t of its computer security program,
the Air Force sponsored the construction of
some proto type security kernels and some

formal models for computer security. Th e
principal pro to type efforts were conducted
at M I T R E and {sponsored by DARPA} at
UCLA, while the research in formal models
was performed both at Case Western Re-
serve University, by Walter et al. [WALT74,
WALT75a, WhLw75b], and at MITRE, by
Bell and LaPadula [BELL73a, BELL73b,
BELL74a, BELL74b, BELL75]. These proto-
type and model developments were sem-
inal; current efforts to build "kernelized"
systems are based on the same ideas and
use security models similar to the ones de-
veloped in the Case Western and M I T R E
projects. Bo th of these models are formali-
zations and specializations of the access
matr ix model to incorporate mili tary secu-
r i ty policy. Because the models developed
at Case and at M I T R E are so similar, only
the lat ter {Bell and LaPadula) version is
described here.

Bell and LaPadula use finite-state ma-
chines to formalize their model. Th ey de-
fine the various components of the finite-
state machine, define what it means {for-
mally) for a given state to be secure, and
then consider the transitions tha t can be
allowed so tha t a secure state can never
lead to an insecure state.

Although the presentat ions in the origi-
nal reports carry a heavy burden of nota-
tion from systems theory, the model can be
understood informally without the nota-
tion. In addition to the subjects and objects
of the access matr ix model, it includes the
security levels of the military security sys-
tem: each subject has a clearance and each
object has a classification. Each subject also
has a current securtty level, which may not
exceed the subject 's clearance.

The access matr ix is defined as above,
and four modes of access are named and
specified as follows:

read-only: subject can read the object
but not modify it;

append: subject can write the object
but cannot read it;

execute: subject can execute the object
but cannot read or write it di-
rectly; and

read-write: subject can both read and
write the object.

A control at tr ibute, which is like an own-
ership flag, is also defined. It allows a sub-

Computing Surveys, Vol 13, No 3, September 1981

Formal Models for Computer Security , 261

ject to pass to other subjects some or all of
the access modes it possesses for the con-
trolled object. The control a t t r ibute itself
cannot be passed to other subjects; it is
granted to the subject tha t created the ob-
ject.

Creation of objects is viewed as a two-
par t operation: (1) addition of a new inac-
tive object to the existing set of objects, and
(2) activation of an inactive object. The
tranquility principle asserts tha t no oper-
ation may change the classification of an
active object. Bell and LaPadula state and
adopt this principle, al though they recog-
nize tha t it is not required by military se-
curity structures.

For a state to be secure, two propert ies
must hold:

(1) the simple security property: no subject
has read access to any object tha t has a
classification greater than the clearance
of the subject; and

(2) the *-property (pronounced "star-prop-
erty"): no subject has append-access to
an object whose security level is not at
least the current security level of the
subject; no subject has read-wri te ac-
cess to an object whose security level is
not equal to the current security level
of the subject; and no subject has read
access to an object whose security level
is not at most the current security level
of the subject.

A set of rules governing the transit ion
from one state to another is also given.
These rules are analogous to the example
rules given by Graham and Denning for
altering an access matrix, and are required
to preserve the two security properties. The
part icular rules defined by Bell and La-
Padula provide the following functions:

(1) get (read, append, execute, or read-
write) access, to initiate access to an
object by a subject in the requested
mode;

(2) release (read, append, execute, or read-
write) access, the inverse of get access;

(3) give (read, append, execute, or read-
write) access, to allow the controller of
an object to extend the designated ac-
cess to another subject;

(4) rescind (read, append, execute, or read-
write) access, the inverse of give access;

(5) create object, to activate an inactive
object;

(6) delete object, to deactivate an active
object; and

(7) change security level, to allow a subject
to alter its current security level.

With the formal definition of each rule is
given a set of restrictions on the application
of the rule to generate a new system state.
For example, a subject can only give or
rescind access to an object if the subject
has the control a t t r ibute for tha t object,
and a subject can only get read access to an
object if the security level of the object is
at most the current security level of the
subject. In BELL74a, it is demonst ra ted tha t
each of the specified rules preserves the
security proper ty and the *-property. Since
none of the rules affects the classifications
of active objects, the rules obey the tran-
quility principle as well.

The definition of the *-property given
above is taken from BELL74a, p. 30, and
BELL75, p. 83. Bell and LaPadula also de-
velop the notion of trusted subjects. A
t rusted subject is one tha t can be relied on
not to compromise security even if some of
its current accesses violate the *-property;
the *-property need only be enforced on
requests made by untrusted subjects. The
definition of this class of subjects recognizes
tha t the *-property is more stringent than
military security requires. The version of
the *-property given above actually in-
cludes the simple security proper ty as well,
since the current securi ty level of the sub-
ject can never exceed the clearance of the
subject. Despite the detailed definition
given by Bell and LaPadula, the te rm
"*-proper ty" today is usually identified
only with the prohibit ion of "writing down"
(i.e., the restriction on read-wri te and ap-
pend modes of access), and the simple se-
curi ty proper ty (or simple securi ty condi-
tton) is still identified with the restriction
on "reading up" (1.e., the restriction on read
access).

The description of the Bell and LaPadula
model given so far considers only a "fiat"
set of objects- -objects are atomic elements,
each with a single classification and con-
taining no distinguishable subelements. In
BELL74a, the model is extended to include
hierarchies of objects, so tha t a MU LTICS -

Computing Surveys, Vol 13, No 3, September 1981

262 • Carl E. Landwehr

like tree-structured directory can be in-
cluded. The report credits the group at Case
Western Reserve as the originators of this
aspect of the model. The approach in the
extended model is to define a set of objects
in a hierarchy to be compatible with the
model if any path from the root node out-
ward encounters objects with monotoni-
cally nondecreasing classification levels.
This aspect of the model has rarely been
exploited in subsequent kernel develop-
ment efforts.

Since the Bell and LaPadula model was
documented in BELL73a-BELL74b, it has
been modified and reformulated in some
respects as it has been applied to various
design and implementation projects. The
particular set of rules developed and proved
by Bell and LaPadula is not integral to the
model and is not generally used, although
any system based on an access matrix
model will have similar ones. The names
used for modes of access are typically read
(for read-only) and write or modify (for
write-only), and these modes of access can
be granted independently. Execute access
is generally unused (although the model
itself specifies no restrictions on its use),
perhaps because few systems can effec-
tively enforce execute-only access.

Perhaps the most succinct and widely
used restatement of the Bell and LaPadula
model is given by Feiertag et al. [FE1E77].
They define the model in terms of subjects,
objects, modify operations, and read oper-
ations. Each subject and object is assigned
a security level, and the following five ax-
ioms govern the behavior of the system:

Simple security condttion. A subject can
read an object only if the security level of
the subject is at least that of the object.

*-property. A subject can modify an ob-
ject O1 in a manner dependent on an object
02 only if the security level of O1 is at least
that of 02.

Tranquihty principle. A subject cannot
change the security level of an active object.

Nonaccessibility of inactive objects. A
subject cannot read the contents of an in-
active object.

Rewriting of inactive objects. A newly
activated object is given an initial state
independent of any previous incarnation of
the object.

In addition to their restatement of the
model, the authors develop a nearly equiv-
alent model that is more amenable to au-
tomated proofs of security. It is this revised
model that has been (and is being) used in
the automated verification of a number of
systems now under development. This
somewhat more restrictive model incorpo-
rates the notion of information flow de-
scribed below.

Designs and implementations based on
the Bell and LaPadula model, or modifica-
tions of it, include the security enhance-
ments to MULTICS for the Air Force Data
Services Center [ScHR77], the MITRE
brassboard kernel [ScHI75, MILL76], the
SIGMA message system used in the Mili-
tary Message Experiment [AMEs78], the
Kernelized Secure Operating System
(KSOS) for the PDP-11 [McCA79], the Se-
cure Communications Processor (SCOMP,
also known as KSOS-6) for the Honeywell
Level 6 [BoNN80], and Kernelized VM/370
(KVM/370) [GOLD79]. The UCLA kernel
[POPE78a, POPE79, WALK80] and the Prov-
ably Secure Operating System (PSOS) de-
sign [NEuM77, FEIE79] are based on a sep-
aration of enforcement mechanisms from
security policy. These systems are based on
the use of capabilities for referencing ob-
jects: proofs about the enforcement mech-
anisms must demonstrate that the mecha-
nism cannot be subverted or circumvented.
Separate proofs would be needed to show
that a particular use of the mechanism cor-
rectly enforces a particular policy, but in
both of these systems, the Bell and La-
Padula model seems the intended policy for
military applications.

