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1. INTRODUCTION

In today’s Internet, there are a large and growing number of scenarios that require
authorization decisions. Such scenarios include but are not limited to electronic
commerce, resource sharing within coalitions, execution of downloadable code (e.g.,
Java applets and ActiveX controls), and privacy protection [13; 27]. Authorization
in these scenarios is significantly different from that in centralized systems or even
in distributed systems that are closed or relatively small. In Internet authorization
scenarios, there are more entities in the system, many of which are unknown to
each other, and often there is no central authority that everyone trusts.

Traditional access control mechanisms make authorization decisions based on the
identity of the resource requester. Unfortunately, when the resource owner and the
requester are unknown to one another, access control based on identity may be in-
effective. In Internet authorization scenarios, often there is no relationship between
a requester and an authorizer prior to a request. Because the authorizer does not
know the requester directly, it has to use information from third parties who know
the requester better; normally, the authorizer trusts these third parties only for
certain things and only to certain degrees. This trust and delegation aspect makes
Internet authorization different from traditional access control. The goal of a grow-
ing body of work on trust management is to find a more expressive and “distributed”
approach to authorization in these scenarios. Several trust-management (TM) sys-
tems have been proposed in recent years, e.g., PolicyMaker [8; 9], KeyNote [6; 7],
REFEREE [11], and SPKI/SDSI [12; 15]. A key feature of these systems is the
support of delegation. There has also been a lot of work on analysis of these TM
systems [1; 3; 19; 21; 30; 42].

In the “trust-management” approach to distributed authorization, a “requester”
submits a request, possibly supported by a set of “credentials” issued by other par-
ties, to an “authorizer,” who controls the requested resources. The authorizer then
decides whether to authorize this request by answering the “proof-of-compliance”
question: “Do these credentials prove that a request complies with my local policy?”

Credentials may be facts (e.g., Joe is a student at Stanford University), or, more
generally, non-local policy statements that are more complicated than facts. Be-
cause credentials are not always under the control of the authorizer, they need to be
protected against alteration; thus, credentials are often signed by public keys. The
TM approach adopts a key-centric view of authorization, i.e., it views public keys
as entities to be authorized. Moreover, it supports credentials that endow public
keys with more than just identities or “distinguished names” of key holders, e.g.,
with agreed-upon “permissions” [6; 15], with various attributes of key-holders, or
with fully programmable “capabilities” [8; 9; 11]. Identity information is just one
kind of credential, and it may be necessary and sufficient for some applications but
not for others.

Some TM systems, such as KeyNote [6] and the original SPKI 1.0, use credentials
only to delegate permissions. Each credential delegates certain permissions from
its issuer to its subject. A chain of one or more credentials acts as a capability,
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granting certain permissions to the subject of the last credential in the chain.1

However, in these permission-based systems, one cannot express the fact that the
issuer grants permissions to all entities that have a certain property. To better
understand this limitation, consider a simple example: A book store wants to
give a 15% discount to students of a nearby university. Ideally, the book store
would express this in one policy statement, and a student could get the discount
by showing her student ID, issued by the university. However, one cannot follow
this simple approach in permission-based TM systems. For instance, in KeyNote,
one cannot use an assertion to express that anyone who is a student is entitled to
a discount. There are several ways to work around this limitation. One approach
is to have the book store delegate the discount permission to the university’s key.
Then the university’s key explicitly delegates this permission to each student’s
key. However, when there are many organizations giving different permissions to
students, the university has to issue a separate delegation to each student for every
permission; this places too heavy an administrative burden on the university. In
another approach, the university creates a new key pair representing the group of
all students and issues a complete delegation from this group key to each student’s
public key. This would allow the book store to establish the student discount
policy by granting the discount to the group key. However, the university would
then have a different group key for each meaningful group, e.g., faculties, graduate
students, etc. And the book store needs to know which key corresponds to the
group of students; this would require another TM system, because it cannot be
done using KeyNote. There are several other work-arounds that use KeyNote’s
action-environment feature. Like the above two approaches, they can handle this
simple example but do not scale to more complicated cases in which there are
many organizations that want to give different kinds of permissions to students of
the university or in which the book store wants to give discounts to different groups
of different organizations, e.g., students of the university, graduate students of the
university, faculties of the university, employees of a nearby company and members
of a professional organization, etc.

