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INTRODUCTION 

Efforts to build "secure" computer systems 
have now been underway for more than a 
decade. Many designs have been proposed, 
some prototypes have been constructed, 
and a few systems are approaching the pro- 
duction stage. A small number of systems 
in the Department of Defense (DoD) are 
even operating in "multilevel" mode: some 
information in any of these systems may 
have a classification higher than the clear- 
ance of some users. 

Nearly all of the projects to design or 
construct secure systems for processing 
classified information have had a formal 
mathematical model for security as part of 
the top-level definition of the system. The 
model functions as a concise and precise 
description of the behavior desired of the 
security-relevant portions of the system. 
These models have been influenced by the 
DoD regulations for processing classified 
data, by intuitive notions of security, by the 
structure of existing computer systems, and 
by the capabilities of program-verification 
technology. They have not always been 
influenced by, or have even recognized, the 

ways in which security regulations are ap- 
plied in practice. 

It is the purpose of this paper to review 
the need for formal security models, to de- 
scribe briefly the structure and operation of 
military security controls, to survey models 
that have been proposed and applied to 
date, and to suggest possible directions for 
future models. All the models described 
concern access to information within a com- 
puter and the flow of information within 
a computer ;  t hey  are not  concerned  
with the areas described by the Dennings 
[DENN79b] of user authentication, infer- 
ence controls, or cryptographic controls. 

Our descriptions, whenever possible, 
avoid formal notation. The purpose of this 
paper is to make the basic concepts of each 
model apparent, not to restate each model 
in complete detail. 

1. WHY FORMAL MODELS? 

In order to build a secure system, designers 
must first decide exactly what "secure" 
means for their particular needs. In a pri- 
vate company, security may be related to 
the nondisclosure of confidential account- 
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ing data or trade secrets, or to the enforce- 
ment of privacy regulations regarding per- 
sonal medical or credit records. If national 
security data are involved, security be- 
comes the protection of classified material, 
as detailed in various DoD instructions and 
regulations. One might hope for these reg- 
ulations to be clear-cut and directly appli- 
cable to information stored in computers: 
not so. Because most of the regulations 
were originally constructed for an environ- 
ment where information was recorded on 
paper and stored in safes, they have had to 
be revised as the use and understanding of 
computers within DoD have increased. 

Although the DoD regulations can be 
said to define the security required for sys- 
tems processing classified national security 
data, their form is not very helpful to sys- 
tem designers. Typically, regulations are 
written in English and are descriptive 
("safeguards must permit accomplishment 
of mission functions while affording an ap- 
propriate degree of security" [OPNA79]) 
rather than prescriptive {"the system shall 

have the following design characteristics: 
• . . " ) .  

The point here is not that the regulations 
are poorly phrased--indeed, it would be 
undesirable for regulations to specify par- 
ticular approaches when many of the ques- 
tions involved are still research issues--but 
that formal models of security are needed 
for design. Since the system must not only 
be secure, but must be demonstrably so, 
designers need formal security models to be 
able to convince others of the security of 
the system. By constructing a formal model 
for security, demonstrating that systems 
enforcing this model are secure {according 
to the applicable DoD regulations, privacy 
laws, or company policy), and then dem- 
onstrating that the design to which the 
implementation corresponds enforces the 
model, the designers can make a convincing 
argument that the system is secure. 

To date, the need for computer security 
has been more apparent in military than in 
commercial applications; consequently, the 
models discussed below concern military 
rather than industrial security. As security 
concerns become more important to the 
private sector and to the nonmilitary parts 
of the government, formal models appro- 
priate to these applications will also be 
needed. 

2. STRUCTURE OF MILITARY SECURITY 

Because most of the models described be- 
low were constructed with mi l i tary security 
in mind, it will be helpful to review briefly 
some of the major aspects of military se- 
curity for readers unfamiliar with them. 

The requirement for military security 
arises from the existence of information 
that, if known by an enemy, might damage 
the national security (by making defenses 
more easily penetrable, for example). Be- 
cause there are costs associated with pro- 
tecting such information, and because not 
all information is equally sensitive, different 
sensitivity levels of information are distin- 
guished. The recognized sensitivity levels, 
in increasing order of effect on national 
security, are unclassified, confidential, se- 
cret, and top secret• Information that has 
been assigned any of the three levels above 
unclassified is called classified. The clas- 
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sificatmn of information takes into account 
its sensitivity level and, in some cases, ad- 
ditional factors described below. 

Since the purpose of the classification 
system is to prevent the uncontrolled dis- 
semination of sensitive information, mech- 
anisms are required to ensure that those 
individuals allowed access to classified in- 
formation will not distribute it improperly. 
In the military security system, the grant- 
ing of a clearance to an individual indicates 
that certain formal procedures and inves- 
tigations have been carried out and that 
the individual is considered trustworthy 
with information classified up to a certain 
sensitivity level. Clearances for higher 
levels of information correspond to greater 
degrees of trust and correspondingly re- 
quire more extensive background investi- 
gations. The discretionary power accorded 
individuals of increasing clearance levels is 
enforced by explicit legal penalities for any 
improper handling of classified information. 

The smaller the number of people who 
know a secret, the easier it is to control 
further dissemination. In recognition of this 
fact, and of the fact that few individuals 
need to be aware of all the information 
classified at a given sensitivity level, a finer 
grain of classification has been created on 
the basis of need-to-know. The general 
principle is that classified information 
should not be entrusted to an individual 
unless he has both the clearance required 
for it and some specific job-related need to 
know that information. Although this prin- 
ciple applies to all classified information, in 
some cases information relating to specific 
subject areas is formally designated as a 
separate compartment of information (e.g., 
all information related to nuclear weapons 
might be in a compartment called NU- 
CLEAR). Compartment designations are in 
addition to the sensitivity level designa- 
tions; information might be designated 
"confidential, NUCLEAR" or "secret, NU- 
CLEAR," for example. Compartments may 
overlap, with some information designated 
as being in two or more compartments. A 
classification or security level then consists 
of both a sensitivity level and a {possibly 
empty) set of compartments. 

Corresponding to these formally desig- 
nated need-to-know compartments are ad- 
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ditional clearances that are used to control 
the compartments to which an individual 
may have access. If information is desig- 
nated with multiple compartments, an in- 
dividual must be cleared for all of them 
before he can view that information. 

In addition to compartments, there are 
restrictions known as caveats placed on 
some documents. Although these serve a 
function quite similar to that of compart- 
ments, they are usually broader in scope. 
One caveat, for example, is the "Originator 
Controlled (ORCON)" caveat, indicating 
that its originator must approve any further 
dissemination of the information. There are 
no specific clearances that  correspond to 
the caveats; instead, specific properties of 
individuals (such as authorship or citizen- 
ship) are referred to. 

The dissemination of information of a 
particular security level {including sensitiv- 
ity level and any compartments or caveats) 
to individuals lacking the appropriate clear- 
ances for that level is prohibited by law; 
these statutory restrictions are sometimes 
referred to as mandatory access controls. 
In distributing information of a given se- 
curity level to those who possess the nec- 
essary clearances, a cleared individual must 
exercise some discretion in determining 
whether the recipient has, in addition, a 
need to know the information. These im- 
precise but important restrictions are re- 
ferred to as d~scretionary access controls. 

3. DYNAMICS OF MILITARY SECURITY 

The structure described above is generally 
adequate to describe a static set of infor- 
mation recorded on paper. Each piece of 
paper can be appropriately classified and 
physically protected {e.g., by storage in a 
safe). The dynamics of information han- 
dling under such a system are more difficult 
to model than its static aspects. These in- 
clude such operations as creating a new 
piece of classified information {perhaps us- 
ing a collection of existing information), 
sanitizing information by removing the sen- 
sitive parts, declassifying information, 
copying information, and so on. 

Creation of new classified information 
can cause a number of problems, the first 
of which is determining whether new infor- 
mation should in fact be classified. In the 
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case of a new document  relating to a pre- 
viously classified system or topic or to using 
information from classified sources, it will 
usually be clear to the author  tha t  the new 
document  will be classified as well. Gener- 
ally, a document  can be viewed as a se- 
quence of paragraphs,  each of which is as- 
signed a classification. Because the docu- 
ment  as a whole also has a classification, 
the document  is in this sense a multilevel 
object, tha t  is, it can contain information 
classified at  various levels. 

The  level of classification of a document  
as a whole is usually tha t  of the most  clas- 
sifted information it contains. In some 
cases, however, a collection of information, 
each component  of which is by itself un- 
classified (or classified at  a low level) may  
yield a more highly classified document .  
For  example, a picture of the Sta tue  of 
Liber ty  and its caption, "Locat ion of Secret  
Particle Beam Weapon,"  could, if sepa- 
rated, bo th  be unclassified. Together ,  they  
might be top secret. The  problem of detect-  
ing whether  such a collection exists is called 
the aggregation problem. If the new docu- 
ment  is created by sanitizing an existing 
one, the new document  may  be classified at 
a lower level than  the original. Determina-  
tion of when the information in a document  
has been sufficiently "desensit ized" is called 
the sanitization problem. Proper  identifi- 
cation of aggregated or sanitized informa- 
tion is the obligation of the document  cre- 
ator, in cooperat ion with his securi ty offi- 
cer. If a document  is found to have been 
more highly classified than required, it may  
be downgraded (given a lower security 
level without  changing its contents).  

As long as the principal storage medium 
for the information is paper, and the prin- 
cipal tools for creating it are manual  (e.g., 
pens, pencils, typewriters}, the control  of 
these operations is not  too difficult. When 
a document  is not  in a safe, it is in the 
custody of some individual t rusted not  to 
distribute it improperly.  A draft  document  
with an as-yet-undetermined classification 
can be protec ted  by storing it in a safe and 
nei ther  declaring a specific classification 
nor  entering it into the formal system for 
control  of classified documents.  The  tools 
used to create and modify documents  are 
simple and generally passive; they cannot  

easily al ter  a classified document  or be t ray  
its contents  to an unauthorized person 
without  the knowing cooperat ion of the tool 
user. 

4. EFFECTS OF AUTOMATION 

The  use of computers  to store and modify 
information can simplify the composition, 
editing, distribution, and reading of mes- 
sages and documents.  These  benefits are 
not  free, however. Par t  of the cost is the 
aggravation of some of the securi ty prob- 
lems just  discussed and the introduct ion of 
some new problems as well. Most  of the 
difficulties arise precisely because a com- 
puter  shared by several users cannot  be 
viewed as a passive object in the same sense 
tha t  a safe or a pencil is passive. 

For  example, consider a computer  pro- 
gram tha t  displays portions of a document  
on a terminal.  Th e  user of such a program 
is very  likely not  its author.  I t  is, in general, 
possible for the au thor  to have wri t ten the 
program so tha t  it makes a copy of the 
displayed information accessible to himself  
(or a third party) wi thout  the permission or 
knowledge of the user who requested the 
execution of the program. If  the au thor  is 
not  cleared to view this information, secu- 
ri ty has been violated. 

Similarly, recording the securi ty level of 
a d o c u m e n t - - a  straightforward task in a 
manual  sys t em- -can  be a complex opera- 
tion for a document  stored in a computer .  
I t  may  require cooperat ion among several 
programs (e.g., terminal  handler,  line edi- 
tor, file system, disk handler) wri t ten by 
different individuals in different program- 
ming languages using different compilers. I t  
is much more difficult to establish tha t  the 
computer  program(s) for recording a clas- 
sification behaves in accordance with its 
user's wishes than  it is to establish the same 
criterion for a pen or a pencil. 

Information contained in an au tomated  
system must  be protec ted  from three  kinds 
of threats:  (1) the unauthorized disclosure 
of information, (2) the unauthorized mod- 
iftcation of information, and (3) the unau- 
thortzed withholding of information (usu- 
ally called denial of service). Each of the 
problems discussed below reflects one or 
more of these dangers. 
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4.1 Old Problems Aggravated 

4 1.1 Aggregabon 

T h e  aggregation problem exists in a com- 
puter-based system just  as it does in a 
manual  one. Forming aggregate objects 
may  be easier, though, because users may  
be able to search many  documents  more 
quickly and correlate the information in 
them more easily than  could be done man- 
ually. Database management  systems tha t  
include numerous  files of information in- 
dexed in several different ways and tha t  
can respond to user queries have no direct 
analog in the world of documents  and safes. 
The  response to a single query can aggre- 
gate information from a wide variety of 
sources in ways tha t  would be infeasible in 
a manual  system. A closely related problem 
is the inference problem. Studies have 
shown tha t  database systems, if they pro- 
vide almost any statistical information 
(such as counts of records, average values) 
beyond the raw data  values stored, are rel- 
atively easy to compromise [DEMI77, 
DENN79a, DENN79b, DOBK79, SCHW79]. 
By carefully constructing queries and using 
only small amounts  of outside information, 
a user can often infer the values of data  he 
is unauthorized to obtain directly. 