When it was first constructed, the Bell
and LaPadula model (and the model of
Walter et al., as well) was a significant
advance in defining military security con-
cepts formally in a way applicable to com-
puter systems. It has served as the basis for
several design, prototype, and implemen-
tation efforts. Partly because of these ef-
forts, some problems with it have been dis-
covered. The static representation it pro-
vides for military security is restrictive; al-
though hierarchies of objects are provided
for in BELL74a, the model does not lay out
an appropriate set of axioms governing ref-
erences to multilevel objects. The dynamics
of security, reclassification, sanitization,

Computing Surveys, Vol 13, No 3, September 1981

Formal Models for Computer Securtty • 263

and downgrading can only be handled using
the trusted process concept, and the model
gives little guidance for determining which
processes can be trusted. As originally for-
mulated, some of the rules in the model
allowed information to be transmitted im-
properly through control variables (storage
channels), but the work done by Walter et
al. recognized this problem. In their final
form, the rules of the model do not contain
storage channels, but timing channels can
exist. In sum, the principal problems with
the model are not in the things it allows but
in those it disallows: many operations that
are in fact secure will be disallowed by the
model. Systems based on the model are
then faced with the choice between obeying
the model but imposing severe constraints
on functionality and allowing the desired
functions by relying heavily on trusted pro-
cesses.

5.6 Information-Flow Models

The significance of the concept of infor-
mation flow is that it focuses on the actual
operations that transfer information be-
tween objects. Access control models (such
as the original Bell and LaPadula model)
represent instead the transfer or exercise
by subjects of access rights to objects. In-
formation-flow models can be applied to
the variables in a program directly, while
the access matrix models generally apply to
larger objects such as files and processes. In
an unpublished memorandum, Millen has
pointed out that a set of rules specified
according to the Bell and LaPadula model
could preserve both the security and *-
properties but could nevertheless contain
storage channels, and that these channels
would be exposed by an analysis of the
information flow in the rules. The channels
in Millen's example are introduced by the
return code given when a request to apply
a rule is denied. The information passed by
this code is neglected under the axioms of
the Bell and LaPadula model but is dis-
closed by an information-flow analysis. In-
formation-flow models thus appear to pro-
vide greater precision than access matrix
models.

This is not to say that flow models elim-
inate the need for access control models; an
access matrix can still be useful for speci-
fying access policies (e.g., defining controls

on user access to files). Like the Bell and
LaPadula model, the flow model can detect
both legitimate and storage channels but
not timing channels. Also like the Bell and
LaPadula model, there are programs that
would be insecure in terms of the model
but would not in fact be insecure (i.e., the
model provides constraints that are suffi-
cient, but not necessary). For an example,
see MILL78a.

Apparently, Popek [POPE73] was the first
to note explicitly the applicability of partial
orders in the context of access control. The
ADEPT-50 system [WEIS69] had earlier
implemented a lattice structure without
noting its significance. Fenton [FENT74] de-
veloped a structure in which data transfers
were controlled according to a partial order
relating the sensitivity of the data and the
protection level of its destination. Walter et
al. [WALT74] provided an early description
of the military classification structure as a
lattice, and Denning [DENN75, DENN76]
introduced the concept of information flow
as the ordering relation on the set of clas-
sifications. A certification mechanism for
verifying the secure flow of information
through a program is presented in DENN77.
Andrews and Reitman have developed a
logic for proving assertions about the flow
properties of programs [ANDR80]; their
work is presented following that of the Den-
nings. As described in a subsequent section,
the flow model has in some respects been
incorporated into the SRI version of the
Bell and LaPadula model.

At about the same time Denning's work
appeared, people at MITRE realized that
the variables within the security kernel it-
self could act as information paths: infor-
mation recorded in a kernel variable as a
result of a kernel call by process A might
be visible to a later kernel call by process
B. If B has a lower security level than A, a
violation may have occurred. This corre-
sponds to a flow of information from a
higher level to a lower level, even though
the simple security and *-properties have
both been enforced. Millen noted this prob-
lem in MILL76.

The flow model, compared with the Bell
and LaPadula model, is relatively uncom-
plicated. Instead of a series of conditions
and properties to be maintained, there is
the single requirement that information

Computing Surveys, Vol 13, No 3, September 1981

264 • Carl E. Landwehr

flow obey the lattice structure described
below. Although the military security sys-
tem had been earlier characterized as a
lattice [WALT74], Denning's presentation
makes it clear that the lattice model is of
more general significance.

An information-flow model has five com-
ponents:

(1) a set of objects, representing informa-
tion receptacles (e.g., files, program
variables, bits),

(2) a set of processes, representing the ac-
tive agents responsible for information
flow,

(3) a set of security classes, corresponding
to disjoint classes of information,

(4) an associative and commutative class-
combining operator that specifies the
class of the information generated by
any binary operation on information
from two classes, and

(5) a flow relation that, for any pair of se-
curity classes, determines whether in-
formation is allowed to flow from one to
the other.

Under a set of assumptions that is justi-
fied in DENN76 as applying to nearly any
rationally specified flow model, the set of
security classes, the flow relation, and the
class-combining operator form a lattice.
Maintaining secure information flow in the
modeled system corresponds to ensuring
that actual information flows between
objects do not violate the specified flow
relation. This problem is addressed pri-
marily in the context of programming lan-
guages.

Information flows from an object x to an
object y whenever information stored in x
is transferred directly to y or used to derive
information transferred to y. Two kinds of
information flow, explicit and implicit, are
identified. A flow from x to y is explicit if
the operations causing it are independent
of the value of x (e.g., in a statement di-
rectly assigning the value of x to y). It is
implicit if the statement specifies a flow
from some other object z to y, but execution
of the statement depends on the value of x
(e.g., in the conditional assignment

i f x t h e n y :-- z;

information about the value of x can flow

into y whether or not the assignment is
executed).

According to this model, a program is
secure if it does not specify any information
flows that violate the given flow relation.
Denning primarily treats the case of static
binding, in which objects are bound to se-
curity levels at compile time (this assump-
tion corresponds roughly to the tranquility
property in the Bell and LaPadula model).
In DENN77, rules for compile time certifi-
cation of secure information flow are pro-
vided. The case of dynamic binding, in
which the security level of some objects can
change during program execution, is dis-
cussed briefly in DENS75 and DENS76. The
work of Andrews and Reitman is based on
dynamic binding; Reitman also presents a
certification mechanism for parallel pro-
grams with static binding [REIT79].

The formulation of information-flow
models that Andrews and Reitman use is
essentially the same as Denning's; they fo-
cus on programs, which have three relevant
components: variables, which contain in-
formation; an information state, which is a
mapping from the variables to the set of
security classes; and statements, which
modify variables and thus alter the infor-
mation state. Statements correspond
roughly to subjects, since they are respon-
sible for causing information flow, and vari-
ables correspond to objects. Since the se-
curity classes are assumed to be finite and
partially ordered, and to have a least upper
bound operator, they again form a lattice.
Variables are dynamically bound to secu-
rity classes; transfer of information into a
variable causes the variable to assume a
classification in accordance with the trans-
fer.

In addition to the explicit and implicit
flows identified in the Dennings' work (re-
ferred to in ANDR80 as direct and indirect
flows), Andrews and Reitman distinguish
two types of implicit (indirect) flows: local
and global. A local flow is an implicit flow
within a statement, such as the flow from
a Boolean condition to the statements
within an alternation or iteration state-
ment. Global flows are implicit flows be-
tween statements. Sources of global flows
include process synchronization statements
and iterations (in the case that termination
of the iteration is not guaranteed, execution

Computing Surveys, Vol 13, No 3, September 1981

Formal Models for Computer Security • 265

of the following statements conveys the
information that the loop terminated). To
characterize these flows, two auxiliary vari-
ables, named "local" and "global," are in-
troduced to record the current classification
of local and global flows.

On the basis of this model, the authors
develop axioms for the information-flow se-
mantics of assignment, alternation, itera-
tion, composition, and procedure invoca-
tion. These axioms correspond to the ax-
ioms developed by Hoare [HOAR69] for the
semantics of a programming language, but
they deal only with the information flows
(both explicit and implicit) that can be gen-
erated by the various types of statements
in a language. The axioms are based on the
lattice model for information flow but do
not otherwise incorporate a specific policy.
Following the development of these axioms
for sequential programs, axioms for concur-
rent execution and for synchronization via
the semaphore operations "wait" and "sig-
nal" are developed. These allow proofs of
information-flow properties to be con-
structed for a class of parallel programs.

Andrews and Reitman distinguish an ac-
cess policy, which specifies the rights that
subjects have to objects, from an informa-
tion-flow policy, which specifies the classes
of information that can be contained in
objects and the relations between object
classes. To a point, these policies are inter-
changeable, or at least dependent: restric-
tions on a subject's access to an object will
presumably restrict the flow of information
(and hence the information that can be
contained in a particular object). Con-
versely, restrictions on flow will have an
effect on what access rights a given subject
can exercise for a given object. Neverthe-
less, this distinction clarifies the perspec-
tives from which an access matrix model
and an information-flow model view a com-
puter system.

Flow proofs demonstrate that a given set
of flow assertions (e.g., that the security
class of x is dominated by the security class
of y) holds at a particular place in a pro-
gram. A flow policy, if formulated as a set
of flow assertions, can then be proved to
hold (or not to hold) at particular points in
the execution of a program. Andrews and
Reitman distinguish two types of policies:
final valuepolicies, which only require that

the assertions hold on termination of the
program, and high-water-mark policies,
which must be true for each information
state in a program.