To simplify authorization in decentralized environments, we need a system in
which access-control decisions are based on authenticated attributes of the subjects,
and attribute authority is decentralized. We argue that an expressive TM language
should be able to express the following:

(1) Decentralized attributes: An entity asserts that another entity has a certain
attribute. For example, a university asserts that an entity is a student. A
permission can be viewed as an attribute as well; granting a permission p to an
entity can be viewed as asserting that the entity has the attribute p.

(2) Delegation of attribute authority: An entity delegates the authority over an
attribute to another entity, i.e., the entity trusts another entity’s judgment
about the attribute. For example, a university delegates the authority to iden-
tify students to the registrar of one campus of the university.

(3) Inference of attributes: An entity uses one attribute to make inferences about

1Because KeyNote and SPKI have thresholds, a capability could be a directed graph of credentials.
This does not affect our discussion of their limitations below.
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another attribute. For example, a book store gives a discount to any entity
who is a student of a particular university.

(4) Attribute-based delegation of attribute authority: A key to scalability is the
ability to delegate to strangers whose trustworthiness is determined based on
their own authenticated attributes. For example, when an online book store
wants to give discounts to all university students, instead of having to issue
a delegation to each university, the book store should be able to issue one
statement in which it delegates the authority to identify students to entities
that are certified universities. The book store can then delegate the authority
to identify universities to an accrediting board, avoiding having to know all the
universities.

(5) Conjunction of attributes: An entity uses the conjunction of several attributes
to make inferences about another attribute. For example, a book store gives
a special discount to any entity that is both a student and a member of the
ACM.

(6) Attribute with fields: It is often useful to have attribute credentials carry field
values, such as age and credit limit. Permissions may also have fields describing
resources and access modes. It is also useful to infer additional attributes based
on these field values and to delegate attribute authority to a certain entity only
for certain specific field values, e.g., only when spending level is below a certain
limit.

We believe that a desirable trust-management language should satisfy require-
ments in the following three areas. For each area, we list a basic requirement and
a stronger requirement.

expressive power The basic requirement is that a TM language should support
the six features listed above.
The stronger requirement is that it should also support other desirable features
such as thresholds and some form of re-delegation control.

declarative semantics The basic requirement is that a TM language should have
a declarative, clearly specified notion of proof of compliance. For example, a
TM language that allows credentials to contain programs written in procedural
programming languages does not satisfy this requirement.
The stronger requirement is that the notion of proof-of-compliance should be
based on a well-understood, formal foundation. Furthermore, there should be
a “meaning” for every set of policies and credentials, so that one can compute
this meaning and inspect whether it is the same as the policy author’s intention.

tractability The basic requirement is that compliance checking should be
tractable, i.e., polynomial in the size of policies, credentials, and requests.
The stronger requirement is that computing the meaning of a set of policies
and credentials should also be tractable.

As we will discuss in Section 2, none of the previous TM languages satisfies the
three basic requirements. The goal of this paper is to provide a “trust-management
language” for representing authorization policies and credentials that, firstly, sat-
isfies the three basic requirements, and secondly, also satisfies the three stronger
requirements.
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We view the problem of designing a TM language for representing authorization
policies and credentials as a knowledge-representation problem. We adopt an ap-
proach that has proven useful in knowledge representation: the logic-programming
approach. Logic-programming-based languages for representing security policies
have been studied before (e.g., [5; 22; 23]), but previous work focused on centralized
environments and did not address the delegation aspect of distributed authoriza-
tion.

We propose the logic-programming-based language Delegation Logic (DL) as a
trust-management language. Our approach in designing DL is to extend well-
understood logic-programming languages with features needed for distributed au-
thorization. Specifically, DL extends Definite Ordinary Logic Programs2 along two
dimensions: delegation and nonmonotonic reasoning. DL’s delegation features in-
clude explicit linguistic support for delegation depth and for a wide variety of com-
plex principals (e.g., k-out-of-n thresholds). DL’s nonmonotonic expressive features
include classical negation, negation-as-failure, and prioritized conflict handling. In
this paper, we focus on the delegation aspect and present a monotonic Delegation
Logic that we call D1LP. It stands for version 1 of Delegation Logic Programs. We
use the term D1LP to denote both the formalism and a program in this formalism.
D1LP extends Datalog Definite Ordinary Logic Programs by adding an issuer to
every atom and adding delegation constructs that have pre-defined meanings.

The rest of this paper is organized as follows. In Section 2, we give background
information on trust management and analyze several previous TM systems. In Sec-
tion 3, we introduce the language D1LP. In Section 4, we define the semantics of
D1LP via a transformation from D1LP into OLP. D1LP inferencing is accomplished
by the combination of this transformation plus OLP inferencing. Tractability re-
sults are given in Section 5. In Section 6, we discuss the tractability motivation
behind a design decision of D1LP. In Section 7, we describe implementation and
other issues involved in using D1LP. We conclude in Section 8.