4.1.2 Authenbcatlon 

In the manual  system, keys and safe com- 
binations are entrusted to humans  by other  
humans;  it is not  generally difficult to rec- 
ognize the t rusted individual. A person 
opening a safe and examining its contents  
is likely to be observed by other  people who 
will know whether  tha t  person is authorized 
to do so. Further ,  an individual with access 
to a safe must  have a clearance sufficient 
for him to see every document  stored in the 
safe without  violating security. Individuals 
with different clearance levels may  have 
access to the computer  system, and so the 
system must  be able to distinguish among 
its users and restrict  information access to 
qualified users. Since the computer  will 
have access to all the information it stores 
and since it must  provide access to those 
documents  only to authorized individuals, 
the authentication problem is aggravated: 

the computer  system must  have a reliable 
way of determining with whom it is con- 
versing. 

4 1.3 Browsing 

Computers  generally maintain directories 
for files to facilitate searching large bodies 
of information rapidly: rarely is there  a 
similar catalog of all the information con- 
tained in even a single safe. Unless a com- 
puter  system implements  strict need-to- 
know access controls, it may  be possible for 
a user to examine secretly all documents  
stored in the system at or below his clear- 
ance level (this is called the browsingprob- 
lem). Browsing through all the documents  
in a safe would be a much more difficult 
activity to conceal. 

4.1.4 Integrity 

Undetec ted  modification of information is 
much easier to accomplish if the informa- 
tion is stored on electronic media than  if it 
is stored on paper, both because changes 
are harder  to detect  and because there is 
often only a single copy of the information 
tha t  need be altered. Protect ing informa- 
tion against unauthorized modification is 
called the mtegrtty problem. 

4 1.5 Copymg 

Although paper  documents  may  be copied 
without  altering the original, making such 
a copy entails removing the original from 
the safe. Undetec ted  copying of files within 
most  computer  systems presents  no similar 
barrier  and usually can be done much more 
rapidly. 

4.1 6 Dental of Servtce 

In the manual  system, the combination for 
a safe or a cipher lock may be forgotten or 
misplaced, or the lock may malfunction. In 
ei ther case the legitimate users of the infor- 
mat ion in the safe may  be denied access to 
it for a time. Such occurrences, however, 
are rare. Denial  of service is a much more 
notorious characteristic of computer  sys- 
tems, which can be vulnerable to power 
outages (or even fluctuations) and to hard-  
ware and software problems. 
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4.2 New Problems 

4.2.1 Conhnement 

Storage of information in a computer  can 
also cause new kinds of security problems. 
In a computer  system, programs are exe- 
cuted by the active entities in the system, 
usually called processes or jobs. Generally, 
each process is associated with a user, and 
programs are executed by the process in 
response to the user's requests. A program 
tha t  accesses some classified data  on behalf  
of a process may  leak those data  to other  
processes or files (and thus to o ther  users). 
The  prevent ion of such leakage is called the 
confinement problem [LAMP73]. Lampson 
identifies three  kinds of channels tha t  can 
be used to leak information. Legitimate 
channels are those tha t  the program uses 
to convey the results of its computat ion 
(e.g., the printed output  from the program 
or a bill for the services of the program). It  
is possible, for example, by varying line 
spacing, to hide additional information in 
these channels. Storage channels are those 
that  utilize system storage such as tempo- 
rary fries or shared variables (other than  
the legitimate channels) to pass informa- 
tion to another  process. Covert channels 
are paths  not  normally intended for infor- 
mat ion transfer  at  all, but  which could be 
used to signal some information. For  ex- 
ample, a program might vary  its paging rate 
in response to some sensitive data  it ob- 
serves. Another  process may  observe the 
variations in paging rate and "decipher"  
them to reveal the sensitive data. Because 
they generally depend on the observat ion 
of behavior  over time, covert  channels are 
also referred to as timing channels. 

4 2.2 Trolan Horses and Trapdoors 

A program tha t  masquerades as a useful 
service but  surrepti t iously leaks data  is 
called a Trojan horse 2. A trapdoor is a 

l A l though  these  t e rms  had  been in use  for some t ime,  
L a m p s o n  was apparent ly  the  first to in t roduce th is  
nomenc la tu re  for kinds of leakage channe l s  into the  
open li terature.  We will employ his  defimtions,  us ing 
" t iming channel"  in place of "covert  channel ."  T h e  
reader  m caut ioned t ha t  usage in the  l i tera ture  is no t  
uniform. 
2 Th i s  t e rm  was in t roduced by D a n  Edwards  m 
ANDE72. 

hidden piece of code tha t  responds to a 
special input, allowing its user access to 
resources without  passing through the nor- 
mal security enforcement  mechanism. For  
example, a t rapdoor  in a password checking 
routine might bypass its checks if called by 
a user with a specific identification number.  

4.2.3 Other Threats 

Another  class of threats  in t roduced by au- 
tomat ion is related to the electrical char- 
acteristics of computers.  Wiretapping and 
monitoring of electromagnetic  radiat ion 
generated by computers  fall into this class. 
The  formal models described below do not  
address this class of threats,  nor  do they  
cover problems of authenticat ion,  infer- 
ence, or denial of service. 

4.3 Potential Benefits 

In compensat ion for the added complexities 
automat ion  brings to security, an auto- 
mated  system can, if properly constructed,  
bestow a number  of benefits as well. For  
example, a computer  system can place 
stricter limits on user discretion. In the 
paper  system, the possessor of a document  
has complete discretion over its fur ther  dis- 
tribution. An au tomated  system tha t  en- 
forces need-to-know constraints strictly can 
prevent  the recipient  of a message or doc- 
ument  from passing it to others. Of course, 
the recipient  can always copy the informa- 
tion by hand or repeat  it verbally, but  the 
inability to pass it on directly is a significant 
barrier. 

The  sanitization of documents  can be 
simplified in an au tomated  system. Remov- 
ing all uses of a part icular  word or phrase, 
for example, can be done more quickly and 
with fewer errors by a computer  than  by a 
person (presuming, of course, tha t  the ed- 
iting programs work correctly!). Although 
it is doubtful  whether  a completely general 
sanitization program is feasible, au tomated  
techniques for sanitizing highly format ted  
information should be available in a few 
years. 

Automated  sytems can apply a finer 
grain of protection.  Instead of requiring 
tha t  an entire document  be classified at  the 
level of the most  sensitive information it 
contains, a computer-based system can 
maintain the document  as a multilevel ob- 
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ject, enforcing the appropriate controls on 
each subsection. The  aggregation and san- 
itization problems remain; nevertheless, the 
oppor tuni ty  exists for more flexible access 
controls. 

An automated  system can also offer new 
kinds of access control. Permission to exe- 
cute certain programs can be granted or 
denied so tha t  specific operations can be 
restricted to designated users. Controls can 
be designed so tha t  some users can execute 
a program but  cannot  read or modify it 
directly. Programs protected in this way 
might be allowed to access information not  
directly available to the user, sanitize it, 
and pass the results back to the user. Nat- 
urally, great care would be needed in the 
construction of such a sanitization program 
and the controls protecting it. 

Although these benefits are within reach 
of current  technology, they have been dif- 
ficult to realize in practice. Securi ty is a 
relative, not  an absolute, concept, and gains 
in security often come only with penalties 
in performance.  To date, most  systems de- 
signed to include security in the operating 
system structure have exhibited ei ther  slow 
response times or awkward user inter- 
faces- -or  both. 

5. FORMAL MODELS FOR COMPUTER 
SECURITY 

The  formal s t ructures  described below can 
be used to model the mili tary security en- 
vironment.  These  same structures  can also 
be used as the basis for specifying programs 
tha t  cause a computer  to simulate the se- 
curi ty controls of the mili tary environment.  
Because it is difficult to capture the com- 
plexities of the real world in a formal struc- 
ture, each model  deviates from reality in 
some respects. Generally, the models en- 
force controls tha t  are more rigid than  the 
controls in the actual environment;  any 
computer  operations tha t  obey the struc- 
tures of the model will be secure according 
to the conventional  definitions, and some 
operations disallowed by the model  would 
nevertheless be considered secure outside 
the formal model. Although this is the 
"safe" side on which to err, use of overly 
restrictive models to improve the security 
of a system can lead to systems tha t  are 

unacceptable to their  intended users 
[WILS79] .  

The  models presented in this section are 
diverse in several ways: they have been 
developed at  different times, they  t rea t  the 
problem from different perspectives, and 
they provide different levels of detail in 
their  specifications. We have tr ied to con- 
sider bo th  chronology and formal similarity 
in organizing our presentation.  Since 
models with different formal bases some- 
t imes influence each other  over time, it is 
hard  to provide an ordering tha t  both  re- 
spects formal similarity and avoids forward 
references. Consequently,  we include a brief 
discussion of some useful concepts and his- 
torical t rends before presenting the individ- 
ual models. 

5.1 Basic Concepts and Trends 

The  finite-state machine model for com- 
putat ion views a computer  system as a fi- 
nite set of states, together  with a transit ion 
function to determine what  the next  state 
will be, based on the current  state and the 
current  value of the input. The  transition 
function may  also determine an output 
value. Transi t ions are viewed as occurring 
instantaneously in this model; therefore 
certain potential  information channels (e.g., 
those related to observing the t ime spent  in 
a certain state) in real systems tend to be 
hidden by it. Different  security models ap- 
ply different interpretat ions of this general 
model, but  this s t ructure  is the basis for all 
of those surveyed below. 

The  lattice model for securi ty levels is 
widely used to describe the s t ructure  of 
mili tary security levels. A lattice is a finite 
set together  with a partial  ordering on its 
elements such tha t  for every pair of ele- 
ments  there  is a least upper  bound and a 
greatest  lower bound [BmK70]. Th e  simple 
linear ordering of sensitivity levels has al- 
ready been defined. Compar tment  sets can 
be partially ordered by the subset relation: 
one compar tment  set is greater  than  or 
equal to another  if the lat ter  set is a subset 
of the former. Classifications, which include 
a sensitivity level and a (perhaps empty} 
compar tment  set, can then  be partially or- 
dered as follows: for any sensitivity levels a 
and b and any compar tment  sets c and d 

(a, c) _> (b, d) 

Computing Surveys, Vol 13, No 3, September 1981 



254 • Carl E. Landwehr 

if and only if a _> b and c _ d. That each 
pair of classifications has a greatest lower 
bound and a least upper bound follows from 
these definitions and the facts that the clas- 
sification "unclassified, no compartments" 
is a global lower bound and that we can 
postulate a classification "top secret, all 
compartments" as a global upper bound. 
Because the lattice model matches the mil- 
itary classification structure so closely, it is 
widely used. The high-water-mark model 
[WEIS69], one of the earliest formal models, 
includes a lattice of security levels, though 
it is not identified as such. 

The access matrix model, described in 
detail below, was developed in the early 
1970s as a generalized description of oper- 
ating system protection mechanisms. It 
models controls on users' access to infor- 
mation without regard to the semantics of 
the information in question. A reference 
monitor checks the validity of users' ac- 
cesses to objects. Models based on access 
matrices continue to be of interest because 
of their generality; recent examples include 
studies of take-grant models [BISH79] and 
the model of data security used by Popek 
[POPE78a]. 

When classified information is involved, 
the semantics of the information must be 
considered: the classification of the infor- 
mation and the clearance of the user must 
be known before access can be granted. For 
this purpose, models based on the access 
matrix have been extended to include clas- 
sifications, clearances, and rules concerning 
the classifications. The best known such 
model is the Bell and LaPadula model 
[BELL73a], which may be summarized in 
two axioms: 

(a) No user may read information classi- 
fied above his clearance level ("No read 
up"); 

(b) No user may lower the classification of 
information ("No write down"). 

The full statement of the model includes 
several more axioms and is quite complex. 

In the early 1970s, Roger Schell con- 
ceived an approach to computer security 
based on defining a small subset of a system 
that would be responsible for its security 
and assuring that this subset would monitor 
all accesses (i.e., it would provide complete 
validation of program references), that  it 

would be correct, and that  it would be 
isolated (so that  its behavior could not be 
tampered with). This mechanism would be 
called a security kernel [ANDE72, SCHE73]. 
Similar considerations motivated the work 
of Price and Parnas [PRIC73, PARN74] on 
virtual memory mechanisms for protection. 
The Bell and LaPadula model grew out of 
work on the security kernel concept. 

This idea fit well with the notions of 
operating system kernels and layered ab- 
stract machines that  were being circulated 
widely at that  time. The security kernel 
would be the innermost layer of the system 
and would implement all of the security- 
relevant operations in the system; for the 
access-matrix model, the kernel would im- 
plement the functions of the reference mon- 
itor. Because the security kernel would be 
of minimal size and functionality, it would 
be feasible to examine it closely for flaws 
and perhaps even to verify its correctness 
(or at least its security properties} formally. 
In practice, it has been difficult to identify 
and isolate all of the security-relevant func- 
tions of a general-purpose operating system 
without creating a fairly large, fairly slow 
"kernel." 