In REIT79, Reitman presents a compile-
time certification mechanism for parallel
programs with static binding of variables to
security classes. This mechanism is essen-
tially an extension of the one developed by
the Dennings in DENN77 to include the
structures for parallel programming for
which flow axioms are developed in
ANDR80. Because it requires static binding,
this mechanism is less general than the flow
proofs of ANDR80, but this restriction
makes possible compile-time certification
that a program obeys a particular policy.
The policies that may be used, of course,
must also abide by the static binding re-
striction.

5.7 Extensions and Applications of the Bell
and LaPadula Model

Since its original exposition, the Bell and
LaPadula model has been extended, ap-
plied, and reformulated by several different
authors. Modifications and applications of
three kinds are described in this section: (1)
addition of the concept of integrity to the
model, (2) the application and extension to
model database management systems, and
(3) the reformulation of the model for use
with automated verification tools.

5 7.1 Integnty

The Bell and LaPadula model is concerned
with preventing the improper disclosure of
information. Consequently, subjects are
prevented from reading information for
which they are not cleared and from writing
(transmitting) information to subjects at
lower clearance levels. Biba [BIBA77] no-
ticed a class of threats, based on the im-
proper modification of information, that
this model neglects. These threats arise
because there is often information that
must be visible to users at all security levels
but should only be modified in controlled
ways by authorized agents. The controls on
modification in the Bell and LaPadula
model do not cover this case because they
are based only on the sensitivity to the
disclosure of that information.

Computing Surveys, Vol. 13, No 3, September 1981

266 • Carl E. Landwehr

As a remedy, Biba introduces the concept
of integrity levels and integrity policy. The
integrity level of information is based on
the damage to national security its un-
authorized modification could cause. Integ-
rity compartments are defined analogously
to security compartments, with different
compartments reflecting different func-
tional areas.

The integrity levels and compartments
are ordered, as are sensitivity levels and
compartments, to form an integrity lattice.
Biba uses the same names for integrity
levels as are used for security levels, with
top secret integrity corresponding to infor-
mation most sensitive to unauthorized
modification (or in his words, sabotage).
This choice is unfortunate, since informa-
tion with "top secret" integrity may not be
secret at all. Integrity levels for subjects
correspond to clearances.

Biba also provides some example integ-
rity policies that correspond to security pol-
icies. A "low-water-mark" integrity policy
sets the integrity level of a subject to the
lowest level of any object observed by that
subject, and a subject can only modify ob-
jects dominated by the subject's current
integrity level. Alternatively, the integrity
level of any modified object can be reduced
to the minimum of its current integrity level
and the current integrity level of the subject
performing the modification. A policy of
"strict integrity" is the dual of the Bell and
LaPadula security policy {interchanging
"read" and "write" and substituting "integ-
rity" for "security" in the original rules): a
subject can only read objects with integrity
at least as great as its own and can only
write objects with integrity less than or
equal to its own. Bonyun [BONY78] asserts
that a policy of strict integrity will be too
constraining to be useful and proposes an
alternative that is slightly weaker than
Biba's; Bonyun refers to it as a "semi-dual"
of security and integrates it with an
approach to handling the aggregation
problem.

There has been little experience to date
with integrity policies. In manual systems,
the integrity problem is substantially re-
duced, since it is difficult to modify infor-
mation accidentally or maliciously without
detection. Both the KSOS and SCOMP

kernels are to provide integrity controls
according to the strict integrity model, but
the integrity levels to be supported have
only been specified as system administrator
(highest), operator, and user (lowest). It is
unclear exactly how integrity levels will be
assigned to various system objects. Al-
though the integrity problem has appar-
ently only been examined in a military con-
text to date, it seems clear that it can arise
in civilian applications as well: consider the
effect of an unauthorized modification of
a mailing address in an electronic mail
system.

5 7 2 Database Management Systems

An application that has been of particular
interest since the beginning of work on se-
cure computer systems is the implementa-
tion of a secure database management sys-
tem (DBMS). As part of the work spon-
sored by the Air Force to develop a secure
version of MULTICS, Hinke and Schaefer
[HINK75] provided an interpretation of the
Bell and LaPadula model for a relational
database implemented on top of a MUL-
TICS file system. The considerations as to
how classifications should be applied to the
elements of a relational database and how
the database can be mapped onto the ob-
jects protected by a secure MULTICS are
lengthy, but the underlying Bell and La-
Padula model is used essentially un-
changed. As this work preceded Biba's, in-
tegrity is not a part of the model employed.
The authors do consider the use of access
control lists {referred to as "need-to-know"
lists) to regulate discretionary access to
files, but they note that strict observance of
the *-property would require that the ac-
cess list for a new file would be the mutual
intersection of all the previous access lists
of objects read by the process performing
the write. They recommend against such a
policy on the grounds that it is likely to
result in the user's writing data that only
he can read (i.e., the intersection of all of
the access control lists referenced will tend
to be only the ID associated with the proc-
ess doing the reading).

In applying classifications to the struc-
ture of a relational DBMS implemented on
a MULTICS-based security kernel, Hinke
and Schaefer recommend that classifica-

Computing Surveys, Vol. 13, No 3, September 1981

Formal Models for Computer Security • 267

tions be attached to the fields of a relation,
as opposed to classifying specific entries of
fields of relations or classifying entire rela-
tions at a single level. For example, if a
relation were defined between the fields
"supplier" and "part," all entries of the
supplier field would be classified at a single
level and all entries of the part field would
be classified at a single (perhaps different)
level. Each field would be stored in a MUL-
TICS segment with a classification corre-
sponding to that field. Classifications of
segments and accesses to segments would
be controlled by the MULTICS security
kernel, so that the security of the database
management system would depend only on
the security kernel. The authors also de-
velop a number of rules concerning the
ordering of classifications of various fields
of relations, depending on whether a field
is a primary key for the relation. These
rules are generally derived from the prop-
erties of the Bell and LaPadula model.

Later work by Grohn [GRoH76] takes a
more formal approach to modeling a secure
database management system. Starting
with the Bell and LaPadula model, Grohn
extends it to include integrity levels and
compartments. Each object in the model
has both a security level and an integrity
level; together these compose its protection
level. Integrity properties are defined as the
formal duals of the security properties. The
tranquility property applies to both secu-
rity and integrity, and there is a discretion-
ary integrity property in addition to discre-
tionary security.

Grohn also alters the directory structure
of the Bell and LaPadula model. In his
model the directory structure partitions the
objects by protection level: each directory
contains the identifiers of all objects of a
given protection level. The directory itself
is assigned that same protection level. A set
of lattice directory functions is also defined
which, given the level of a directory, gen-
erates a list of all existing directories that
dominate that level and a list of all direc-
tories dominated by that level. These func-
tions allow a subject to enumerate all the
objects accessible to it (directories are ex-
empt from discretionary access controls).
In the Bell and LaPadula model, the direc-
tory structure is hierarchical, with the re-
quirement that any node must have a clas-

sification that is dominated by its succes-
sors (i.e., the root of each tree must be its
least classified node). There is no guarantee
that a subject can enumerate all the objects
classified at or below its clearance.

The approach Grohn takes to imple-
menting a relational DBMS on his model
differs from that of Hinke and Schaefer in
the unit to which a classification is applied.
Instead of classifying each field (domain) of
a relation, he favors classifying only the
relation as a whole. He argues that, for
convenience of observation and modifica-
tion, all fields would have to be at the same
level of classification anyway, and that this
requirement is equivalent to placing a clas-
sification on the relation as a whole instead
of on each field.

5 7 3 Reformulation for Use w#h Automated
Program Verihers

As part of efforts to specify a Provably
Secure Operating System (PSOS) and to
verify the Kernelized Secure Operating
System (KSOS), Feiertag and others from
SRI International reformulated the model
and altered it slightly to simplify its use in
proving theorems about systems specified
with formal languages. The reformulation
allows the proof of security to be factored
into smaller pieces by assigning each func-
tion reference (a function reference is a
function call with a particular set of argu-
ments} and state variable a specific security
level, so that the security level of each data
item referenced in the specification of a
function can be compared to the level of
the function reference. Proofs in KSOS are
intended to cover only the security kernel,
while in PSOS the entire system specifica-
tion is to be verified. Although the revised
models described in NEUM77, FEIE77, and
KSOS78 are presented as reformulations of
the Bell and LaPadula model, they embody
the concepts of information-flow models.
Because it is the most recent version of the
model and the one that has been carried
farthest in implementation of a production
operating system, the KSOS version of the
model will be described here.