2. BACKGROUND

We abstract a system into entities that are inter-connected and resources that are
controlled by entities. Entities may include users, operating systems, processes,
threads, objects, etc. Resources may include information, files, network connec-
tions, methods of objects, etc. When an entity wants to access a resource controlled
by another entity, it sends a request to that entity. The entity that wants to ac-
cess the resource is called the requester and the entity that controls the resource
is called the authorizer. Traditionally, when an authorizer receives a request, it
first “identifies” the requester. This task of determining a requester’s identity in
a rigorous manner is called authentication. In other words, authentication answers
the question “who made this request” with an identity. Knowing the identity of the

2“Ordinary” logic programs (OLP’s) correspond essentially to pure Prolog without the limitation
to Prolog’s particular inferencing procedure. These are also known as “general” LP’s (a misleading
name, because there are many further generalizations of them) and as “normal” LP’s. “Definite”

means without negation. “Datalog” means without function symbols of non-zero arity. The “arity”

of a function symbol is the number of parameters it takes. For reviews of standard concepts and
results in logic programming, see [4; 35].
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requester, the authorizer then decides whether this requester is allowed to access
the requested resource. This step is called access control.

We use the term authorization to denote this process of “authentication + access
control.” This paper focuses on authorization in emerging applications in large-
scale, open, decentralized, distributed systems (e.g., Internet). Authorization in
these decentralized environments is significantly different from traditional autho-
rization in single-host systems or in centrally controlled distributed systems. Basic
differences include:

—Who needs protection? In a traditional client/server computing environment,
valuable resources usually belong to servers, and it is when a client requests
access to a valuable resource that the server uses an authorization procedure to
protect its resources. In a large-scale, open, decentralized system, users access
many servers and have valuable resources of their own (e.g., personal information,
electronic cash); indeed “client” is no longer the right metaphor. Such a user
cannot trust all of the servers it interacts with, and authorization mechanisms
have to protect the users’ resources as well as those of the servers.

—Whom to protect against? In a large, far-flung network, there are many
more potential requesters than there are in a smaller, more homogeneous (albeit
distributed) system. Some services, e.g., Internet merchants, cannot know in
advance who the potential requesters are. Similarly, users cannot know in advance
which services they will want to use and which requests they will make. Thus, the
authorization mechanisms must rely on delegation and on third-party credential-
issuers more than ever before.

—Who stores authorization information? Traditionally, authorization infor-
mation, e.g., an access-control list, is stored and managed by the service. Internet
services evolve rapidly, and thus the set of potential actions and the users who
may request them are not known in advance; this implies that authorization in-
formation will be created, stored, and managed in a dynamic, distributed fashion.
Users are often expected to gather credentials needed to authorize an action and
present them along with the request. Because these credentials are not always
under the control of the service that makes the authorization decision, there is
a danger that they could be altered or stolen. Thus, public-key signatures (or,
more generally, mechanisms for verifying the provenance of credentials) must be
part of the authorization framework.

In traditional authentication and access control, the notion of identity plays an
important role. In a traditional system, an identity often means an existing user
account. User accounts are established with the system prior to the issue of any
request. Earlier PKI proposals try to establish a similar global “user-account”
system that gives a unique name to every entity in the system and then binds each
public key to a globally unique “identity.”

In Internet applications, the very notion of identity becomes problematic. The
term identity originally meant sameness or oneness. When we meet a previously
unknown person for the first time, we cannot really identify that person with any-
thing. In a scenario in which an authorizer and a requester have no prior relation-
ship, knowing the requester’s name or identity may not help the authorizer make
a decision. The real property one needs for identity is that one can verify that
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a request or a credential is issued by a particular identity and that one can link
the particular identity to its credentials. One can argue that, in a global system,
the only real “identity” to which anything can later be related is the public key.
Thus, the “trust-management approach” adopts a key-centric view of authorization:
Public keys are treated as principals and authorized directly.

The “trust-management approach” also adopts a “peer model” of authorization.
Every entity can be an authorizer, a third-party credential issuer, or a requester.
An entity can act as a requester in one authorization scenario and as an authorizer
(or as a third-party credential issuer) in another.