Information-flow models, based partly 
on work by Fenton [FENT74], and first in- 
troduced by Denning [DENN75], recognize 
and exploit the lattice structure of security 
levels. Instead of requiring a list of axioms 
governing users' accesses, an information- 
flow model simply requires that all infor- 
mation transfers obey the flow relation 
among the security classes. The informa- 
tion-flow properties of each statement type 
in a programming language can be defined, 
and proofs can be developed about the 
flows caused by executing a particular pro- 
gram. By focusing on the flow of informa- 
tion instead of on individual accesses to 
objects, the models achieve an elegance 
lacking in the Bell and LaPadula model. 

Because of continuing DoD interest, 
work on developing and applying the Bell 
and LaPadula model has continued. The 
original model dealt only with the unau- 
thorized disclosure of data, but an extension 
of it by Biba [BIBA77] added the concept 
of integrity to deal with the unauthorized 
modification of data. The model was refor- 
mulated for use with automated tools for 
program verification by Feiertag and others 
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[FEIE77]. This  reformulat ion actually fo- 
cuses on the information flow possible in a 
formally specified set of functions, and in 
this respect  is similar to the information- 
flow models. Efforts have also been made 
to model security in database management  
systems using the Bell and LaPadula  model 
[HI~K75, GROH76]. 

Finally, several authors  [JoNE75, 
COHE77, FURT78a, MILL78b] have devel- 
oped models that,  in a variety of ways, view 
programs as channels for information trans- 
fer. These  models are generally fur ther  
from the mains t ream of computer  security 
than  the others, but  they provide some 
interesting comments  on the fundamental  
question of what  it means for a program or 
a computer  system to be secure. 

5.2 High-Water-Mark Model 

The  ADEPT-50  t ime-sharing system, con- 
structed at the System Development  Cor- 
porat ion in the late 1960s, was one of the 
first systems tha t  a t t empted  to implement  
software controls for classified information 
[WEIS69]. Although the system was never 
certified by the DoD for operat ion as a 
multilevel secure system, its controls were 
based on a formal model of mili tary secu- 
rity. 

Four  types of objects are defined by the 
ADEPT-50  security model: users, termi- 
nals, jobs, and files. Each object is described 
by an ordered triple of properties,  called 
Authori ty  (A), Category (C), and Franchise 
(F). The  first two of these correspond co a 
sensitivity level and a compar tment  set; the 
third consists of a set of user designations. 
The  Franchise sets are used to implement  
discretionary need-to-know controls, but  
they are formally equivalent to an exten- 
sion of the compar tment  set tha t  allows a 
compar tment  for each user. The  model  also 
defines an ordering on these triplets tha t  
corresponds to the lattice model  ( though 
the s tructure is not  identified as a lattice). 
"His tory functions" are defined for the au- 
thor i ty  and category properties of an object. 
These  functions record the highest author- 
ity assigned to the object and the union of 
all categories assigned to the object since 
its creation. These  are referred to as the 
high-water mark of the object, from which 
the model takes its name. 

The  values of the current  A, C, and F 
propert ies and the history functions are 
used to control  the propert ies assigned to 
new objects (e.g., newly created files) and 
to determine whether  requested operations 
will be allowed. To access the system from 
a terminal, a user must  present  a user ID 
and a password. The  system then  checks a 
list stored at system start  t ime to see tha t  
this ID is known to the system, tha t  it is in 
the franchise set for this terminal,  and tha t  
the password is correct.  If the log-in suc- 
ceeds, the given user ID is assigned to the 
job servicing the user's terminal. The  job is 
assigned the minimum of the authori t ies 
assigned to the user and the terminal,  and 
is assigned a category set corresponding to 
the intersection of the user and terminal 
category sets. Permission for this job to 
access a file is granted if and only if the 
level of the job in the lattice is at least tha t  
of the file. Granting access to a file causes 
the history functions to be updated  accord- 
ing to the author i ty  and category set for 
tha t  file. New files created by this job are 
assigned an author i ty  and a category set 
based on the history functions: the author- 
ity is set to tha t  of the highest file accessed 
by this job since log-in, and the category is 
the union of the category sets of all files 
accessed since log-in. The  franchise is set 
to tha t  of the job. 

The  ADEPT-50  t ime-sharing system, us- 
ing the security model just  described, was 
implemented on an IBM/360 model 50 and 
installed in several locations in the Penta-  
gon. In addition to enforcing this model, a 
number  of other  security provisions (e.g., 
audit  trails, clearing of newly acquired stor- 
age} were included in the implementat ion.  

The  principal reason the high-water- 
mark policy is of interest  is tha t  it is one of 
the few policies actually implemented on 
an operational  computer  system. Th e  
ADEPT-50  system, operating with this 
model, provided an acceptable interface to 
its users. The  authori ty,  category, and fran- 
chise elements  of the model are sufficient 
to describe the static s t ructure  of military 
security. Th e  restriction tha t  a user can 
only have access to a file at or below his 
level in the lattice ensures tha t  he cannot  
directly read information contained in a file 
classified above his clearance level. It  is 
possible, however, for a Tro jan  horse to 
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copy classified information to a {preexist- 
ing) file that is unclassified. This copying 
can be done because the rules of the model 
allow authorized "downward" flows of in- 
formation. Consequently, information can 
flow out of the system via legitimate, stor- 
age, or timing channels. Control of saniti- 
zation and aggregation is provided by user 
vigilance and by audit mechanisms that 
record the explicit downgrading of infor- 
mation. The controls over the classification 
of new files are helpful but can lead to the 
overclassification of data, since the high- 
water mark can never decrease during a 
given run. Routine overclassification is 
likely to lead to routine downgrading of 
classified data, which would make errors or 
intentional violations in downgrading 
harder to detect. 3 

5.3 Access Matrix Model 

The access matrix model for computer pro- 
tection is based more on abstraction of op- 
erating system structures than on military 
security concepts. One of the earliest de- 
scriptions of this model is provided by 
Lampson [LAMP71]; Denning and Graham 
[DENN71, GRAH72] describe and extend it. 
Because of its simplicity and generality, 
and because it allows a variety of imple- 
mentation techniques, it has been widely 
used. 

There are three principal components in 
the access matrix model: a set of passive 
objects, a set of active subjects, which may 
manipulate the objects, and a set of rules 
governing the manipulation of objects by 
subjects. Objects are typically files, termi- 
nalS, devices, and other entities imple- 
mented by an operating system. A subject 
is a process and a domain (a set of con- 
straints within which the process may ac- 
cess certain objects). It is important to note 
that every subject is also an object; thus it 
may be read or otherwise manipulated by 
another subject. The access matrix is a 
rectangular array with one row per subject 
and one column per object. The entry for a 
particular row and column reflects the 
mode of access between the corresponding 

3 Pa r t  of  the  informat ion  m this  pa ragraph  (in partic- 
ular, t he  a s se s smen t s  of  the  uti l i ty of  the  user  interface 
and  the  securi ty model)  is derived from conversa t ions  
with Marv  Schaefer  and  Clark W e i s s m a n  of SDC. 

subject and object. The mode of access 
allowed depends on the type of the object 
and on the functionality of the system; typ- 
ical modes are read, write, append, and 
execute. In addition, flags may be used to 
record ownership of a particular object. 

The access matrix can be viewed as re- 
cording the protection state of the system. 
Certain operations invoked by subjects can 
alter the protection state--for  example, if 
the owner of a file deletes it, the column 
corresponding to that file is removed from 
the access matrix. In addition, some modes 
of access may permit users to alter the 
contents of particular entries of the matrix. 
If the owner of a file grants another user 
permission to read it, for example, the per- 
mission must be recorded in the appropri- 
ate access matrix entry. Graham and Den- 
ning provide an example set of rules--for 
creating and deleting objects and granting 
or transferring access permissions--that al- 
ter the access matrix. These rules, together 
with the access matrix, are at the heart  of 
the protection system, since they define the 
possible future states of the access matrix. 

All accesses to objects by subjects are 
assumed to be mediated by an enforcement 
mechanism that refers to the data in the 
access matrix. This mechanism, called a 
reference monitor [ANDE72], rejects any 
accesses {including improper attempts to 
alter the access matrix data) that are not 
allowed by the current protection state and 
rules. Graham and Denning [GRAH72] con- 
sider each object to be an instance of a 
particular object type. References to ob- 
jects of a given type must be validated by 
the monitor for that  type. Each type mon- 
itor then uses the data in the access matrix 
to validate the requested operations. In this 
view, there is a separate monitor that  con- 
trols requests to change the access mat- 
rix. If all accesses of the access matrix 
pass through the access matrix monitor, 
that monitor is equivalent to the reference 
monitor. 

Because the access matrix model speci- 
fies only that  there are rules (and subjects 
and objects and access modes) but not what 
the rules (or subjects or objects or access 
modes) are in detail, the model has great 
flexibility and wide apphcability. It is diffi- 
cult, however, to prove assertions about the 
protection provided by systems that  follow 
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this model without looking in detail at the 
particular subjects, objects, modes of ac- 
cess, and rules for transforming the access 
ma t r ix .  H a r r i s o n ,  Ruzzo,  and  U l l m a n  
[HARR76] investigated an access matrix 
model with six rules similar to the examples 
posed by Graham and Denning and found 
undecidable the question of whether, given 
an initial access matrix configuration, an 
arbitrary access right can later appear at an 
arbitrary location in the access matrix. 

In actual computer systems, the access 
matrix would be very sparse if it were im- 
plemented as a two-dimensional array. 
Consequently, implementations that main- 
tain protection data tend to store them 
either rowwise, keeping with each subject 
a list of the objects and access modes al- 
lowed it, or columnwise, storing with each 
object a list of those subjects that may 
access it and the access modes allowed 
each. The former approach is called the 
capabili ty list approach, the latter, the ac- 
cess control list approach. These ap- 
proaches are often used together, as in 
MULTICS [ORGA72] and other virtual 
memory systems. Virtual memory ad- 
dresses can act as capabilities; possession of 
the address (and of the corresponding 
translation tables) in this sense suffices to 
authorize access to the corresponding data. 
And files in the system may have access 
control lists attached to control which sub- 
jects may actually read or alter the data in 
the file (even though all users may know 
the name of the file). 

The access matrix model, properly inter- 
preted, corresponds very well to a wide 
variety of actual computer system imple- 
mentations. Without some additions, how- 
ever, it does not include mechanisms or 
rules corresponding to the requirements for 
military security. In systems based on this 
model, the protection of a file of informa- 
tion is the responsibility of the file's owner. 
He can grant access to any user, and, typi- 
cally, any user granted read-access to the 
file can copy and distribute the information 
any way he pleases. Thus, without special- 
izing the model, it would be very difficult 
to prove any theorems concerning the flow 
of information. On the other hand, the 
model neatly separates the mechanisms for 
enforcement from the policy enforced: the 
mechanisms of the system are the enfor- 
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cers, and the current policy is contained in 
the current state of the access matrix. Note, 
however, that this interpretation of "pol- 
icy" implies that any subject with the abil- 
ity to create or delete objects or to grant or 
revoke object-access can alter the policy 
enforced. The simplicity of the model, its 
definition of subjects, objects, and access 
control mechanisms, is very appealing. 
Consequently, it has served as the basis for 
a number of other models and development 
efforts, described below. 

5.4 Models Based on Access Matrices 

This section presents two models that are 
based on the concept of an access matrix. 
Both are intended to represent the behavior 
of a capability-based operating system. The 
first was developed as part of an effort to 
construct a prototype security kernel; the 
second, developed in terms of graph theory, 
has had tittle practical application. 

5.4 1 UCLA Data Secure  UNIX 4 M o d e l  

The efforts at UCLA to design, implement, 
specify, and verify a security kernel for 
UNIX have been described in numerous 
papers and technical reports [POPE75, 
PoPE78a, PoPE78b, POPE79, WALK80]. The 
approach taken by Popek and his group is 
based on a concept they call data  security: 
direct access to data must be possible only 
if the recorded protection policy permits it. 
The kernel is intended to enforce only this 
notion of security; it does not embody a 
particular security policy (in contrast to the 
kernels based directly on the Bell and 
LaPadula model). In the UCLA implemen- 
tation, the protection policy is embodied in 
a separate process called the policy man- 
ager. A particular request from a user (e.g., 
to open a file) must be approved by the 
policy manager before the kernel will honor 
it. The kernel supports a form of capabili- 
ties, and the policy manager informs the 
security kernel of security policy by issuing 
the "grant-capability" kernel call. 