The KSOS model informally defines a
system as multilevel secure if, for any two
processes HS (operating at a high security

Computing Surveys, Vol 13, No 3, September 1981

268 • Carl E. Landwehr

level) and LS (operating at a lower 5 security
level), HS can do nothing to affect in any
way the operation of LS. In this case, LS
can know nothing of HS (it may not even
know that HS exists) since it could only
gain such knowledge if HS had somehow
influenced its behavior. Since information
cannot be transmitted from a process at a
higher security level to one at a lower level,
information can only flow upward in the
security lattice or remain at the same level.
The similarity of this general model to the
information-flow models is apparent. Integ-
rity is defined informally in a parallel way:
a process LI (operating at a low intergrity
level) can do nothing to affect the operation
of a process HI (operating at an integrity
level greater than or incomparable with
that of LI).

This informal model is developed for-
mally in two steps. First, a general model is
defined in which the system is character-
ized by its function references and a relation
called "information transmission." One
function reference transmits information to
another if there is any possibility that the
information returned by the second func-
tion reference is affected by the first func-
tion reference. Security and integrity levels
are associated with each function reference;
in practice, these levels would be the cur-
rent levels of the process issuing the func-
tion reference.

This model is brought closer to actual
system specifications by including state
variables as well as function references.
Each state variable has an assigned security
and integrity level. Function references
may depend on some state variables and
may change other state variables. (These
functional dependencies replace the notions
of reading and writing state variables in the
Bell and LaPadula model.) The constraints
on functional dependencies are the follow-
ing:

(a) If function reference f depends on state
variable v, then the security level of v
is less than or equal to the security level

s Actually, lower or incomparable: since security levels
are only partially ordered, it m possible that for levels
L1 and L2, neither L1 ___ L2 nor L2 <_ L1. An example
of two such levels would be "secret, NUCLEAR" and
"secret, NATO"

of f and the integrity level of v is greater
than or equal to the integrity level of f.

(b) If function reference f may cause the
value of state variable v2 to change in
a way dependent on state variable vl,
then the security level of v~ is less than
or equal to that of v2 and the integrity
level of v~ is greater than or equal to
that of v2.

(c) If function reference f may affect the
value of state variable v, then the se-
curity level of v is greater than or equal
to that of f and the integrity level of f i s
greater than or equal to that of v.

Properties (a) and (c) correspond approxi-
mately to the simple security property and
the *-property, respectively, of the Bell and
LaPadula model. Property (b) addresses
functions that may both read and write
state variables; in the Bell and LaPadula
model such functions could only be ob-
tained by composition of operations that
individually either read or write state vari-
ables.

Finally, property (b) is split and modified
to handle the complexities introduced by
systems that have "trusted" functions and
that allow side effects at higher levels of
functions invoked from lower levels. 6 By
enforcing only the desired half of the split
version, a system can allow information to
flow downward in restricted cases. The ital-
icized parts of (b") denote differences from
(b'):

(b') If function reference f may cause the
value of state variable v2 to change in
a way dependent on state variable vl,
then

(i) either the security level of vl is
less than or equal to that of v2 or
the security level of f is greater
than or equal to that of vl, and

(ii) either the integrity level of vl is
greater than or equal to that of
v2 or the integrity level of f is less
than or equal to that of v~.

Discussions with R. Femrtag, one of the authors of
the model, disclosed that the published version of
property (b') [KSOS78] contains two erroneous equal
signs, and property (b") is lacking.

Computing Surveys, Vol 13, No, 3, September 1981

Formal Models for Computer Security • 269

(b") If function reference f may cause the
value of state variable v2 to change in
a way dependent on state variable vl,
then

(i) either the security level of vl is
less than or equal to that of v2 or
the security level of v2 is greater
than or equal to that off, and

(ii) either the integrity level of v~
is greater than or equal to that
of y2 or the integrity level of f
is greater than or equal to that
of V2.

Typically, a trusted function may be al-
lowed to violate the *-property (for secu-
rity) or the simple integrity property, but
will be required to enforce the other prop-
erties of the model. In the final model prop-
erties P2a and P2b' compose the simple
security property; properties P2b" and P2c
compose the *-property. If a system func-
tion is to be allowed to violate the *-prop-
erty, only P2a and P2b' must be enforced.
Functions allowed to violate simple integ-
rity must still obey properties P2b" and
P2c.

This adaptation of the Bell and LaPadula
model gains much of its importance from
its integration with the automated tools for
program-specification (using the SPECIAL
language [RoUB77]) and theorem proving
(using the Boyer-Moore theorem power
[BoYE79]) also developed at SRI. These
tools, including the Multilevel Security For-
mula Generator, which incorporates this
model, are being used to verify the security
properties of system specifications in a
number of current projects (e.g., work re-
ported by McCauley on KSOS and by Bon-
neau on SCOMP [McCA79, BONN80]).

5.8 Programs as Channels for Information
Transmission

In different ways, each of the final three
models views a program as a medium for
information transmission. The key question
for them becomes exactly what information
is conveyed by the execution of a program
and what deductions about protected infor-
mation are possible. The appeal of these
approaches lies in their comprehensiveness.
Their drawback is that in their present
state none of them is ready to be applied to
actual development of a system.

The work by Jones and Lipton on filters
views a protection mechanism as a filter on
the information passed from a program's
inputs to its outputs. Cohen first takes an
information-theoretic view: a program
transmits information to the extent that
variety in its initial state induces variety in
its final state. Later, he develops a similar
structure based on the deductions that can
be made about the initial state of a set of
variables given the final state of a variable.
Millen and Furtek also attempt to formalize
the notion of deduction in their work on
constraints. They view the execution of a
program as a sequence of states determined
by the input to the program and the tran-
sitions allowed by the program's structure.
An observer, knowing the allowable states
of the system and able to view portions of
the actual sequence of states that occurs,
may be able to deduce things about the
remaining (hidden) portions of the state
sequence.

5 8 1 Fi l ters

Jones and Lipton have formulated a model
to capture definitions of both a security
policy and a protection mechanism in-
tended to enforce that policy [JONE75,
JOiE78b]. A policy, given in nonprocedural
form, defines who may use what informa-
tion in the system. The protection mecha-
nism tells how the information is to be
protected and is stated procedurally. The
soundness of a mechanism with respect to
a policy is determined by how well it en-
forces the policy.

A program is characterized as a function
from the Cartesian product of the domains
of all program inputs to the domain of the
output. The observabdity postulate asserts
that all available information about the
program inputs (including, for example, ex-
ecution time) must be encoded in the out-
put value. A protection mechanism is de-
fined as a function relative to a program: it
maps the input domain of the program to
an output domain expanded to include a
set of violation notices. Given an input, the
protection mechanism must either produce
the same output as does the program or it
must produce a violation notice (e.g., it may
refuse to provide a requested piece of infor-

Computing Surveys, Vol 13, No 3, September 1981

270 • Carl E. Landwehr

mation). A security policy is also defined
with respect to a program: a security policy
is a function that maps from the input
domain of the program to some subset of
that domain. The policy thus acts as a filter
on the program inputs. An observer of the
program's output should only be able to get
information about the subset of the inputs
that passes through the security policy fil-
ter. In the cited references this subset is
always formed by simply eliminating some
of the input variables. A finer control of
policy might be accomplished by restricting
a variable to a particular range of values
instead of eliminating it altogether. A pro-
tection mechanism is sound if the outputs
it produces are the same as if it had received
the input as filtered by the security policy
instead of the actual input.

A partial ordering of protection mecha-
nisms for a given program and security
policy is developed. A sound mechanism
M1 is more complete than another sound
mechanism M2 if, for all inputs on which
M2 returns the same value as the original
program, M1 also returns that value, and,
for at least one input for which M2 returns
a violation notice, M1 does not return one.
Based on this definition, it is established
that for a given program and policy, there
is a "maximal" protection mechanism.

To illustrate the use of this framework,
the authors develop a "surveillance protec-
tion mechanism" to enforce a restricted
class of security policies on programs con-
structed in a simple flowchart language. For
each variable (input, output, temporary,
and location counter) in the original pro-
gram, a corresponding surveillance variable
is added. The value of the surveillance vari-
able is a set of indices that define which
program variables have influenced the
value of the variable under surveillance.
Each component of the original flowchart
program is replaced by a modified one that
both performs the original function and
updates the appropriate surveillance vari-
ables. At the termination of the program,
the values of the surveillance variables can
be checked against the requirements of the
security policy to determine whether a par-
ticular result can be reported to a user or
not.

The surveillance protection mechanism
is proved to be sound if running times are

not observable, and a modified version of it
is proved sound even if running times are
visible. Finally, it is shown that there is no
effective procedure for finding a maximal
protection mechanism for an arbitrary pro-
gram and security policy.

The surveillance protection mechanism
seems to have much in common with the
flow-analysis approach Denning applied
to programming language constructs
[DENN75]. The model as a whole provides
clean formal definitions of security policy,
protection mechanism, soundness, and
completeness, but has found little applica-
tion in practice. To model a system con-
strained by military security policy, a pro-
gram-independent formulation of that pol-
icy within the model framework would be
required.