2.1 Sample Policies for Testing Expressive Features

Before we review previous TM systems, we first give a list of sample policies that
can be used to test their expressive power:

Decentralized attribute A hospital HA asserts that an entity PA is a physician.
Delegation of attribute authority A hospital HM trusts another hospital HA

to identify physicians.
Inference of attributes A hospital HM allows an entity to access a document if

it is a physician.
Attribute-based delegation of authority A hospital HM trusts any entity that

is a hospital to identify physicians.
Conjunction of attributes A hospital HM gives special permissions to anyone

who is both a physician and a manager.
Attribute with fields A hospital HM allows an entity to access the records of a

patient if the entity is the physician of the patient.

These six types of policies were discussed in Section 1. Here, we give two addi-
tional policies that use threshold structures.

Static threshold structures A bank requires two out of an explicitly given list
of entities to cooperate in order to complete a certain transaction.

Dynamic threshold structures A bank requires two cashiers to cooperate in
order to complete a certain transaction; whether an entity is a cashier is not
given explicitly in this policy, but rather is determined by inferencing of that
entity’s attributes from credentials.

Static threshold structures are often known as “k-out-of-n thresholds.” They
are common in existing TM systems, e.g., PolicyMaker [8; 9], KeyNote [6], and
SPKI/SDSI [12; 15]. However, these systems do not have dynamic threshold struc-
tures. A static threshold structure becomes inconvenient when its threshold pool
is very large, changes very often, or both. In the above cashier policy, dynamic
threshold structures allow a simple and clear policy and enable the bank to change
the set of cashiers without changing its policy.

2.2 Review of Previous Trust-management Systems

We now briefly review several systems for authentication and/or access con-
trol in distributed systems: PolicyMaker [8; 9], REFEREE [11], KeyNote [6],
SPKI/SDSI [15; 12], and SRC logic [2; 26]. We choose these systems because
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they all (more or less) satisfy the following three conditions, which we consider to
be the core of the trust-management approach to distributed authorization.

—The system supports decentralized storage and management of authorization
information. As a result, in a typical authorization scenario, a requester submits
a request with some supporting credentials, an authorizer adds local policy and
maybe other credentials, and then uses a “proof-of-compliance” procedure to
determine whether the request should be authorized.

—The language for representing credentials and policies supports decentralized at-
tributes and delegation of attribute authority.

—The language has an application-independent semantics.

2.2.1 PolicyMaker and REFEREE. PolicyMaker was introduced by Blaze,
Feigenbaum, and Lacy, in the original paper in which the notion of Trust Manage-
ment was introduced [8]. PolicyMaker’s compliance-checking algorithm was later
fleshed out in [9]. For more details about PolicyMaker, see [7; 8; 9].

In PolicyMaker, policies and credentials together are referred to as “assertions.”
An assertion is a pair (f, s), where s is the source of authority (i.e., the issuer of
this assertion), and f is a program describing the nature of the authority being
granted as well as the party or parties to whom the authority is being granted.
The program f can be written in any programming language that can be “safely”
interpreted by a local environment. A safe version of AWK was developed for early
experimental work on PolicyMaker (see [8]).

Because the assertions in PolicyMaker may include arbitrary programs in some
Turing-complete programming language, it is quite expressive in the sense that one
can code up complex policies and delegation relationships in PolicyMaker. However,
it does not satisfy the basic requirement for declarative semantics. Moreover, the
PolicyMaker framework has built-in support only for decentralized attributes; the
other features need to be explicitly coded in programs by assertion authors.

REFEREE [11] is similar to PolicyMaker; it also allows arbitrary programs to be
used in credentials and policies.

2.2.2 KeyNote. KeyNote [6] is a second-generation TM system that is based on
PolicyMaker. Instead of allowing programs written in a general-purpose procedural
language, KeyNote adopts a specific expression language. A KeyNote assertion is
a delegation from its issuer to a licensees formula. A primitive licensees formula is
simply a principal. More complicated licensees formulas are built up from principals
using conjunction, disjunction, and thresholds. An assertion also has conditions
written in the expression language. The intuitive meaning of an assertion is that,
if the licensees support a request, and the request satisfies the conditions, then the
issuer supports the request as well.

When using the KeyNote system, a calling application passes to a KeyNote eval-
uation engine a list of credentials, policies, requesters’ public keys, and an “action
environment,” which consists of a list of attribute/value pairs. An action environ-
ment essentially specifies a request. The evaluation engine uses the credentials and
policies to determine whether the local authority supports this request given that
all the requesters support the request.