The specification of the kernel is given 
in four increasingly abstract levels 
[WALK80]. The lowest level is the kernel 

4 UNIX Is a trademark of Bell Laboratories. 
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implementation in an extended PASCAL; 
next is a "low-level specification" in the 
language of the XIVUS verification system 
[YONK76], organized as a "data-defined 
specification." Then comes an "abstract- 
level specification" formulated as a finite- 
sta~,, machine with the effect of each kernel 
cM' :'eflected in the transition function; fi- 
nmi:,, there is a "top-level specification," 
also given as a finite-state machine. Map- 
ping functions are provided from each lower 
level to the next higher one, so that a chain 
exists from the implementation to the top- 
level specification. 

The security model implemented by the 
UCLA Data Secure Unix (DSU) corre- 
sponds to the data security property re- 
quired of the top-level specification. The 
simplest description of the top-level model 
for DSU is given in WALK80. It is a finite- 
state machine model, with the state defined 
by the following four components: 

(a) process objects; 
(b) protection-data objects, with values 

being sets of capabilities; 
(c) general objects (comprising both pages 

and devices); and 
(d) a current-process-name object, whose 

value is the name of the currently run- 
ning process. 

The security criterion is given in terms of 
the state: a component of the state is ac- 
tually modified or referenced only if the 
protection data for the process named by 
the current-process-name object allow such 
access. In PoPE78a, a more formal and de- 
tailed definition of data security is given. It 
has three assertions, stated informally be- 
low: 

($1) Protected objects may be modified 
only by explicit request. 

($2) Protected objects may be read only by 
explicit request. 

($3) Specific access to protected objects is 
permitted only when the recorded pro- 
tection data allow it. 

In POPE78a and in KEMM79, these asser- 
tions concern the abstract-level specifica- 
tion; the top-level specification was appar- 
ently added later. 

The UCLA DSU model is in one sense 
more general than the Bell and LaPadula 
model. It includes no mention of classifica- 
tions, clearances, or the security lattice. All 
of these could be introduced, presumably, 
by an appropriately specified policy man- 
ager. The policy manager described in 
PoPE78b, though, is based on "colors." 
Each user and file has an associated color 
list, and for a user to access a file, his color 
list must cover the color list of the file. This 
access control technique also extends to 
processes and devices. Formally, this model 
appears equivalent to the military com- 
partment structure, and it could be used to 
implement a lattice structure. 

The UCLA DSU model was constructed 
only with the goal of preventing unauthor- 
ized direct references to or modification of 
protected data; it is not concerned with 
storage or timing channels. 

5 4 2 Take-Grant  Models 

Take-grant models use graphs to model 
access control. They have been described 
and studied by several people [JONE76, 
LIPT77, SNYD77, JONE78a, B]SH79, 
SNYD79]. Although couched in the terms of 
graph theory, these models are fundamen- 
tally access matrix models. The graph 
structure can be represented as an adja- 
cency matrix, and labels on the arcs can be 
coded as different values in the matrix. 
Because it is the most recently published 
and because it deals with a wider class of 
security problems than previous versions, 
the particular model of BISH79 will be de- 
scribed here. 

In a take-grant model, the protection 
state of a system is described by a directed 
graph that represents the same information 
found in an access matrix. Nodes in the 
graph are of two types, one corresponding 
to subjects and the other to objects. An arc 
directed from a node A to another node B 
indicates that  the subject (or object) A has 
some access right(s) to subject (or object) 
B. The arc is labeled with the set of A's 
rights to B. The possible access rights are 
read (r), write (w), take (t), and grant (g). 
Read and write have the obvious meanings. 
"Take" access implies that node A can take 
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Figure 1. Example of take. 
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F,gure 2. Example of grant. 

node B 's  access rights to any other  node. 
For  example,  if there is an arc labeled (r, g) 
f rom node B to node C, and if the arc f rom 
A to B includes a " t"  in its label, then  an 
arc f rom A to C labeled (r, g) could be 
added to the graph (see Figure 1). Con- 
versely, if the arc f rom A to B is marked  
with a "g," B can be granted any  access 
right A possesses. Thus,  i fA  has (w) access 
to a node D and (g) access to B, an arc f rom 
B to D marked  (w} can be added to the 
graph (see Figure 2). 

Because the graph need only include arcs 
corresponding to nonnull  entries in the ac- 
cess matrix,  it provides a compac t  way to 
present  the same information given in a 
relat ively sparse access matrix.  Capabi l i ty  
sys tems are thus pr ime candidates  for this 
modeling technique; each arc would then  
represent  a part icular  capabili ty.  

Toge the r  with the protect ion graph, the 
model  includes a set of rules for adding and 
deleting bo th  nodes and arcs to the graph. 
Two of these, corresponding to the exercise 
of " take"  and "grant"  access rights, have  
already been described. A "crea te"  rule al- 
lows a new node to be added to the graph. 
I f  subject  A creates  a new node Y, both  the 
node Y and an arc A Y are added to the 
graph. T h e  label on A Y includes any  subset  
of the possible access rights. A " remove"  
rule allows an access right to be removed  
f rom an arc; if all r ights are removed  f rom 
an arc, the arc is r emoved  as well. An early 
version of the model  [LIPT77] also included 
a "call" rule to model  invocation of a pro- 
g ram as a separa te  process. Other  rules can 
be added, depending on the proper t ies  of 
the sys tem being modeled,  but  in the pub- 
lished l i terature,  take, grant,  create,  and 
remove  are the key operations.  

The  questions first asked of this model  

were of the form: "Given an initial protec- 
tion graph and the set of rules, is it possible 
for a subject  A to gain a par t icular  access 
right to an object  B?"  Note  tha t  this is a 
question about  the possibility of the initial 
graph being t rans formed into one contain- 
mg a specific arc through some sequence of 
rule applications. The  work of Harrison,  
Ruzzo, and Ul lman [HARR76] showed this 
p rob lem to be undecidable for an a rb i t ra ry  
set of rules and an initial graph but  decid- 
able for a specific set  of rules. T h e  answer 
is s ta ted as a t heo rem in SNYD77: A can 
acquire the right in quest ion if and om:y .f 
there  is some subject  or object  tha t  alren-N. 
has the right and A and B are conne~'.¢ :l 
by a pa th  with a certain structure.  For the 
rules of the t ake -g ran t  model,  this answ,~r 
can be computed  in a t ime directly propc. ~- 
t ional to the size of the graph [JoNE76J. 

In BISH79, Bishop and Snyder  recognize 
tha t  information about  an object  can som ~- 
t imes be t ransferred to a subject  wi thout  
the subject ' s  gaining a direct  access right 
for tha t  object.  For  example,  informat ion 
can be copied f rom one object  to another  
and access to the copy can be granted  to 
others  wi thout  ever granting others  direct 
access to the original file. An information 
t ransfer  of this type is called de facto, while 
the t ransfer  of au thor i ty  according to the 
rules discussed earlier is called de jure. Four  
" representa t ive"  graph rewrit ing rules to 
model  de facto transfers  are described and 
studied. Edges added to the graph by ap- 
plication of de facto rules are called implicit  
edges to distinguish t h e m  from the explicit 
edges added by the de jure rules. Predicates  
called can-know and can-tell are defined to 
characterize the possibility tha t  an edge can 
be constructed between two nodes by ap- 
plication of the de facto rules. 
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An objection sometimes made to take-  
grant models is tha t  they are too "weak" to 
provide useful inferences about  protect ion 
systems: it is claimed that  the result  of 
applying a take-grant  model to a "real" 
system will be a fully connected graph--a l l  
subjects can gain access to all objects. Cer- 
tainly, this will be the case in any system in 
which a user can create a file and grant 
access to it to all users. The  problem is tha t  
the model  makes a worst case assumption 
about  the behavior  of users- - i f  a user can 
grant access rights for an object  to some 
other  user, the model  assumes tha t  at some 
time he will do so. In some cases, of course, 
this may  be the appropriate  assumption. If 
the users of the system cannot  be trusted, 
for example, and if the system itself can 
enforce no finer controls than  those on ca- 
pabilities, this model may  yield useful re- 
sults. It  does seem limited with respect  to 
its ability to model  controlled sharing of 
information, though. 

Snyder  partially addressed this problem 
[SNYD77] by defining a predicate can-steal 
to distinguish cases in which a subject  can 
gain an access right to an object without  
the collusion of another  subject  who al- 
ready has tha t  right. This  t r ea tmen t  deals 
only with de jure access. Jones [JosE78a],  
in applying the model  to demonst ra te  a 
security flaw in MULTICS,  extended the 
model to provide a finer control  on user 
discretion. She introduced the concept  of 
proper ty  sets as a restriction on the behav- 
ior of subjects and added procedure objects 
(a new node type) and rights for creating 
and invoking them. 

Like the UCLA DSU model, the take-  
grant model does not  include securi ty 
classes. Subjects  and objects are not  distin- 
guished according to clearance levels or 
security levels. The  levels could be added 
by labeling subjects and objects and by 
restricting the graph rewriting rules accord- 
ing to the lattice relations. The  likely result, 
in the case of the military security lattice, 
would be a graph-theoret ic  formulat ion of 
the Bell and LaPadula  model. 

5.5 Bell and LaPadula Model 

As par t  of its computer  security program, 
the Air Force sponsored the construction of 
some proto type  security kernels and some 

formal models for computer  security. Th e  
principal pro to type  efforts were conducted 
at M I T R E  and {sponsored by DARPA} at 
UCLA, while the research in formal models 
was performed both  at Case Western  Re- 
serve University, by Walter  et al. [WALT74, 
WALT75a, WhLw75b], and at  MITRE,  by 
Bell and LaPadula  [BELL73a, BELL73b, 
BELL74a, BELL74b, BELL75]. These  proto- 
type and model  developments  were sem- 
inal; current  efforts to build "kernelized" 
systems are based on the same ideas and 
use security models similar to the ones de- 
veloped in the Case Western  and M I T R E  
projects. Bo th  of these models are formali- 
zations and specializations of the access 
matr ix model  to incorporate mili tary secu- 
r i ty policy. Because the models developed 
at  Case and at  M I T R E  are so similar, only 
the lat ter  {Bell and LaPadula)  version is 
described here. 

Bell and LaPadula  use finite-state ma- 
chines to formalize their  model. Th ey  de- 
fine the various components  of the finite- 
state machine, define what  it means  {for- 
mally) for a given state to be secure, and 
then  consider the transitions tha t  can be 
allowed so tha t  a secure state can never  
lead to an insecure state. 

Although the presentat ions in the origi- 
nal reports  carry a heavy burden of nota- 
tion from systems theory,  the model  can be 
understood informally without  the nota- 
tion. In addition to the subjects and objects 
of the access matr ix model, it includes the 
security levels of the military security sys- 
tem: each subject  has a clearance and each 
object has a classification. Each subject  also 
has a current securtty level, which may not  
exceed the subject 's  clearance. 

The  access matr ix is defined as above, 
and four modes of access are named and 
specified as follows: 

read-only: subject  can read the object  
but  not  modify it; 

append: subject  can write the object  
but  cannot  read it; 

execute: subject  can execute the object  
but  cannot  read or write it di- 
rectly; and 

read-write:  subject  can both  read and 
write the object. 

A control  at tr ibute,  which is like an own- 
ership flag, is also defined. It  allows a sub- 
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ject  to pass to other  subjects some or all of 
the access modes it possesses for the con- 
trolled object. The  control a t t r ibute  itself 
cannot  be passed to other  subjects; it is 
granted to the subject  tha t  created the ob- 
ject. 

Creation of objects is viewed as a two- 
par t  operation: (1) addition of a new inac- 
tive object to the existing set of objects, and 
(2) activation of an inactive object. The  
tranquility principle asserts tha t  no oper- 
ation may change the classification of an 
active object. Bell and LaPadula  state and 
adopt  this principle, al though they recog- 
nize tha t  it is not  required by military se- 
curity structures. 

For  a state to be secure, two propert ies  
must  hold: 

(1) the simple security property: no subject  
has read access to any object tha t  has a 
classification greater  than the clearance 
of the subject; and 

(2) the *-property (pronounced "star-prop- 
erty"): no subject has append-access to 
an object  whose security level is not  at 
least the current  security level of the 
subject; no subject has read-wri te  ac- 
cess to an object whose security level is 
not  equal to the current  security level 
of the subject; and no subject has read 
access to an object whose security level 
is not  at most  the current  security level 
of the subject. 

A set of rules governing the transit ion 
from one state to another  is also given. 
These  rules are analogous to the example 
rules given by Graham and Denning for 
altering an access matrix, and are required 
to preserve the two security properties. The  
part icular  rules defined by Bell and La- 
Padula  provide the following functions: 

(1) get (read, append, execute, or read-  
write) access, to initiate access to an 
object by a subject  in the requested 
mode; 

(2) release (read, append, execute, or read-  
write) access, the inverse of get access; 

(3) give (read, append, execute, or read-  
write) access, to allow the controller of 
an object  to extend the designated ac- 
cess to another  subject; 

(4) rescind (read, append, execute, or read-  
write) access, the inverse of give access; 

(5) create object, to activate an inactive 
object; 

(6) delete object, to deactivate an active 
object; and 

(7) change security level, to allow a subject 
to alter its current  security level. 