5.8.2 Strong Dependency

In an effort to provide a formal basis for
reasoning about information transmission
in programs, Cohen has developed an
approach he calls strong dependency
[CoHE77, COHE78]. This approach is based
on the notion, fundamental to information
theory, that information is the transmission
of variety from a sender to a receiver. For
example, if the sender can be in one of three
states, and it sends a different message to
the receiver corresponding to each state, all
of the variety in the sender is transmitted
to the receiver. If only two different mes-
sages are possible, some of the variety in
the sender is not available to the receiver.

Consider a sequential program P with a
set of variables A and a particular variable
b. If two executions of P, starting in initial
states that differ only in their values for
some variable(s) in A, can lead to termina-
tions with two different values for b, then
b is said to be strongly dependent on A over
the execution of P. Note that this definition
only requires that some two different values
for variables in A lead to different values
for b, not all.

Two variables can be strongly dependent
even if there are states in which no variety
is conveyed from one to the other. For
example, the program statement

i f m = 0 t h e n b : = a + l ;

never transfers information from a to b if

Computing Surveys, Vol 13, No 3, September 1981

Formal Models for Computer Security • 271

m is always nonzero when the statement is
executed. In this case, the assertion [m non-
zero] eliminates the variety that would
have been conveyed by the program.

If a set of constraints covers all possible
cases of the variables in a set A and if the
truth value of each constraint is unaffected
by the values of variables outside that set,
the set is said to be a cover for A and to be
A-strict. A variable b is defined to be selec-
tively independent of A over the execution
of program P with respect to a constraint
set if that constraint set is a cover and is A-
strict, and if for each individual constraint
b is not strongly dependent on A. Cohen
also develops the idea of relative autonomy
of a constraint with respect to a set A of
variables. Roughly, a constraint is autono-
mous relative to A if it does not relate
variables within A to variables outside of
A.

On the basis of these definitions, Cohen
[COHE77] formalizes the same sort of infor-
mation-flow properties for lattice structures
as did Denning [DENN 75]. He also provides
a statement of the confinement problem in
this framework. In more recently published
work [COHE 78], Cohen discusses difficulties
with strong dependency when nonauton-
omous constraints are used. Taking a de-
ductive instead of information-theoretic ap-
proach, he develops a formally equivalent
model related to the work of Jones and
Lipton [JoNE75, JONE78b]. The deductive
view asserts that information has been
transferred from set A to variable b by the
execution of a program if the final value of
b can be used to deduce information about
the initial values of variables in A.

Working with this reformulation and us-
ing a formalism derived from projective
logic, he develops definitive dependency
and contingent dependency. Definitive de-
pendency arises from the idea that one
constraint may provide more information
about the state of A than others; the
stronger constraint is the more definitive.
In some cases a constraint may provide
definitive information about A only if some
additional information, not concerning A, is
given. Such a constraint is A-contingent,
and contingent dependency is defined ac-
cordingly. Cohen demonstrates that contin-
gent dependency is equivalent to strong
dependency if relatively autonomous con-

straints (or no constraints) are given. In
addition, contingent dependency can model
the transmission of information with non-
autonomous constraints.

Although Cohen has developed proof
rules based on strong dependency for four
basic programming language constructs
(assignment, sequence, alternation, and it-
eration), his work has yet to be applied in
current efforts to model and to build secure
systems.

5.8 3 Constraints

Given the definition of a finite state ma-
chine, the set of possible sequences of states
through which the machine can cycle can
be determined. In addition, it is possible to
define sequences of states that cannot oc-
cur. For example, in a typical pushdown
stack, the sequence "push the value 1 onto
the stack" followed immediately by "pop
the stack, returning value 0" would be ex-
cluded. Thus an observer, given the ma-
chine definition and an observation of the
event {pop, 0) at transition n, could deduce
that {push, 1) could not have occurred at
transition n - 1. Furtek and Millen have
developed a theory of constraints that
models the deductions a user can make
about a system in this way [FuRT78a,
FURT78b, FURT79, FURT80, MILL78b,
MILL78C].

A constraint specifies a sequence of states
that cannot occur; the development of con-
straints is analogous to the development of
implicants in switching theory. A variable
can assume any of a range of values. If v is
a possible value for a variable a, then ao is
a condition. The condition is satisfied by a
system state q if a -- v in q. A term is a
conjunction of conditions in which each
variable in the system appears at most
once. A term is satisfied by a system state
if all of its conditions are satisfied. To intro-
duce restrictions on a sequence of system
states, a Cartesian product {called a sym-
bolic product) of conditions is formed; the
symbolic product is satisfied by a state se-
quence only if each state in the sequence
satisfies the corresponding term in the
product. If there is no sequence of states
(called a simulation) allowed by the ma-
chine's definition that satisfies a given sym-

Computing Surveys, Vol. 13, No 3, September 1981

272 • Carl E. Landwehr

bolic product, that product is called a con-
straint. A constraint that is a symbolic
product of n terms is called an n-place
constraint. A constraint isprime if and only
if deleting any of its conditions results in a
symbolic product that is not a constraint. If
the values of all but one of the variables
occurring in a prime constraint are known
to (or can be controlled by) an observer,
then he can deduce something about the
remaining one. (Specifically, he can exclude
at least one possible value for that variable
at one point in the simulation.) A cover is
a set of two-place constraints such that
each disallowed state transition satisfies
some constraint in the cover.

Security can be introduced into this
model by providing a mapping for each
variable to one of the levels in the usual
security lattice. The variables of the system
may also be partitioned into those that are
internal to the system (not directly observ-
able) and those that are external input or
output variables. A system may then be
defined to be secure against unauthorized
disclosures if no user at a level s can deduce
anything about the value of an individual
input at a higher or incomparable level by
observing external variables at level s or
below and/or control of inputs at any level.
This definition is equivalent to requiring
that, for any prime constraint in which only
input and output variables occur, the least
upper bound of the levels of the inputs is
less than or equal to the least upper bound
of the levels of the outputs.

In practice, the prime constraints for
even a simple system can be arbitrarily
long, and there can be arbitrarily many
prime constraints; however, the set of all
prime constraints for a given system forms
a regular language. Furtek [FURT79] has
written a program that accepts a set of two-
place constraints and generates a finite-
state acceptor for the set of all prime con-
straints. Millen [MILL78b] develops a suf-
ficient condition for security in systems that
can be characterized by s~mple constraints
of the form

p × av,

where p is an arbitrary term and av repre-
sents any single condition. This condition
is related to the *-property of Bell and
LaPadula and is called the monotonicity

condition. Given an assignment of external
variables to security levels, an extension of
that assignment to all variables is monotone
with respect to a simple cover (a cover
consisting of simple constraints) if, for all
variables a and constraints p × bv in the
cover, if a occurs in p then the security
level assigned to a is less than or equal to
the level assigned to b. Systems for which
there is a monotone extension of the exter-
nal level assignment are shown to be secure
in the sense defined above [MILL78C].

The appeal of this approach lies in its
ability to define a necessary and sufficient
condition for a system to be secure (this
definition is the first one given; the mono-
tonicity condition is sufficient but not nec-
essary). As in Cohen's approach, the au-
thors carefully define what a deduction is
and then construct a model in which de-
ductions can be controlled. Unfortunately,
the specification of a system in terms of its
constraints can be a difficult problem even
with automated aids for generating prime
constraints from two-place constraints, and
so the practicality of the approach remains
to be demonstrated.

6. DISCUSSION

Table 1 compares the models discussed
above with respect to motivation, ap-
proach, view of security, and use. A useful
comparison of models should examine both
the definition of security and the feasibility
of implementing a computer system that
performs the application required of it and
can be verified to simulate the model. Un-
fortunately, such a comparison is difficult
because few implementations based on
these models have reached a stage where
their performance can be reliably estimated
or where verification of their security prop-
erties can be attempted. Nevertheless,
some of these models are better candidates
as bases for future secure systems than
others.

Each model defines its own world and its
own concept of security in that world, and
a computer system that truly simulates any
of the models will be secure in the sense
defined by that model. To say that certain
channels are not "detected" by a model is
really to say that certain structures and
information flows found in implementa-

Computmg Surveys, Vol. 13, No 3, September 1981

Formal Models for Computer Security

Table 1. Comparison of Proporhes of Models

• 273

Proper t ies

Models"

A.M U C L A T-G H W M B + L 1 B + L 2 Flow Filt S D . Cons

Motwatmn
Developed pr imari ly to rep- X X b X b

resent existing sys tem(s)
Developed to guide construc- X

t lon of fu ture sy s t ems

V~ew of Security
Models access to objects X X X X

wi thout regard to con ten t s
Models flow of informat ion

among objects
Models inferences t ha t can

be made about protec ted
da ta

Approach
Model focuses on sy s t em X X X X

s t ruc tures (files, processes)
Model focuses on language

s t ruc tures (variables, s tate°
ments)

Model focuses on operat ions X X
on capabilit ies

Model separa tes protect ion X X X
m e c h a m s m and securi ty
pohcy

Sys t ems based on or repre- X X X
sen ted by th is model have
been implemen ted

X X X X X X

X

X X

X X X

X X X

X X X

X

X

a A.M. = access matrix; U C L A = U C L A D a t a Secure Unix, T -G = take-grant ; H W M = h igh-water mark , B +
L1 = Bell and LaPadu la (original); B + L2 = Bell and LaPadu la (rewsed); Flow - reformat ion flow, Filt =
filters, S D. = s t rong dependency, Cons = constraints .

b While this model describes a single existing sys tem, it could be used to guide the cons t ruc t ion of future
sys tems.

tions are difficult to map into the structures
defined by that model. A problem common
to all of the models is that they define
security as absolute: an operation is either
secure or not secure. This approach does
not help the designer or implementer who
must make trade-offs between security and
performance.