In a KeyNote assertion, the conditions only filter what requests (in the form of
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action environments) are delegated in this delegation; they do not apply to the
licensees, and so the licensees have to be explicitly listed. As a result, KeyNote
does not support inference of attributes, attribute-based delegations, conjunction
of attributes, attribute with fields, or dynamic threshold structures. Also, KeyNote
has no re-delegation control; any permission can be freely re-delegated.

KeyNote satisfies the basic requirement for declarative semantics by giving a
procedure to answer whether a specific request should be authorized given a set of
credentials. KeyNote defines a mechanism to compute whether a particular request
is authorized given a set of policies and credentials; however, it does not define a
mechanism to compute the meaning of a set of policies and credentials.

2.2.3 SPKI/SDSI. SDSI (Simple Distributed Security Infrastructure) was origi-
nally designed by Rivest and Lampson [41]. SPKI (Simple Public Key Infrastruc-
ture) was originally designed by Ellison. Both of these systems were motivated
by the inadequacy of public-key infrastructures based on global name hierarchies,
such as X.509 [40] and Privacy Enhanced Mail (PEM) [25]. Later, SPKI and SDSI
merged into a collaborative effort, SPKI/SDSI 2.0, about which the most up-to-date
documents are [12; 15; 16]. In our discussion, we use SPKI 2.0 to denote the part
of SPKI/SDSI 2.0 originally from SPKI, i.e., authorization certificates (5-tuples),
and SDSI 2.0 to denote the part originally from SDSI, i.e., name certificates (or
4-tuples as in [15]).

SPKI 2.0 is quite similar to KeyNote. There are two main differences. The first
lies in the encoding of permissions being delegated in one credential. SPKI 2.0 repre-
sent the permissions using tags in a special form of s-expressions; these s-expressions
can be viewed as a particular kind of constraints over strings. For example, an s-
expression “(ftp ftp.clark.net (* prefix /pub/abc/) (* set read write))” can encode
the permission of ftp access to the host ‘ftp.clark.net’ and read/write all files and
directories under ‘/pub/abc/’. KeyNote uses expressions written in an expression
language to filter requests that can pass through a delegation. To encode the above
permission in KeyNote, one can use “(protocol==‘ftp’ && host==‘ftp.clark.net’
&& dir˜=‘ˆ/pub/abc/.*’ && (access==‘read’ || access==‘write’)),” in which ˜=
is regular expression matching. The second difference is that SPKI 2.0 has boolean
re-delegation control, while KeyNote has no re-delegation control. Otherwise, SPKI
2.0 has the same limitations as KeyNote.

The document defining SPKI [15] describes how one can chain two 5-tuples to
get a new one. This operation uses tag intersection; however, only an incomplete
prose description and several examples of tag intersections are given in [15]. Most
work attempting to formalize SPKI avoids the complexity of tags by using simpler
models and does not faithfully capture tags. A notable exception is [21], in which
Howell pointed out that intersection between some kinds of tags may not be finitely
representable using tags; he gave a precise specification for tag intersection, in which
intersections in potentially problematic cases are artificially defined to be empty.

SDSI 2.0 supports decentralized attributes, delegation of attribute authority, in-
ference of attributes, and attribute-based delegation, the last of which is supported
through linked local names. However, SDSI 2.0 does not support attributes with
fields or conjunction of attributes. Although SPKI 2.0 can express attributes with
fields using tags, SPKI/SDSI 2.0 does not really merge these features together,
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because they are present in different kinds of certificates. In SPKI/SDSI 2.0, one
still cannot express conjunction of attributes, attributes with fields, or dynamic
threshold structures.

2.2.4 SRC Logic for Authentication and Access Control. Abadi, Burrows, Lamp-
son, Plotkin, Wobber, et al. developed a logic for authentication and access control
in distributed systems [2; 26]. They also designed and implemented a security sys-
tem based on this logic. The core concept in SRC logic is a “speaks for” relation
among principals; that A speaks for B means that, if principal A makes a state-
ment, then we can believe that principal B makes it, too. The notion of “speaks
for” is very useful in distributed authentication and access control, and it underlies
the notion of delegation in trust management. That A speaks for B can be viewed
as a delegation of all authority from B to A. The SRC logic is designed mainly for
authentication; its total delegation has too coarse a granularity for access control.
To limit the authority being delegated in the logic, a principal can adopt a role
before delegating. By using roles, one can achieve effects roughly similar to decen-
tralized attributes and delegation of attribute authority. However, SRC logic still
lacks attribute-based delegation, attributes with fields, or threshold structures.