With the formal definition of each rule is 
given a set of restrictions on the application 
of the rule to generate a new system state. 
For  example, a subject can only give or 
rescind access to an object  if the subject 
has the control  a t t r ibute  for tha t  object, 
and a subject  can only get read access to an 
object if the security level of the object  is 
at  most  the current  security level of the 
subject. In BELL74a, it is demonst ra ted  tha t  
each of the specified rules preserves the 
security proper ty  and the *-property. Since 
none of the rules affects the classifications 
of active objects, the rules obey the tran- 
quility principle as well. 

The  definition of the *-property given 
above is taken from BELL74a, p. 30, and 
BELL75, p. 83. Bell and LaPadula  also de- 
velop the notion of trusted subjects. A 
t rusted subject  is one tha t  can be relied on 
not  to compromise security even if some of 
its current  accesses violate the *-property; 
the *-property need only be enforced on 
requests made by untrusted subjects. The  
definition of this class of subjects recognizes 
tha t  the *-property is more stringent than  
military security requires. The  version of 
the *-property given above actually in- 
cludes the simple security proper ty  as well, 
since the current  securi ty level of the sub- 
ject  can never exceed the clearance of the 
subject. Despite the detailed definition 
given by Bell and LaPadula,  the te rm 
"*-proper ty"  today is usually identified 
only with the prohibit ion of "writing down" 
(i.e., the restriction on read-wri te  and ap- 
pend modes of access), and the simple se- 
curi ty proper ty  (or simple securi ty condi- 
tton) is still identified with the restriction 
on "reading up" (1.e., the restriction on read 
access). 

The  description of the Bell and LaPadula  
model given so far considers only a "fiat" 
set of objects- -objects  are atomic elements, 
each with a single classification and con- 
taining no distinguishable subelements.  In 
BELL74a, the model is extended to include 
hierarchies of objects, so tha t  a MU LTICS -  

Computing Surveys, Vol 13, No 3, September 1981 



262 • Carl E. Landwehr 

like tree-structured directory can be in- 
cluded. The report credits the group at Case 
Western Reserve as the originators of this 
aspect of the model. The approach in the 
extended model is to define a set of objects 
in a hierarchy to be compatible with the 
model if any path from the root node out- 
ward encounters objects with monotoni- 
cally nondecreasing classification levels. 
This aspect of the model has rarely been 
exploited in subsequent kernel develop- 
ment efforts. 

Since the Bell and LaPadula model was 
documented in BELL73a-BELL74b, it has 
been modified and reformulated in some 
respects as it has been applied to various 
design and implementation projects. The 
particular set of rules developed and proved 
by Bell and LaPadula is not integral to the 
model and is not generally used, although 
any system based on an access matrix 
model will have similar ones. The names 
used for modes of access are typically read 
(for read-only) and write or modify (for 
write-only), and these modes of access can 
be granted independently. Execute access 
is generally unused (although the model 
itself specifies no restrictions on its use), 
perhaps because few systems can effec- 
tively enforce execute-only access. 

Perhaps the most succinct and widely 
used restatement of the Bell and LaPadula 
model is given by Feiertag et al. [FE1E77]. 
They define the model in terms of subjects, 
objects, modify operations, and read oper- 
ations. Each subject and object is assigned 
a security level, and the following five ax- 
ioms govern the behavior of the system: 

Simple security condttion. A subject can 
read an object only if the security level of 
the subject is at least that of the object. 

*-property. A subject can modify an ob- 
ject O1 in a manner dependent on an object 
02 only if the security level of O1 is at least 
that of 02. 

Tranquihty principle. A subject cannot 
change the security level of an active object. 

Nonaccessibility of inactive objects. A 
subject cannot read the contents of an in- 
active object. 

Rewriting of inactive objects. A newly 
activated object is given an initial state 
independent of any previous incarnation of 
the object. 

In addition to their restatement of the 
model, the authors develop a nearly equiv- 
alent model that is more amenable to au- 
tomated proofs of security. It is this revised 
model that has been (and is being) used in 
the automated verification of a number of 
systems now under development. This 
somewhat more restrictive model incorpo- 
rates the notion of information flow de- 
scribed below. 

Designs and implementations based on 
the Bell and LaPadula model, or modifica- 
tions of it, include the security enhance- 
ments to MULTICS for the Air Force Data 
Services Center [ScHR77], the MITRE 
brassboard kernel [ScHI75, MILL76], the 
SIGMA message system used in the Mili- 
tary Message Experiment [AMEs78], the 
Kernelized Secure Operating System 
(KSOS) for the PDP-11 [McCA79], the Se- 
cure Communications Processor (SCOMP, 
also known as KSOS-6) for the Honeywell 
Level 6 [BoNN80], and Kernelized VM/370 
(KVM/370) [GOLD79]. The UCLA kernel 
[POPE78a, POPE79, WALK80] and the Prov- 
ably Secure Operating System (PSOS) de- 
sign [NEuM77, FEIE79] are based on a sep- 
aration of enforcement mechanisms from 
security policy. These systems are based on 
the use of capabilities for referencing ob- 
jects: proofs about the enforcement mech- 
anisms must demonstrate that the mecha- 
nism cannot be subverted or circumvented. 
Separate proofs would be needed to show 
that a particular use of the mechanism cor- 
rectly enforces a particular policy, but in 
both of these systems, the Bell and La- 
Padula model seems the intended policy for 
military applications. 

When it was first constructed, the Bell 
and LaPadula model (and the model of 
Walter et al., as well) was a significant 
advance in defining military security con- 
cepts formally in a way applicable to com- 
puter systems. It has served as the basis for 
several design, prototype, and implemen- 
tation efforts. Partly because of these ef- 
forts, some problems with it have been dis- 
covered. The static representation it pro- 
vides for military security is restrictive; al- 
though hierarchies of objects are provided 
for in BELL74a, the model does not lay out 
an appropriate set of axioms governing ref- 
erences to multilevel objects. The dynamics 
of security, reclassification, sanitization, 
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and downgrading can only be handled using 
the trusted process concept, and the model 
gives little guidance for determining which 
processes can be trusted. As originally for- 
mulated, some of the rules in the model 
allowed information to be transmitted im- 
properly through control variables (storage 
channels), but the work done by Walter et 
al. recognized this problem. In their final 
form, the rules of the model do not contain 
storage channels, but timing channels can 
exist. In sum, the principal problems with 
the model are not in the things it allows but 
in those it disallows: many operations that 
are in fact secure will be disallowed by the 
model. Systems based on the model are 
then faced with the choice between obeying 
the model but imposing severe constraints 
on functionality and allowing the desired 
functions by relying heavily on trusted pro- 
cesses. 

5.6 Information-Flow Models 

The significance of the concept of infor- 
mation flow is that it focuses on the actual 
operations that transfer information be- 
tween objects. Access control models (such 
as the original Bell and LaPadula model) 
represent instead the transfer or exercise 
by subjects of access rights to objects. In- 
formation-flow models can be applied to 
the variables in a program directly, while 
the access matrix models generally apply to 
larger objects such as files and processes. In 
an unpublished memorandum, Millen has 
pointed out that a set of rules specified 
according to the Bell and LaPadula model 
could preserve both the security and *- 
properties but could nevertheless contain 
storage channels, and that  these channels 
would be exposed by an analysis of the 
information flow in the rules. The channels 
in Millen's example are introduced by the 
return code given when a request to apply 
a rule is denied. The information passed by 
this code is neglected under the axioms of 
the Bell and LaPadula model but is dis- 
closed by an information-flow analysis. In- 
formation-flow models thus appear to pro- 
vide greater precision than access matrix 
models. 

This is not to say that flow models elim- 
inate the need for access control models; an 
access matrix can still be useful for speci- 
fying access policies (e.g., defining controls 

on user access to files). Like the Bell and 
LaPadula model, the flow model can detect 
both legitimate and storage channels but 
not timing channels. Also like the Bell and 
LaPadula model, there are programs that  
would be insecure in terms of the model 
but would not in fact be insecure (i.e., the 
model provides constraints that are suffi- 
cient, but not necessary). For an example, 
see MILL78a. 

Apparently, Popek [POPE73] was the first 
to note explicitly the applicability of partial 
orders in the context of access control. The 
ADEPT-50 system [WEIS69] had earlier 
implemented a lattice structure without 
noting its significance. Fenton [FENT74] de- 
veloped a structure in which data transfers 
were controlled according to a partial order 
relating the sensitivity of the data and the 
protection level of its destination. Walter et 
al. [WALT74] provided an early description 
of the military classification structure as a 
lattice, and Denning [DENN75, DENN76] 
introduced the concept of information flow 
as the ordering relation on the set of clas- 
sifications. A certification mechanism for 
verifying the secure flow of information 
through a program is presented in DENN77. 
Andrews and Reitman have developed a 
logic for proving assertions about the flow 
properties of programs [ANDR80]; their 
work is presented following that of the Den- 
nings. As described in a subsequent section, 
the flow model has in some respects been 
incorporated into the SRI version of the 
Bell and LaPadula model. 

At about the same time Denning's work 
appeared, people at MITRE realized that 
the variables within the security kernel it- 
self could act as information paths: infor- 
mation recorded in a kernel variable as a 
result of a kernel call by process A might 
be visible to a later kernel call by process 
B. If B has a lower security level than A, a 
violation may have occurred. This corre- 
sponds to a flow of information from a 
higher level to a lower level, even though 
the simple security and *-properties have 
both been enforced. Millen noted this prob- 
lem in MILL76. 

The flow model, compared with the Bell 
and LaPadula model, is relatively uncom- 
plicated. Instead of a series of conditions 
and properties to be maintained, there is 
the single requirement that  information 
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flow obey the lattice structure described 
below. Although the military security sys- 
tem had been earlier characterized as a 
lattice [WALT74], Denning's presentation 
makes it clear that the lattice model is of 
more general significance. 

An information-flow model has five com- 
ponents: 

(1) a set of objects, representing informa- 
tion receptacles (e.g., files, program 
variables, bits), 

(2) a set of processes, representing the ac- 
tive agents responsible for information 
flow, 

(3) a set of security classes, corresponding 
to disjoint classes of information, 

(4) an associative and commutative class- 
combining operator that specifies the 
class of the information generated by 
any binary operation on information 
from two classes, and 

(5) a flow relation that, for any pair of se- 
curity classes, determines whether in- 
formation is allowed to flow from one to 
the other. 

Under a set of assumptions that  is justi- 
fied in DENN76 as applying to nearly any 
rationally specified flow model, the set of 
security classes, the flow relation, and the 
class-combining operator form a lattice. 
Maintaining secure information flow in the 
modeled system corresponds to ensuring 
that actual information flows between 
objects do not violate the specified flow 
relation. This problem is addressed pri- 
marily in the context of programming lan- 
guages. 

Information flows from an object x to an 
object y whenever information stored in x 
is transferred directly to y or used to derive 
information transferred to y. Two kinds of 
information flow, explicit and implicit, are 
identified. A flow from x to y is explicit if 
the operations causing it are independent 
of the value of x (e.g., in a statement di- 
rectly assigning the value of x to y). It is 
implicit if the statement specifies a flow 
from some other object z to y, but execution 
of the statement depends on the value of x 
(e.g., in the conditional assignment 

i f  x t h e n  y :-- z; 

information about the value of x can flow 

into y whether or not the assignment is 
executed). 

According to this model, a program is 
secure if it does not specify any information 
flows that violate the given flow relation. 
Denning primarily treats the case of static 
binding, in which objects are bound to se- 
curity levels at compile time (this assump- 
tion corresponds roughly to the tranquility 
property in the Bell and LaPadula model). 
In DENN77, rules for compile time certifi- 
cation of secure information flow are pro- 
vided. The case of dynamic binding, in 
which the security level of some objects can 
change during program execution, is dis- 
cussed briefly in DENS75 and DENS76. The 
work of Andrews and Reitman is based on 
dynamic binding; Reitman also presents a 
certification mechanism for parallel pro- 
grams with static binding [REIT79]. 

The formulation of information-flow 
models that  Andrews and Reitman use is 
essentially the same as Denning's; they fo- 
cus on programs, which have three relevant 
components: variables, which contain in- 
formation; an information state, which is a 
mapping from the variables to the set of 
security classes; and statements, which 
modify variables and thus alter the infor- 
mation state. Statements correspond 
roughly to subjects, since they are respon- 
sible for causing information flow, and vari- 
ables correspond to objects. Since the se- 
curity classes are assumed to be finite and 
partially ordered, and to have a least upper 
bound operator, they again form a lattice. 
Variables are dynamically bound to secu- 
rity classes; transfer of information into a 
variable causes the variable to assume a 
classification in accordance with the trans- 
fer. 