In assessing the protection afforded by
safes, for example, ratings are given on the
basis of the time it would take to break into
the safe with tools reasonably available to
the attacker. Cryptographic codes are rated
on the basis of their work factors--the time
it would take to "break" the code given the
tools of the cryptographer. Similar mea-
sures suitable for assessing the time it
would take to defeat a particular safeguard
or the rate of information flow over a par-
ticular timing channel in computer systems
have yet to be formalized.

With respect to their definitions of secu-
rity, the models can be divided roughly into
three groups: those that are concerned only
with controlling direct access to particular
objects (access matrix model, UCLA DSU
model, take-grant model); those that are
concerned with information flows among
objects assigned to security classes (infor-
mation-flow model, revised Bell and La-
Padula model); and those that are con-
cerned with an observer's ability to deduce
any information at all about particular vari-
ables (filters, strong dependency, con-
straints). (The high-water-mark model falls
between the first and second groups, since
it is concerned with the security levels of
the objects a process touches over time, but
it only controls direct accesses to objects.)
The appropriateness of a particular model
naturally depends on the application for
which it is to be used. For the purposes of

Computing Surveys, Vol 13, No 3, September 1981

274 • Carl E. Landwehr

multilevel secure military systems, those in
the first category require the addition of
military security policy and the assessment
of indirect information flows (e.g., timing
and storage channels) in the implementa-
tion. Those in the second group are proba-
bly the closest in structure to the require-
ments for military applications, but appli-
cations often require more flexibility than
these models permit. The models in the
third category are the least tested and
would probably be the most difficult to use.
Although their mathematical formulations
are appealing, the restriction that users be
unable to deduce anything at all about re-
stricted information would be likely to
lead to impractical restrictions on system
behavior.

Formal verification of properties of sys-
tem designs is still an active research topic.
Security properties of the UCLA DSU
model were proved to hold for substantial
portions of that system, but only the Bell
and LaPadula model has been applied in
more than one formally specified system.
This anomaly is explained by the fact that
the DoD has specified that the latter model
be used in several of its secure system de-
velopments. The properties specified by the
high-water-mark, access matrix, and take-
grant models could probably be stated in a
form suitable for automated verification
techniques should the demand arise. The
properties required by the constraint,
strong dependency, and filter models could
be expressed similarly, but actually devel-
oping a system specification in the terms
required by those models appears an insur-
mountable task at this time.

Most of the secure system developments
using the (revised) Bell and LaPadula
model have been based on the concept of a
security kernel, and there have been prob-
lems in extending its use beyond the oper-
ating system to application systems. The
question of whether the "three layer" ap-
proach-appl icat ion programs running on
an operating system emulator and the em-
ulator running on a security kernel--can
produce a system with acceptable perform-
ance is still open. As of this writing, the
only kernel-based systems that appear to
have adequate performance are based on
an application program running directly on

top of a kernal specially tailored for that
application.

Initial performance measurements for
KSOS-11 [McCA79] indicate that it pro-
vides about one-tenth the computing power
of similar hardware operating under un-
modified UNIX. A UNIX interface is also
planned for the SCOMP [BONN80], but the
hardware architecture of the Level-6 and
the Security Protection Module developed
for it are expected to yield better perform-
ance than that observed in KSOS-11. Per-
formance of KVM/370 [GOLD79] is esti-
mated to be about half that of VM/370 on
comparable hardware. None of these re-
sults has been published as of this writing,
and all systems may improve with tuning.
Detailed questions of implementation and
performance are beyond the scope of this
survey, but it is clear that security is not to
be had without a price.

What then lies ahead? In the immediate
future, efforts to develop models for trusted
processes operating within the framework
of the Bell and LaPadula model will con-
tinue [AMES80, WITH79]. If the current de-
velopments of security-kernel-based sys-
tems are successful and kernels become
widely used in military systems, it is likely
that civilian applications for security ker-
nels will be identified as well. Though there
will be exceptions, the lattice model will
probably fit many of the requirements for
security and privacy in the private sector.

An alternative to adding special models
for trusted processes on top of the Bell and
LaPadula model for the operating system
is to develop integrated models tailored to
particular applications [LAND80]. A secu-
rity model designed for a particular appli-
cation could be used as a basis for the
development of an application-specific se-
curity kernel. A key problem in this ap-
proach is to ensure that the model incor-
porates the desired notion of security while
permitting the operations required in the
application.

Further off, if capability-based systems
are successfully developed, models more
appropriate to their structures may be used.
The take and grant model is a possible
candidate in this area, though it would re-
quire tailoring for specific applications. The
Provably Secure Operating System (PSOS)

Computing Surveys, Vol 13, No 3, September 1981

Formal Models for Computer Security • 275

[FEIE79], if built, could provide an appro-
priate vehicle for experimentation. The
goal of PSOS is to apply verification tech-
niques to the entire operating system spec-
ification rather than just to a security ker-
nel. There are pressures in the private sec-
tor as well to produce systems that enforce
privacy. A large time-sharing vendor has
recently undertaken the development of a
capability-based system for the IBM370 se-
ries architecture, largely in order to provide
better guarantees of privacy between its
customers [GNOS80].

7. CONCLUSION

model or else to create a new model based
on the particular requirements of the ap-
plication. In the military environment the
former approach is taken by systems being
constructed on the basis of the Bell and
LaPadula model that utilize trusted
processes to circumvent the rules of the
model as particular applications require,
but only relatively straightforward appli-
cations have been attempted. In nonmili-
tary systems, the sometimes conflicting de-
mands of the laws governing access to med-
ical and financial records challenge the
designer of future models for computer
security.

Formal models for computer security are
needed in order to organize the complexity
inherent in both "computer" and "secu-
rity." Without a precise definition of what
security means and how a computer can
behave, it is meaningless to ask whether a
particular computer system is secure.

If complete isolation between certain
users and certain sets of data is required,
the modeling problem appears tractable.
Most of the models surveyed above could
adequately represent a system that pro-
vided such segregation. To be sure, difficul-
ties remain--for example, in modeling the
finiteness of system resources and programs
that convey information through their
usage of such resources over time. A more
serious difficulty is that in most applica-
tions, total segregation is not acceptable.

Controlling the sharing of information in
a computer is in fact a critical problem in
operating system design. It should not be
surprising that it is as slippery a problem
when treated from the standpoint of com-
puter security as it is in any other context.

Recognizing these difficulties, the de-
signer of an application that has security
requirements is well advised to state in
advance the specific security properties (or,
more generally, constraints on information
transfer) desired of the system. If he is
fortunate, these properties and the struc-
ture of the system may correspond directly
to one of the models surveyed above. More
likely, they will differ in some respects from
all of the models. He must then choose
whether to apply an existing model and to
make explicit the cases that violate the

ACKNOWLEDGMENTS

First, thanks are due to the authors whose work is
surveyed above. Many of them consented to revmw a
draft of this paper and provided comments tha t were
helpful in revising and reorganizing It. Particularly
helpful were the comments I received from J. Millen,
G. Andrews, R Feiertag, D Bonyun, R. Schell, L.
Snyder, F Furtek, P Denning, and D. Denning K.
Shotting of the Department of Defense and E. Britton
of the Defense Communications Agency also provided
helpful reviews of the Initial draft, as did my colleagues
C. Heitmeyer and D Parnas at the Naval Research
Laboratory.