In addition to the explicit and implicit 
flows identified in the Dennings' work (re- 
ferred to in ANDR80 as direct and indirect 
flows), Andrews and Reitman distinguish 
two types of implicit (indirect) flows: local 
and global. A local flow is an implicit flow 
within a statement, such as the flow from 
a Boolean condition to the statements 
within an alternation or iteration state- 
ment. Global flows are implicit flows be- 
tween statements. Sources of global flows 
include process synchronization statements 
and iterations (in the case that termination 
of the iteration is not guaranteed, execution 
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of the following statements conveys the 
information that the loop terminated). To 
characterize these flows, two auxiliary vari- 
ables, named "local" and "global," are in- 
troduced to record the current classification 
of local and global flows. 

On the basis of this model, the authors 
develop axioms for the information-flow se- 
mantics of assignment, alternation, itera- 
tion, composition, and procedure invoca- 
tion. These axioms correspond to the ax- 
ioms developed by Hoare [HOAR69] for the 
semantics of a programming language, but 
they deal only with the information flows 
(both explicit and implicit) that can be gen- 
erated by the various types of statements 
in a language. The axioms are based on the 
lattice model for information flow but do 
not otherwise incorporate a specific policy. 
Following the development of these axioms 
for sequential programs, axioms for concur- 
rent execution and for synchronization via 
the semaphore operations "wait" and "sig- 
nal" are developed. These allow proofs of 
information-flow properties to be con- 
structed for a class of parallel programs. 

Andrews and Reitman distinguish an ac- 
cess policy, which specifies the rights that 
subjects have to objects, from an informa- 
tion-flow policy, which specifies the classes 
of information that can be contained in 
objects and the relations between object 
classes. To a point, these policies are inter- 
changeable, or at least dependent: restric- 
tions on a subject's access to an object will 
presumably restrict the flow of information 
(and hence the information that can be 
contained in a particular object). Con- 
versely, restrictions on flow will have an 
effect on what access rights a given subject 
can exercise for a given object. Neverthe- 
less, this distinction clarifies the perspec- 
tives from which an access matrix model 
and an information-flow model view a com- 
puter system. 

Flow proofs demonstrate that a given set 
of flow assertions (e.g., that  the security 
class of x is dominated by the security class 
of y) holds at a particular place in a pro- 
gram. A flow policy, if formulated as a set 
of flow assertions, can then be proved to 
hold (or not to hold) at particular points in 
the execution of a program. Andrews and 
Reitman distinguish two types of policies: 
final valuepolicies, which only require that 

the assertions hold on termination of the 
program, and high-water-mark policies, 
which must be true for each information 
state in a program. 

In REIT79, Reitman presents a compile- 
time certification mechanism for parallel 
programs with static binding of variables to 
security classes. This mechanism is essen- 
tially an extension of the one developed by 
the Dennings in DENN77 to include the 
structures for parallel programming for 
which flow axioms are developed in 
ANDR80. Because it requires static binding, 
this mechanism is less general than the flow 
proofs of ANDR80, but this restriction 
makes possible compile-time certification 
that a program obeys a particular policy. 
The policies that may be used, of course, 
must also abide by the static binding re- 
striction. 

5.7 Extensions and Applications of the Bell 
and LaPadula Model 

Since its original exposition, the Bell and 
LaPadula model has been extended, ap- 
plied, and reformulated by several different 
authors. Modifications and applications of 
three kinds are described in this section: (1) 
addition of the concept of integrity to the 
model, (2) the application and extension to 
model database management systems, and 
(3) the reformulation of the model for use 
with automated verification tools. 

5 7.1 Integnty 

The Bell and LaPadula model is concerned 
with preventing the improper disclosure of 
information. Consequently, subjects are 
prevented from reading information for 
which they are not cleared and from writing 
(transmitting) information to subjects at 
lower clearance levels. Biba [BIBA77] no- 
ticed a class of threats, based on the im- 
proper modification of information, that 
this model neglects. These threats arise 
because there is often information that 
must be visible to users at all security levels 
but should only be modified in controlled 
ways by authorized agents. The controls on 
modification in the Bell and LaPadula 
model do not cover this case because they 
are based only on the sensitivity to the 
disclosure of that information. 
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As a remedy, Biba introduces the concept 
of integrity levels and integrity policy. The 
integrity level of information is based on 
the damage to national security its un- 
authorized modification could cause. Integ- 
rity compartments are defined analogously 
to security compartments, with different 
compartments reflecting different func- 
tional areas. 

The integrity levels and compartments 
are ordered, as are sensitivity levels and 
compartments, to form an integrity lattice. 
Biba uses the same names for integrity 
levels as are used for security levels, with 
top secret integrity corresponding to infor- 
mation most sensitive to unauthorized 
modification (or in his words, sabotage). 
This choice is unfortunate, since informa- 
tion with "top secret" integrity may not be 
secret at all. Integrity levels for subjects 
correspond to clearances. 

Biba also provides some example integ- 
rity policies that correspond to security pol- 
icies. A "low-water-mark" integrity policy 
sets the integrity level of a subject to the 
lowest level of any object observed by that  
subject, and a subject can only modify ob- 
jects dominated by the subject's current 
integrity level. Alternatively, the integrity 
level of any modified object can be reduced 
to the minimum of its current integrity level 
and the current integrity level of the subject 
performing the modification. A policy of 
"strict integrity" is the dual of the Bell and 
LaPadula security policy {interchanging 
"read" and "write" and substituting "integ- 
rity" for "security" in the original rules): a 
subject can only read objects with integrity 
at least as great as its own and can only 
write objects with integrity less than or 
equal to its own. Bonyun [BONY78] asserts 
that a policy of strict integrity will be too 
constraining to be useful and proposes an 
alternative that is slightly weaker than 
Biba's; Bonyun refers to it as a "semi-dual" 
of security and integrates it with an 
approach to handling the aggregation 
problem. 

There has been little experience to date 
with integrity policies. In manual systems, 
the integrity problem is substantially re- 
duced, since it is difficult to modify infor- 
mation accidentally or maliciously without 
detection. Both the KSOS and SCOMP 

kernels are to provide integrity controls 
according to the strict integrity model, but 
the integrity levels to be supported have 
only been specified as system administrator 
(highest), operator, and user (lowest). It is 
unclear exactly how integrity levels will be 
assigned to various system objects. Al- 
though the integrity problem has appar- 
ently only been examined in a military con- 
text to date, it seems clear that it can arise 
in civilian applications as well: consider the 
effect of an unauthorized modification of 
a mailing address in an electronic mail 
system. 

5 7 2 Database Management Systems 

An application that has been of particular 
interest since the beginning of work on se- 
cure computer systems is the implementa- 
tion of a secure database management sys- 
tem (DBMS). As part of the work spon- 
sored by the Air Force to develop a secure 
version of MULTICS, Hinke and Schaefer 
[HINK75] provided an interpretation of the 
Bell and LaPadula model for a relational 
database implemented on top of a MUL- 
TICS file system. The considerations as to 
how classifications should be applied to the 
elements of a relational database and how 
the database can be mapped onto the ob- 
jects protected by a secure MULTICS are 
lengthy, but the underlying Bell and La- 
Padula model is used essentially un- 
changed. As this work preceded Biba's, in- 
tegrity is not a part of the model employed. 
The authors do consider the use of access 
control lists {referred to as "need-to-know" 
lists) to regulate discretionary access to 
files, but they note that strict observance of 
the *-property would require that  the ac- 
cess list for a new file would be the mutual 
intersection of all the previous access lists 
of objects read by the process performing 
the write. They recommend against such a 
policy on the grounds that it is likely to 
result in the user's writing data that only 
he can read (i.e., the intersection of all of 
the access control lists referenced will tend 
to be only the ID associated with the proc- 
ess doing the reading). 

In applying classifications to the struc- 
ture of a relational DBMS implemented on 
a MULTICS-based security kernel, Hinke 
and Schaefer recommend that  classifica- 
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tions be attached to the fields of a relation, 
as opposed to classifying specific entries of 
fields of relations or classifying entire rela- 
tions at a single level. For example, if a 
relation were defined between the fields 
"supplier" and "part," all entries of the 
supplier field would be classified at a single 
level and all entries of the part field would 
be classified at a single (perhaps different) 
level. Each field would be stored in a MUL- 
TICS segment with a classification corre- 
sponding to that field. Classifications of 
segments and accesses to segments would 
be controlled by the MULTICS security 
kernel, so that the security of the database 
management system would depend only on 
the security kernel. The authors also de- 
velop a number of rules concerning the 
ordering of classifications of various fields 
of relations, depending on whether a field 
is a primary key for the relation. These 
rules are generally derived from the prop- 
erties of the Bell and LaPadula model. 

Later work by Grohn [GRoH76] takes a 
more formal approach to modeling a secure 
database management system. Starting 
with the Bell and LaPadula model, Grohn 
extends it to include integrity levels and 
compartments. Each object in the model 
has both a security level and an integrity 
level; together these compose its protection 
level. Integrity properties are defined as the 
formal duals of the security properties. The 
tranquility property applies to both secu- 
rity and integrity, and there is a discretion- 
ary integrity property in addition to discre- 
tionary security. 

Grohn also alters the directory structure 
of the Bell and LaPadula model. In his 
model the directory structure partitions the 
objects by protection level: each directory 
contains the identifiers of all objects of a 
given protection level. The directory itself 
is assigned that same protection level. A set 
of lattice directory functions is also defined 
which, given the level of a directory, gen- 
erates a list of all existing directories that 
dominate that level and a list of all direc- 
tories dominated by that  level. These func- 
tions allow a subject to enumerate all the 
objects accessible to it (directories are ex- 
empt from discretionary access controls). 
In the Bell and LaPadula model, the direc- 
tory structure is hierarchical, with the re- 
quirement that any node must have a clas- 

sification that is dominated by its succes- 
sors (i.e., the root of each tree must be its 
least classified node). There is no guarantee 
that a subject can enumerate all the objects 
classified at or below its clearance. 

The approach Grohn takes to imple- 
menting a relational DBMS on his model 
differs from that of Hinke and Schaefer in 
the unit to which a classification is applied. 
Instead of classifying each field (domain) of 
a relation, he favors classifying only the 
relation as a whole. He argues that, for 
convenience of observation and modifica- 
tion, all fields would have to be at the same 
level of classification anyway, and that  this 
requirement is equivalent to placing a clas- 
sification on the relation as a whole instead 
of on each field. 

5 7 3 Reformulation for Use w#h Automated 
Program Verihers 

As part of efforts to specify a Provably 
Secure Operating System (PSOS) and to 
verify the Kernelized Secure Operating 
System (KSOS), Feiertag and others from 
SRI International reformulated the model 
and altered it slightly to simplify its use in 
proving theorems about systems specified 
with formal languages. The reformulation 
allows the proof of security to be factored 
into smaller pieces by assigning each func- 
tion reference (a function reference is a 
function call with a particular set of argu- 
ments} and state variable a specific security 
level, so that the security level of each data 
item referenced in the specification of a 
function can be compared to the level of 
the function reference. Proofs in KSOS are 
intended to cover only the security kernel, 
while in PSOS the entire system specifica- 
tion is to be verified. Although the revised 
models described in NEUM77, FEIE77, and 
KSOS78 are presented as reformulations of 
the Bell and LaPadula model, they embody 
the concepts of information-flow models. 
Because it is the most recent version of the 
model and the one that  has been carried 
farthest in implementation of a production 
operating system, the KSOS version of the 
model will be described here. 

The KSOS model informally defines a 
system as multilevel secure if, for any two 
processes HS (operating at a high security 
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level) and LS (operating at a lower 5 security 
level), HS can do nothing to affect in any 
way the operation of LS. In this case, LS 
can know nothing of HS (it may not even 
know that HS exists) since it could only 
gain such knowledge if HS had somehow 
influenced its behavior. Since information 
cannot be transmitted from a process at a 
higher security level to one at a lower level, 
information can only flow upward in the 
security lattice or remain at the same level. 
The similarity of this general model to the 
information-flow models is apparent. Integ- 
rity is defined informally in a parallel way: 
a process LI (operating at a low intergrity 
level) can do nothing to affect the operation 
of a process HI (operating at an integrity 
level greater than or incomparable with 
that of LI). 

This informal model is developed for- 
mally in two steps. First, a general model is 
defined in which the system is character- 
ized by its function references and a relation 
called "information transmission." One 
function reference transmits information to 
another if there is any possibility that  the 
information returned by the second func- 
tion reference is affected by the first func- 
tion reference. Security and integrity levels 
are associated with each function reference; 
in practice, these levels would be the cur- 
rent levels of the process issuing the func- 
tion reference. 

This model is brought closer to actual 
system specifications by including state 
variables as well as function references. 
Each state variable has an assigned security 
and integrity level. Function references 
may depend on some state variables and 
may change other state variables. (These 
functional dependencies replace the notions 
of reading and writing state variables in the 
Bell and LaPadula model.) The constraints 
on functional dependencies are the follow- 
ing: 

(a) If function reference f depends on state 
variable v, then the security level of v 
is less than or equal to the security level 

s Actually, lower or incomparable: since security levels 
are only partially ordered, it m possible that for levels 
L1 and L2, neither L1 ___ L2 nor L2 <_ L1. An example 
of two such levels would be "secret, NUCLEAR" and 
"secret, NATO" 

of f and the integrity level of v is greater 
than or equal to the integrity level of f. 

(b) If function reference f may cause the 
value of state variable v2 to change in 
a way dependent on state variable vl, 
then the security level of v~ is less than 
or equal to that of v2 and the integrity 
level of v~ is greater than or equal to 
that  of v2. 

(c) If function reference f may affect the 
value of state variable v, then the se- 
curity level of v is greater than or equal 
to that of f and the integrity level of f i s  
greater than or equal to that  of v. 

Properties (a) and (c) correspond approxi- 
mately to the simple security property and 
the *-property, respectively, of the Bell and 
LaPadula model. Property (b) addresses 
functions that  may both read and write 
state variables; in the Bell and LaPadula 
model such functions could only be ob- 
tained by composition of operations that 
individually either read or write state vari- 
ables. 

Finally, property (b) is split and modified 
to handle the complexities introduced by 
systems that  have "trusted" functions and 
that allow side effects at higher levels of 
functions invoked from lower levels. 6 By 
enforcing only the desired half of the split 
version, a system can allow information to 
flow downward in restricted cases. The ital- 
icized parts of (b") denote differences from 
(b'): 

(b') If function reference f may cause the 
value of state variable v2 to change in 
a way dependent on state variable vl, 
then 

(i) either the security level of vl is 
less than or equal to that of v2 or 
the security level of f is greater 
than or equal to that of vl, and 

(ii) either the integrity level of vl is 
greater than or equal to that  of 
v2 or the integrity level of f is less 
than or equal to that  of v~. 

Discussions with R. Femrtag, one of the authors of 
the model, disclosed that the published version of 
property (b') [KSOS78] contains two erroneous equal 
signs, and property (b") is lacking. 
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(b") If function reference f may cause the 
value of state variable v2 to change in 
a way dependent on state variable vl, 
then 

(i) either the security level of vl is 
less than or equal to that of v2 or 
the security level of v2 is greater 
than or equal to that off, and 

(ii) either the integrity level of v~ 
is greater than or equal to that 
of y2 or the integrity level of f 
is greater than or equal to that 
of V2. 

Typically, a trusted function may be al- 
lowed to violate the *-property (for secu- 
rity) or the simple integrity property, but 
will be required to enforce the other prop- 
erties of the model. In the final model prop- 
erties P2a and P2b' compose the simple 
security property; properties P2b" and P2c 
compose the *-property. If a system func- 
tion is to be allowed to violate the *-prop- 
erty, only P2a and P2b' must be enforced. 
Functions allowed to violate simple integ- 
rity must still obey properties P2b" and 
P2c. 

This adaptation of the Bell and LaPadula 
model gains much of its importance from 
its integration with the automated tools for 
program-specification (using the SPECIAL 
language [RoUB77]) and theorem proving 
(using the Boyer-Moore theorem power 
[BoYE79]) also developed at SRI. These 
tools, including the Multilevel Security For- 
mula Generator, which incorporates this 
model, are being used to verify the security 
properties of system specifications in a 
number of current projects (e.g., work re- 
ported by McCauley on KSOS and by Bon- 
neau on SCOMP [McCA79, BONN80]). 

5.8 Programs as Channels for Information 
Transmission 

In different ways, each of the final three 
models views a program as a medium for 
information transmission. The key question 
for them becomes exactly what information 
is conveyed by the execution of a program 
and what deductions about protected infor- 
mation are possible. The appeal of these 
approaches lies in their comprehensiveness. 
Their  drawback is that  in their present 
state none of them is ready to be applied to 
actual development of a system. 

The work by Jones and Lipton on filters 
views a protection mechanism as a filter on 
the information passed from a program's 
inputs to its outputs. Cohen first takes an 
information-theoretic view: a program 
transmits information to the extent that 
variety in its initial state induces variety in 
its final state. Later, he develops a similar 
structure based on the deductions that can 
be made about the initial state of a set of 
variables given the final state of a variable. 
Millen and Furtek also attempt to formalize 
the notion of deduction in their work on 
constraints. They view the execution of a 
program as a sequence of states determined 
by the input to the program and the tran- 
sitions allowed by the program's structure. 
An observer, knowing the allowable states 
of the system and able to view portions of 
the actual sequence of states that occurs, 
may be able to deduce things about the 
remaining (hidden) portions of the state 
sequence. 

5 8 1 Fi l ters 

Jones and Lipton have formulated a model 
to capture definitions of both a security 
policy and a protection mechanism in- 
tended to enforce that policy [JONE75, 
JOiE78b]. A policy, given in nonprocedural 
form, defines who may use what informa- 
tion in the system. The protection mecha- 
nism tells how the information is to be 
protected and is stated procedurally. The 
soundness of a mechanism with respect to 
a policy is determined by how well it en- 
forces the policy. 

A program is characterized as a function 
from the Cartesian product of the domains 
of all program inputs to the domain of the 
output. The observabdity postulate asserts 
that all available information about the 
program inputs (including, for example, ex- 
ecution time) must be encoded in the out- 
put value. A protection mechanism is de- 
fined as a function relative to a program: it 
maps the input domain of the program to 
an output domain expanded to include a 
set of violation notices. Given an input, the 
protection mechanism must either produce 
the same output as does the program or it 
must produce a violation notice (e.g., it may 
refuse to provide a requested piece of infor- 
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mation). A security policy is also defined 
with respect to a program: a security policy 
is a function that maps from the input 
domain of the program to some subset of 
that  domain. The policy thus acts as a filter 
on the program inputs. An observer of the 
program's output should only be able to get 
information about the subset of the inputs 
that passes through the security policy fil- 
ter. In the cited references this subset is 
always formed by simply eliminating some 
of the input variables. A finer control of 
policy might be accomplished by restricting 
a variable to a particular range of values 
instead of eliminating it altogether. A pro- 
tection mechanism is sound if the outputs 
it produces are the same as if it had received 
the input as filtered by the security policy 
instead of the actual input. 

A partial ordering of protection mecha- 
nisms for a given program and security 
policy is developed. A sound mechanism 
M1 is more complete than another sound 
mechanism M2 if, for all inputs on which 
M2 returns the same value as the original 
program, M1 also returns that  value, and, 
for at least one input for which M2 returns 
a violation notice, M1 does not return one. 
Based on this definition, it is established 
that for a given program and policy, there 
is a "maximal" protection mechanism. 

To illustrate the use of this framework, 
the authors develop a "surveillance protec- 
tion mechanism" to enforce a restricted 
class of security policies on programs con- 
structed in a simple flowchart language. For 
each variable (input, output, temporary, 
and location counter) in the original pro- 
gram, a corresponding surveillance variable 
is added. The value of the surveillance vari- 
able is a set of indices that  define which 
program variables have influenced the 
value of the variable under surveillance. 
Each component of the original flowchart 
program is replaced by a modified one that 
both performs the original function and 
updates the appropriate surveillance vari- 
ables. At the termination of the program, 
the values of the surveillance variables can 
be checked against the requirements of the 
security policy to determine whether a par- 
ticular result can be reported to a user or 
not. 

The surveillance protection mechanism 
is proved to be sound if running times are 

not observable, and a modified version of it 
is proved sound even if running times are 
visible. Finally, it is shown that there is no 
effective procedure for finding a maximal 
protection mechanism for an arbitrary pro- 
gram and security policy. 

The surveillance protection mechanism 
seems to have much in common with the 
flow-analysis approach Denning applied 
to programming language constructs 
[DENN75]. The model as a whole provides 
clean formal definitions of security policy, 
protection mechanism, soundness, and 
completeness, but has found little applica- 
tion in practice. To model a system con- 
strained by military security policy, a pro- 
gram-independent formulation of that pol- 
icy within the model framework would be 
required. 

5.8.2 Strong Dependency 

In an effort to provide a formal basis for 
reasoning about information transmission 
in programs, Cohen has developed an 
approach he calls strong dependency 
[CoHE77, COHE78]. This approach is based 
on the notion, fundamental to information 
theory, that information is the transmission 
of variety from a sender to a receiver. For 
example, if the sender can be in one of three 
states, and it sends a different message to 
the receiver corresponding to each state, all 
of the variety in the sender is transmitted 
to the receiver. If only two different mes- 
sages are possible, some of the variety in 
the sender is not available to the receiver. 

Consider a sequential program P with a 
set of variables A and a particular variable 
b. If two executions of P, starting in initial 
states that  differ only in their values for 
some variable(s) in A, can lead to termina- 
tions with two different values for b, then 
b is said to be strongly dependent on A over 
the execution of P. Note that this definition 
only requires that some two different values 
for variables in A lead to different values 
for b, not all. 

Two variables can be strongly dependent 
even if there are states in which no variety 
is conveyed from one to the other. For 
example, the program statement 

i f m = 0 t h e n b : = a + l ;  

never transfers information from a to b if 
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m is always nonzero when the statement is 
executed. In this case, the assertion [m non- 
zero] eliminates the variety that would 
have been conveyed by the program. 

If a set of constraints covers all possible 
cases of the variables in a set A and if the 
truth value of each constraint is unaffected 
by the values of variables outside that  set, 
the set is said to be a cover for A and to be 
A-strict. A variable b is defined to be selec- 
tively independent of A over the execution 
of program P with respect to a constraint 
set if that  constraint set is a cover and is A- 
strict, and if for each individual constraint 
b is not strongly dependent on A. Cohen 
also develops the idea of relative autonomy 
of a constraint with respect to a set A of 
variables. Roughly, a constraint is autono- 
mous relative to A if it does not relate 
variables within A to variables outside of 
A. 

On the basis of these definitions, Cohen 
[COHE77] formalizes the same sort of infor- 
mation-flow properties for lattice structures 
as did Denning [DENN 75]. He also provides 
a statement of the confinement problem in 
this framework. In more recently published 
work [COHE 78], Cohen discusses difficulties 
with strong dependency when nonauton- 
omous constraints are used. Taking a de- 
ductive instead of information-theoretic ap- 
proach, he develops a formally equivalent 
model related to the work of Jones and 
Lipton [JoNE75, JONE78b]. The deductive 
view asserts that information has been 
transferred from set A to variable b by the 
execution of a program if the final value of 
b can be used to deduce information about 
the initial values of variables in A. 

Working with this reformulation and us- 
ing a formalism derived from projective 
logic, he develops definitive dependency 
and contingent dependency. Definitive de- 
pendency arises from the idea that  one 
constraint may provide more information 
about the state of A than others; the 
stronger constraint is the more definitive. 
In some cases a constraint may provide 
definitive information about A only if some 
additional information, not concerning A, is 
given. Such a constraint is A-contingent, 
and contingent dependency is defined ac- 
cordingly. Cohen demonstrates that contin- 
gent dependency is equivalent to strong 
dependency if relatively autonomous con- 

straints (or no constraints) are given. In 
addition, contingent dependency can model 
the transmission of information with non- 
autonomous constraints. 

Although Cohen has developed proof 
rules based on strong dependency for four 
basic programming language constructs 
(assignment, sequence, alternation, and it- 
eration), his work has yet to be applied in 
current efforts to model and to build secure 
systems. 

5.8 3 Constraints 

Given the definition of a finite state ma- 
chine, the set of possible sequences of states 
through which the machine can cycle can 
be determined. In addition, it is possible to 
define sequences of states that cannot oc- 
cur. For example, in a typical pushdown 
stack, the sequence "push the value 1 onto 
the stack" followed immediately by "pop 
the stack, returning value 0" would be ex- 
cluded. Thus an observer, given the ma- 
chine definition and an observation of the 
event {pop, 0) at transition n, could deduce 
that {push, 1) could not have occurred at 
transition n - 1. Furtek and Millen have 
developed a theory of constraints that 
models the deductions a user can make 
about a system in this way [FuRT78a, 
FURT78b, FURT79, FURT80, MILL78b, 
MILL78C]. 