AMES78

AMES80

ANDE 72

ANDR80

BELL73a

REFERENCES

AMES, S R., AND OESTREICHER, D.
R "Design of a message processing sys-
tem for a multilevel secure environ-
ment," m Proc AFIPS Nat Computer
Conf., vol. 47, AFIPS Press, Arlington,
Va, 1978, pp. 765-771.
AMES, S R , AND KEETON-WILLIAMS, J.
G "Demonstrating security for trusted
apphcatlons on a security kernel,"
MITRE Corp, Bedford, Mass., April
1980
ANDERSON, J P. "Computer security
techno[ogy planning study," ESD-TR-
73-51, vol 1, ESD/AFSC, Hanscom
AFB, Bedford, Mass., Oct. 1972 (NTIS
AD-758 206)
ANDREWS, G R., AND REITMAN, R.
P. "An axiomatic approach to infor-
mahon flow in programs," ACM Trans
Program Lang Syst 2, 1 (Jan. 1980),
56-76.
BELL, D E , AND LAPADULA, L J.
"Secure computer systems" Mathemati-
cal foundations," ESD-TR-73-278, vol. 1,
ESD/AFSC, Hanscom AFB, Bedford,

Computing Surveys, Vol 13, No 3, September 1981

2 7 6 • Carl E. Landwehr

BELL73b

BELL74a

BELL74b

BELL75

BIBA77

BIRK70

BISH79

BONN80

BONY~

BOYE79

COHE77

COHE78

DEMI77

Mass., Nov. 1973 (MTR-2547, vol. 1, DENN71
MITRE Corp., Bedford, Mass.)
BELL, D. E., AND LAPADULA, L. J
"Secure computer systems' A mathe- DENN75
matmal model," ESD-TR-73-278, vol. 2,
ESD/AFSC, Hanscom AFB, Bedford,
Mass., Nov. 1973 (MTR-2547, vol 2,
MITRE Corp., Bedford, Mass.). DENN76
BELL, D. E. "Secure computer sys-
tems: A refinement of the mathematmal
model," ESD-TR-73-278, vol. 3, E S D / DENN77
AFSC, Hanscom AFB, Bedford, Mass,
April 1974 (MTR 2547, vol. 3, MITRE
Corp., Bedford, Mass.).
BELL, D. E , AND LAPADULA, L. J.
"Secure computer systems. Mathemati-
cal foundations and model," M74-244,
MITRE Corp, Bedford, Mass., Oct.
1974.
BELL, D. E., AND LAPADULA, L. J.
"Secure computer system. Unified ex-
position and multIcs interpretatmn,"
MTR-2997, MITRE Corp., Bedford, DOBK79
Mass., July 1975.
BIEA, K. J. "Integrity considerations
for secure computer systems," ESD-TR-
76-372, ESD/AFSC, Hanscom AFB,
Bedford, Mass., April 1977 (MITRE FEIE77
MTR-3153, NTIS AD A039324}
BIRKHOFF, G., AND BARTER, T. C.
Modern Applied Algebra, McGraw-Hill,
New York, 1970, p. 260.
BISHOP, M., AND SNYDER, L. "The
transfer of reformation and authomty in FEIE79
a protection system," Proc. 7th Syrup
Operating Systems Pnnc~ples, ACM
SIGOPS Operating Syst. Rev. 13, 4
(Dec. 1979), 45-54.
BONNEAU, C. H "Secure communica- FENT74
tions processor kernel software, detailed
specification, part I, rev. D," Honeywell
Inc, Avionics Diwsion, St. Petersburg, FURT78a
Fla., 1980.
BONYUN, D. "A new model of com-
puter security with integrity and aggre-
gatmn consideratmns," I. P. Sharp As-
soc, Ottawa, Ont., Canada, March 1978
BOYER, R. S., AND MOORE, J. S. "A FURT78b
theorem-prover for recursive functions
A user's manual," Tech. Rep. CSL-91,
SRI Internatmnal, Menlo Park, Calif,
June 1979.
COHEN, E. "Information transmission
m computational systems," Proc. 6th FURT79
Syrup. Operating Systems Principles,
ACM SIGOPS Operating Syst Rev. 11,
5 (Nov. 1977), 133-140.
COHEN, E. "Information transmmsmn FURTS0
in sequential programs," in Foundatmns
of secure computatmn, R. A. DeMillo, D.
P, Dobkin, A. K Jones, and R. J. Lipton
(Eds.), Academic Press, New York, 1978,
pp. 297-336.
DEMILLO, R. A., DOBKIN, D , AND LIP-
TON, R.J . "Even databases that lie can
he compromised," IEEE Trans Softw.
Eng. SE-4, 1 (Jan. 1977), 74-75.

DENN79a

DENN79b

GNOSS0

GOLD79

DENNING, P. J. "Third generation
computer systems,"Comput~ng Surveys
3, 4 (Dec. 1971), 171-216.
DENNING, D. E. "Secure information
flow m computer systems," Ph D. disser-
tation, Purdue Univ., West Lafayette,
Ind., May 1975.
DENNING, D E. "A lattice model of
secure information flow," Commun.
ACM 19, 5 (May 1976), 236-243.
DENNING, D. E., AND DENNING, P J.
"Certification of programs for secure in-
formation flow," Commun ACM 20, 7
(July 1977), 504-512.
DENNING, D. E., DENNING, P. J., AND
SCHWARTZ, M. D. "The tracker: A
threat to statmtical database security,"
A CM Trans. Database Syst. 4, 1 (March
1979}, 76-96.
DENNING, D. E., AND DENNING, P. J.
"Data security," Comput. Surv 11, 3
(Sept. 1979), 227-249.
DOBKIN, D., JONES, A. K. AND LIPTON,
R. J. "Secure databases: protection
against user Influence [sw]," ACM
Trans. Database Syst. 4, (March 1979),
97-106.
FEIERTAG, R. J., LEVITT, K. N., AND
ROBINSON, L. "Proving multilevel se-
curity of a system design," in Proc. 6th
ACM Syrup. Operating Systems Prmct-
ples, ACM SIGOPS Operattng Syst
Rev 11, 5 (Nov 1977), 57-65.
FEIERTAG, R. J , AND NEUMANN, P G.
"The foundations of a provably secure
operating system (PSOS)," in Proc AF-
IPS Nat. Computer Conf., vol. 48, AFIPS
Press, Arlington, Va, 1979, pp. 329-334.
FENTON, J. S. "Memoryless subsys-
tems," Comput. J 17, 2 (May 1974), 143-
147.
FURTEK, F C. "A validation technique
for computer security based on the the-
ory of constraints," ESD-TR-78-182,
ESD/AFSC, Hanscom AFB, Bedford,
Mass., Dec 1978 (MITRE MTR-3661,
NTIS ADA065111).
FURTEK, F C. "Constraints and com-
promise," in Foundations of secure com-
putatmn, R. A. DeMillo, D. P Dobkin,
A K. Jones, and R. J. Lipton (Eds.),
Academic Press, New York, 1978, pp.
189-204.
FURTEK, F C. "Doing without values,"
Proc. 9th Int. Syrup. Multiple-Valued
Logic, April 1979, pp. 114-120 (IEEE
Cat. no. CH1408-4C).
FURTEK, F C. "Specification and veri-
fication of real-tn-ne, distributed systems
using the theory of constraints," Tech
Rep. P-1027, Charles Stark Draper Lab-
oratory, Cambridge, Mass., April 1980.
"GNOSIS External Specifications,"
Tymshare, Cupertino, Calif., 1980
GOLD, B. D, LINDE, R. R., PEELER, R.
J, SCHAEFER, M., SCHEID, J. F., AND
WARD, P D. "A security retrofit of

Computing Surveys, Vol. 13, No 3, September 1981

GRAH72

GROH76

HARR76

HINK75

HOAR69

JONE75

JONE76

JONE78a

JONE78b

KEMM79

KSOS78

LAMP71

LAMP73

LAND80

Formal Models for

VM/370," In Proc. AFIPS Nat. Com-
puter Conf., vol. 48, AFIPS Press, Ar-
lington, Va., 1979, pp 335-342
GRAHAM, G S., AND DENNING, P. J.
"Protectlon--Prmciples and practice," LIPT77
in Proc 1972 AFIPS Spring Jt Com-
puter Conf, vol. 40, AFIPS Press, Ar-
lmgton, Va , pp. 417-429.
GROHN, M.J . "A model of a protected McCA79
data management system," ESD-TR-76-
289, ESD/AFSC, Hanscom AFB, Bed-
ford, Mass, June 1976 (I P. Sharp, Ot-
tawa, Canada NTIS ADA 035256).
HARRISON, M. A., Ruzzo, W L., AND MILL76
ULLMAN, J . D . "Protection in operat-
ing systems," Commun. ACM 19, 8 (Aug.
1976), 461-471. MILL78a
HINKE, T. H., AND SCHAEFER, M.
"Secure data management system,"
RADC-TR-75-266, Rome Air Dev. Cen-
ter, AFSC, GriffiNS AFB, N Y., Nov 1975
(NTIS AD A019201)
HOARE, C. A. R. "An axiomatic basis
for computer programming," Commun.
ACM 12, 10 (Oct. 1969), 576-583.
JONES, A K., AND LIPTON, R J "The
enforcement of security policies for com-
putation," Proc 5th Syrup Operating MILL78C
Systems Principles, ACM SIGOPS Op-
eratmg Syst Rev. 9, 5 (Nov. 1975), 197-
206.
JONES, A. K., LIPTON, R. J , AND SNY- NEUM77
DER, L. "A linear time algorithm for
deciding subject-object security," Proc
17th Ann Foundatmns Computer Sc~
Conf., Houston, Tex., 1976, pp. 33-41.
JONES, A K. "Protection mechanism
models: Their usefulness," m Founda-
tmns of secure computatmn, R A.
DeMillo, D. P Dobkin, A. K. Jones, and
R. J Lipton (Eds.), Academic Press, ORGA72
New York, 1978, pp. 237-254.
JONES, A. K., AND LIPTON, R . J . "The
enforcement of security policies for corn- PARN 74
putation," J. Compt. Syst. Sc$, 17, 1
(Aug. 1978), 35-55.
KEMMERER, R.A. "Verification of the
UCLA security kernel: Abstract model,
mapping, theorem generatmn and
proof," Ph.D. dissertation, UCLA, Los POPE73
Angeles, Calif., 1979.
"KSOS Verification Plan," WDL-
TR7809, Ford Aerospace and Commu-
nications Corp, Western Development POPE75
Lab. Div., Palo Alto, Calif., and SRI In-
ternational, Menlo Park, Calif, 1978.
LAMPSON, B W. "Protectmn," in Proc.
5th Princeton Syrup. Informatton Sci-
ences and Systems (March 1971), pp
437-443, reprinted in ACM SIGOPS Op-
erating Syst Rev 8, 1 (Jan 1974), 18-24.
LAMPSON, B . W . "A note on the con-
finement problem," Commun ACM 16,
10 (Oct. 1973), 613-615.
LANDWEHR, C E. "Assertions for vera-
fication of multilevel secure military
message systems," contribution to Work-

MILL78b

OPNA79

POPE78a

PoPE78b

POPE 79

Computer Security • 277

shop on Formal Verification, SRI Inter-
national, Menlo Park, Calif., April 1980;
reprinted in ACM Softw Eng. Notes 5,
3 (July 1980), 46-47
LIPTON, R. J., AND SNYDER, L. "A lin-
ear time algorithm for deciding subject
security," J ACM 24, 3 (July 1977), 455-
464.
MCCAULEY, E. J., AND DRONGOWSKI,
P . J . "KSOS: The design of a secure
operating system," in Proc. AFIPS Nat
Computer Conf., vol 48, AFIPS Press,
Arlington, Va., 1979, pp. 345-353.
MILLEN, J. K. "Security kernel vali-
dation in practme," Commun. ACM 19,
5 (May 1976), 243-250.
MILLEN, J. K "An example of a formal
flow violation," in Proc IEEE Computer
Soc. 2nd Int. Computer Software and
Apphcatmns Conf, Nov 1978, pp. 204-
208
MILLEN, J .K . "Constramts and multi-
level security," In Foundatwns of Secure
Computatmn, R A. DeMfllo, D. P. Dob-
kin, A. K. Jones, and R. J. Lipton (Eds.),
Academic Press, New York, 1978, pp
205-222.
MILLEN, J. K "Causal system secu-
rity," ESD-TR-78-171, ESD/AFSC,
Hanscom AFB, Bedford, Mass., Oct.
1978 (MITRE MTR-3614).
NEUMANN, P. G., BOYER, R. S., FEIER-
TAG, R J., LEVITT, K. N., AND ROBIN-
SON, L "A provably secure operating
system. The system, its applications, and
proofs," SRI International, Menlo Park,
Calif., Feb. 1977.
OPNAVINST 5239.1, Department of the
Navy, Chief of Naval Operations, Op-
942E, April 2, 1979.
ORGANICK, E. I. The MULTICS sys-
tem" An exammatton of ~ts structure,
MIT Press, Cambridge, Mass., 1972.
PARNAS0 D L., ANY PRICE, W. R.
"Using memory access control as the
only protection mechanism," in Proc.
Int Workshop Protection ~n Operattng
Systems, IRIA/LABORIA, Rocquen-
court, France, Aug. 1974, 177-181.
POPEK, G.J . "Access control models,"
ESD-TR-73-106 ESD/AFSC, L. G Han-
scom Field, Bedford, Mass, Feb 1973
(NTIS AD-761 807).
POPEK, G J., AND KLINE, C "A veri-
fiable protection system," in Proc Int.
Conf. Rehable Software, ACM SIG-
PLAN Nottces 10, 6 (June 1975), 294-
304.
POPEK, G. J., AND FARBER, D A. "A
model for verification of data security in
operating systems," Commun ACM 21,
9 (Sept. 1978), 737-749.
POPEK, G J., KLINE, C. S., AND WAL-
TON, E. J. "UCLA Secure Unix,"
UCLA Tech Rep. (Draft), Feb. 1978.
POPEK, G. J., KAMPE, M., KLINE, C. S ,
STOUGHTON, A , URBAN, M., AND WAL-

Computing Surveys, Vol 13, No 3, September 1981

278 • Carl E. L a n d w e h r

PRIC 73

RE[T79

ROUB77

SCHE73

SCHI75

SCHR77

SCHW 79

SNYD77

SNYD79

WALK80

TON, E J. "UCLA secure Unix," in
Proc. AFIPS Nat. Computer Conf., vol.
48, AFIPS Press, Arlington, Va., 1979,
pp 355-364.
PRICE, W.R. "Implications of a vtrtual WALT74
memory mechanism for implementing
protection m a family of operating sys-
tems," Ph.D. dissertation, Carnegie-Mel-
lon University, Pittsburgh, Pa , 1973.
REITMAN, R.P . "A mechanism for m-
formation control m parallel systems," m
Proc 7th Syrup. Operating Systems
Pnnc~ples, ACM SIGOPS Operating
Syst. Rev 13, 4 (Dec 1979), 55-63
ROUBINE, 0., AND ROBINSON, L
"SPECIAL reference manual," 3rd ed,
SRI International, Menlo Park, Calif.,
1977.
SCHELL, R. R., DOWNEY, P. J , AND
POPEK, G.J. "Preliminary notes on the
design of secure military computer sys-
tems," MCI-73-1, ESD/AFSC, Hanscom
AFB, Bedford, Mass., Jan. 1973
SCHILLER, W L. "The design and spec-
ification of a security kernel for the PDP-
11/45," ESD-TR-75-69, MITRE Corp.,
Bedford, Mass, March 1975.
SCHROEDER, M. D., CLARK, D. D., AND WEIS69
SALTZER, J. H "The Multics kernel de-
sign project," in Proc. 6th ACM Syrup.
Operating Systems Principles, ACM
SIGOPS Operating Syst Rev 11, 5
(Nov. 1977), 43-56. WILS79
SCHWARTZ, M. D., DENNING, D. E , AND
DENNING, P. J "Linear queries in sta-
tistical databases," ACM Trans Data-
base Syst. 4, 2 (June 1979), 156-167
SNYDER, L. "On the synthesis and
analysis of protection systems," Proc
6th Symp Operating Systems Prmct- WITH79
ples, ACM SIGOPS Operating Syst.
Rev 11, 5 (Nov. 1977), 141-150
SNYDER, L. "Formal models of capa-
bility-based protection systems," Tech YONK76
Rep 151, Dept. Computer Science, Yale
Univ., New Haven, Conn, April 1979.
WALKER, B J , KEMMERER, R A, AND

WALT75a

WALT75b

Received November 1980, final revmlon accepted April 1981

POPEK, G.J . "Specification and verifi-
cation of the UCLA Unix security ker-
nel," Commun. ACM 23, 2 (Feb. 1980),
118-131
WALTER, K. G, OGDEN, W. F., ROUNDS,
W. C., BRADSHAW, F. T , AMES, S R.,
AND SHUMWAY, D. G. "Primitive
models for computer security," ESD-
TR-4-117, AF/ESD, Hanscom AFB,
Bedford, Mass., Jan., 1974 (NTIS AD-
778 467).
WALTER, K. G., SCHAEN, S. I., OGDEN,
W. F., ROUNDS, W. C., SHUMWAY, D G.,
SCHAEFFER, D. D., BIBA, K. J , BRAD-
SHAW, F. T , AMES, S. R., AND GILLIGAN,
J M. "Structured specification of a se-
curity kernel," in Proc. Int. Conf. Reh-
able Software, ACM SIGPLAN Notices
10, 6 (June 75), 285-293.
WALTER, K. G, OGDEN, W. F., GILLI-
GAN, J. M., SCHAEFFER, D. D , SCHAEN,
S I., AND SHUMWAY, D. G. "Imtlal
structured specifications for an uncom-
promlsable computer security system,"
ESD-TR-75-82, ESD/AFSC, Hanscom
AFB, Bedford, Mass., July 1975 (NTIS
AD-A022 49O).
WEISSMAN, C. "Security controls in the
ADEPT-50 time sharing system," Proc.
1969 AFIPS Fall Jt Computer Conf.,
vol. 35, AFIPS Press, Arlington, Va., pp.
119-133.
WILSON, S H., KALLANDER, J. W.,
THOMAS, N M, III, KLITZKIE, L. C., AND
BUNCH, J. R., JR. "Military message
experiment quick look report," NRL
Memorandum Rep. 3992, Naval Re-
search Lab., Washington, D.C., April
1979, p. 10.
WITHINGTON, P.T. "The trusted func-
tion in secure decentralized processing,"
MITRE MTR-3892, MITRE Corp.,
Bedford, Mass, Sept. 1979.
YONKE, M. D "The XIVUS environ-
ment XIVUS working paper no. 1,"
USC/Information Sciences Institute,
Marina del Rey, Calif., April 1976.

Computing Surveys, Vol 13, No 3, September 1981