A constraint specifies a sequence of states 
that cannot occur; the development of con- 
straints is analogous to the development of 
implicants in switching theory. A variable 
can assume any of a range of values. If v is 
a possible value for a variable a, then ao is 
a condition. The condition is satisfied by a 
system state q if a -- v in q. A term is a 
conjunction of conditions in which each 
variable in the system appears at most 
once. A term is satisfied by a system state 
if all of its conditions are satisfied. To intro- 
duce restrictions on a sequence of system 
states, a Cartesian product {called a sym- 
bolic product) of conditions is formed; the 
symbolic product is satisfied by a state se- 
quence only if each state in the sequence 
satisfies the corresponding term in the 
product. If there is no sequence of states 
(called a simulation) allowed by the ma- 
chine's definition that satisfies a given sym- 
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bolic product, that  product is called a con- 
straint. A constraint that  is a symbolic 
product of n terms is called an n-place 
constraint. A constraint isprime if and only 
if deleting any of its conditions results in a 
symbolic product that is not a constraint. If 
the values of all but one of the variables 
occurring in a prime constraint are known 
to (or can be controlled by) an observer, 
then he can deduce something about the 
remaining one. (Specifically, he can exclude 
at least one possible value for that variable 
at one point in the simulation.) A cover is 
a set of two-place constraints such that 
each disallowed state transition satisfies 
some constraint in the cover. 

Security can be introduced into this 
model by providing a mapping for each 
variable to one of the levels in the usual 
security lattice. The variables of the system 
may also be partitioned into those that  are 
internal to the system (not directly observ- 
able) and those that are external input or 
output variables. A system may then be 
defined to be secure against unauthorized 
disclosures if no user at a level s can deduce 
anything about the value of an individual 
input at a higher or incomparable level by 
observing external variables at level s or 
below and/or  control of inputs at any level. 
This definition is equivalent to requiring 
that, for any prime constraint in which only 
input and output variables occur, the least 
upper bound of the levels of the inputs is 
less than or equal to the least upper bound 
of the levels of the outputs. 

In practice, the prime constraints for 
even a simple system can be arbitrarily 
long, and there can be arbitrarily many 
prime constraints; however, the set of all 
prime constraints for a given system forms 
a regular language. Furtek [FURT79] has 
written a program that  accepts a set of two- 
place constraints and generates a finite- 
state acceptor for the set of all prime con- 
straints. Millen [MILL78b] develops a suf- 
ficient condition for security in systems that  
can be characterized by s~mple constraints 
of the form 

p × av, 

where p is an arbitrary term and av repre- 
sents any single condition. This condition 
is related to the *-property of Bell and 
LaPadula and is called the monotonicity 

condition. Given an assignment of external 
variables to security levels, an extension of 
that  assignment to all variables is monotone 
with respect to a simple cover (a cover 
consisting of simple constraints) if, for all 
variables a and constraints p × bv in the 
cover, if a occurs in p then the security 
level assigned to a is less than or equal to 
the level assigned to b. Systems for which 
there is a monotone extension of the exter- 
nal level assignment are shown to be secure 
in the sense defined above [MILL78C]. 

The appeal of this approach lies in its 
ability to define a necessary and sufficient 
condition for a system to be secure (this 
definition is the first one given; the mono- 
tonicity condition is sufficient but not nec- 
essary). As in Cohen's approach, the au- 
thors carefully define what a deduction is 
and then construct a model in which de- 
ductions can be controlled. Unfortunately, 
the specification of a system in terms of its 
constraints can be a difficult problem even 
with automated aids for generating prime 
constraints from two-place constraints, and 
so the practicality of the approach remains 
to be demonstrated. 

6. DISCUSSION 

Table 1 compares the models discussed 
above with respect to motivation, ap- 
proach, view of security, and use. A useful 
comparison of models should examine both 
the definition of security and the feasibility 
of implementing a computer system that 
performs the application required of it and 
can be verified to simulate the model. Un- 
fortunately, such a comparison is difficult 
because few implementations based on 
these models have reached a stage where 
their performance can be reliably estimated 
or where verification of their security prop- 
erties can be attempted. Nevertheless, 
some of these models are better candidates 
as bases for future secure systems than 
others. 

Each model defines its own world and its 
own concept of security in that world, and 
a computer system that truly simulates any 
of the models will be secure in the sense 
defined by that  model. To say that  certain 
channels are not "detected" by a model is 
really to say that  certain structures and 
information flows found in implementa- 
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Table 1. Comparison of Proporhes of Models 

• 273 

Proper t ies  

Models" 

A.M U C L A  T-G H W M  B + L 1  B + L 2  Flow Filt  S D .  Cons  

Motwatmn  
Developed pr imari ly  to rep- X X b X b 

resent  existing sys tem(s)  
Developed to guide construc-  X 

t lon of fu ture  sy s t ems  

V~ew of  Security 
Models  access  to objects  X X X X 

wi thout  regard to con ten t s  
Models  flow of informat ion  

among  objects  
Models  inferences t ha t  can 

be made  about  protec ted  
da ta  

Approach 
Model  focuses on sy s t em  X X X X 

s t ruc tures  (files, processes) 
Model  focuses on language 

s t ruc tures  (variables, s tate° 
ments)  

Model  focuses on operat ions X X 
on capabilit ies 

Model  separa tes  protect ion X X X 
m e c h a m s m  and  securi ty  
pohcy 

Sys t ems  based  on or repre- X X X 
sen ted  by th is  model  have  
been implemen ted  

X X X X X X 

X 

X X 

X X X 

X X X 

X X X 

X 

X 

a A.M. = access matrix;  U C L A  = U C L A  D a t a  Secure  Unix,  T -G  = take-grant ;  H W M  = h igh-water  mark ,  B + 
L1 = Bell and  LaPadu la  (original); B + L2 = Bell and  LaPadu la  (rewsed); Flow - reformat ion  flow, Filt = 
filters, S D. = s t rong dependency,  Cons  = constraints .  

b While  this  model  describes a single existing sys tem,  it could be used  to guide the  cons t ruc t ion  of future  
sys tems.  

tions are difficult to map into the structures 
defined by that model. A problem common 
to all of the models is that they define 
security as absolute: an operation is either 
secure or not secure. This approach does 
not help the designer or implementer who 
must make trade-offs between security and 
performance. 

In assessing the protection afforded by 
safes, for example, ratings are given on the 
basis of the time it would take to break into 
the safe with tools reasonably available to 
the attacker. Cryptographic codes are rated 
on the basis of their work factors--the time 
it would take to "break" the code given the 
tools of the cryptographer. Similar mea- 
sures suitable for assessing the time it 
would take to defeat a particular safeguard 
or the rate of information flow over a par- 
ticular timing channel in computer systems 
have yet to be formalized. 

With respect to their definitions of secu- 
rity, the models can be divided roughly into 
three groups: those that are concerned only 
with controlling direct access to particular 
objects (access matrix model, UCLA DSU 
model, take-grant model); those that  are 
concerned with information flows among 
objects assigned to security classes (infor- 
mation-flow model, revised Bell and La- 
Padula model); and those that are con- 
cerned with an observer's ability to deduce 
any information at all about particular vari- 
ables (filters, strong dependency, con- 
straints). (The high-water-mark model falls 
between the first and second groups, since 
it is concerned with the security levels of 
the objects a process touches over time, but 
it only controls direct accesses to objects.) 
The appropriateness of a particular model 
naturally depends on the application for 
which it is to be used. For the purposes of 
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multilevel secure military systems, those in 
the first category require the addition of 
military security policy and the assessment 
of indirect information flows (e.g., timing 
and storage channels) in the implementa- 
tion. Those in the second group are proba- 
bly the closest in structure to the require- 
ments for military applications, but appli- 
cations often require more flexibility than 
these models permit. The models in the 
third category are the least tested and 
would probably be the most difficult to use. 
Although their mathematical formulations 
are appealing, the restriction that users be 
unable to deduce anything at all about re- 
stricted information would be likely to 
lead to impractical restrictions on system 
behavior. 

Formal verification of properties of sys- 
tem designs is still an active research topic. 
Security properties of the UCLA DSU 
model were proved to hold for substantial 
portions of that system, but only the Bell 
and LaPadula model has been applied in 
more than one formally specified system. 
This anomaly is explained by the fact that 
the DoD has specified that the latter model 
be used in several of its secure system de- 
velopments. The properties specified by the 
high-water-mark, access matrix, and take- 
grant models could probably be stated in a 
form suitable for automated verification 
techniques should the demand arise. The 
properties required by the constraint, 
strong dependency, and filter models could 
be expressed similarly, but actually devel- 
oping a system specification in the terms 
required by those models appears an insur- 
mountable task at this time. 

Most of the secure system developments 
using the (revised) Bell and LaPadula 
model have been based on the concept of a 
security kernel, and there have been prob- 
lems in extending its use beyond the oper- 
ating system to application systems. The 
question of whether the "three layer" ap- 
proach-appl icat ion programs running on 
an operating system emulator and the em- 
ulator running on a security kernel--can 
produce a system with acceptable perform- 
ance is still open. As of this writing, the 
only kernel-based systems that appear to 
have adequate performance are based on 
an application program running directly on 

top of a kernal specially tailored for that 
application. 

Initial performance measurements for 
KSOS-11 [McCA79] indicate that it pro- 
vides about one-tenth the computing power 
of similar hardware operating under un- 
modified UNIX. A UNIX interface is also 
planned for the SCOMP [BONN80], but the 
hardware architecture of the Level-6 and 
the Security Protection Module developed 
for it are expected to yield better perform- 
ance than that observed in KSOS-11. Per- 
formance of KVM/370 [GOLD79] is esti- 
mated to be about half that of VM/370 on 
comparable hardware. None of these re- 
sults has been published as of this writing, 
and all systems may improve with tuning. 
Detailed questions of implementation and 
performance are beyond the scope of this 
survey, but it is clear that security is not to 
be had without a price. 

What then lies ahead? In the immediate 
future, efforts to develop models for trusted 
processes operating within the framework 
of the Bell and LaPadula model will con- 
tinue [AMES80, WITH79]. If the current de- 
velopments of security-kernel-based sys- 
tems are successful and kernels become 
widely used in military systems, it is likely 
that civilian applications for security ker- 
nels will be identified as well. Though there 
will be exceptions, the lattice model will 
probably fit many of the requirements for 
security and privacy in the private sector. 

An alternative to adding special models 
for trusted processes on top of the Bell and 
LaPadula model for the operating system 
is to develop integrated models tailored to 
particular applications [LAND80]. A secu- 
rity model designed for a particular appli- 
cation could be used as a basis for the 
development of an application-specific se- 
curity kernel. A key problem in this ap- 
proach is to ensure that the model incor- 
porates the desired notion of security while 
permitting the operations required in the 
application. 

Further off, if capability-based systems 
are successfully developed, models more 
appropriate to their structures may be used. 
The take and grant model is a possible 
candidate in this area, though it would re- 
quire tailoring for specific applications. The 
Provably Secure Operating System (PSOS) 
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[FEIE79], if built, could provide an appro- 
priate vehicle for experimentation. The 
goal of PSOS is to apply verification tech- 
niques to the entire operating system spec- 
ification rather than just to a security ker- 
nel. There are pressures in the private sec- 
tor as well to produce systems that  enforce 
privacy. A large time-sharing vendor has 
recently undertaken the development of a 
capability-based system for the IBM370 se- 
ries architecture, largely in order to provide 
better guarantees of privacy between its 
customers [GNOS80]. 

7. CONCLUSION 

model or else to create a new model based 
on the particular requirements of the ap- 
plication. In the military environment the 
former approach is taken by systems being 
constructed on the basis of the Bell and 
LaPadula model that utilize trusted 
processes to circumvent the rules of the 
model as particular applications require, 
but only relatively straightforward appli- 
cations have been attempted. In nonmili- 
tary systems, the sometimes conflicting de- 
mands of the laws governing access to med- 
ical and financial records challenge the 
designer of future models for computer 
security. 

Formal models for computer security are 
needed in order to organize the complexity 
inherent in both "computer" and "secu- 
rity." Without a precise definition of what 
security means and how a computer can 
behave, it is meaningless to ask whether a 
particular computer system is secure. 

If complete isolation between certain 
users and certain sets of data is required, 
the modeling problem appears tractable. 
Most of the models surveyed above could 
adequately represent a system that pro- 
vided such segregation. To be sure, difficul- 
ties remain--for example, in modeling the 
finiteness of system resources and programs 
that convey information through their 
usage of such resources over time. A more 
serious difficulty is that in most applica- 
tions, total segregation is not acceptable. 

Controlling the sharing of information in 
a computer is in fact a critical problem in 
operating system design. It should not be 
surprising that  it is as slippery a problem 
when treated from the standpoint of com- 
puter security as it is in any other context. 

Recognizing these difficulties, the de- 
signer of an application that has security 
requirements is well advised to state in 
advance the specific security properties (or, 
more generally, constraints on information 
transfer) desired of the system. If he is 
fortunate, these properties and the struc- 
ture of the system may correspond directly 
to one of the models surveyed above. More 
likely, they will differ in some respects from 
all of the models. He must then choose 
whether to apply an existing model and to 
make explicit the cases that violate the 
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