3. D1LP: SYNTAX, CONCEPTS, AND EXAMPLES

In this section, we first define the syntax of D1LP and show that D1LP has the
expressive features listed in Section 2.1. We then explain basic concepts in D1LP
and give examples of D1LP programs.

3.1 Syntax

Figure 1 gives the syntax of D1LP in BNF. The alphabet of D1LP consists of three
disjoint sets: the predicate symbols, the variables, and the constants. Variables
start with ‘?’. The set of principals is a subset of the constants and should be
distinguishable from other constants. There is a reserved principal symbol “Local”;
it represents the trust root, i.e., the authorizer of an authorization decision. In the
following, we explain the syntax. The numbers in the text below correspond to the
numbers of definitions in Figure 1.

—A term (3) is either a constant or a variable. When a variable appears in certain
positions, it is called a principal variable (4) and can be instantiated only to
a principal. (The exact positions in which a variable should be treated as a
principal variable can be determined from the BNF in Figure 1.) A principal
term (5) is either a principal or a principal variable.

—A base atom (6) encodes a belief. For example, “isBusinessKey(keyBob,Bob)”
and “goodCredit(?X)” are base atoms that encode beliefs. When a belief talks
about a security action, e.g., an action to access a resource, it is a belief that this
action should happen. For example, the base atom “remove(file1)” encodes the
belief that file1 should be removed.

—In a direct statement (7) “X says ba,” X is called the issuer of this statement.
This statement intuitively means that X “supports” the belief encoded in ba.
For example, a direct statement “Bob says remove(file1)” means that Bob sup-
ports that file1 should be removed; i.e., it represents Bob’s request to remove
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〈list of X〉 ::= 〈X〉 | 〈X〉 〈list of X〉 (1)
〈formula of X〉 ::= 〈X〉 | 〈formula of X〉 “,” 〈formula of X〉 |

〈formula of X〉 “;” 〈formula of X〉 | “(” 〈formula of X〉 “)” (2)

〈term〉 ::= 〈constant〉 | 〈var〉 (3)
〈prin-var〉 ::= 〈var〉 (4)

〈prin-term〉 ::= 〈prin-var〉 | 〈prin〉 (5)

〈base-atom〉 ::= 〈pred〉 | 〈pred〉 “(” 〈list of term〉 ”)” (6)
〈direct-stmt〉 ::= 〈prin-term〉 “says” 〈base-atom〉 (7)

〈delegation-stmt〉 ::= 〈prin-term〉 “delegates” 〈base-atom〉 “^” 〈depth〉
“to” 〈prin-exp〉 (8)

〈depth〉 ::= 〈natural-number〉 | “*” (9)

〈representation-stmt〉 ::= 〈prin-term〉 “represents” 〈prin-term〉 (10)

〈prin-exp〉 ::= 〈prin-var〉 | 〈prin-struct〉 (11)
〈prin-struct〉 ::= 〈formula of prin-element〉 (12)

〈prin-element〉 ::= 〈prin〉 | 〈threshold〉 (13)
〈threshold〉 ::= 〈su-threshold〉 | 〈sw-threshold〉 | 〈du-threshold〉 (14)

〈su-threshold〉 ::= “threshold” “(” 〈k〉 “,” “[” 〈list of prin〉 “]” “)” (15)

〈sw-threshold〉 ::= “threshold” “(” 〈k〉 “,” “[” 〈list of prin-weight-pair〉 “]” “)” (16)
〈du-threshold〉 ::= “threshold” “(” 〈k〉 “,” 〈prin-var〉 “,” 〈prin〉 “says” 〈base-atom〉 “)” (17)

〈k〉 ::= 〈natural-number〉 (18)

〈prin-weight-pair〉 ::= “(” 〈prin〉 “,” 〈natural-number〉 “)” (19)
〈rule〉 ::= 〈head-stmt〉 | 〈head-stmt〉 “if” 〈body-formula〉 (20)

〈head-stmt〉 ::= 〈direct-stmt〉 | 〈delegation stmt〉 | 〈representation-stmt〉 (21)

〈body-formula〉 ::= 〈formula of body-stmt〉 (22)
〈body-stmt〉 ::= 〈b-direct-stmt〉 | 〈b-delegation-stmt〉 | 〈representation-stmt〉 (23)

〈b-direct-stmt〉 ::= 〈prin-exp〉 “says” 〈base-atom〉 (24)

〈b-delegation-stmt〉 ::= 〈prin-exp〉 “delegates” 〈base-atom〉 “^” 〈depth〉
“to” 〈conj-prin-exp〉 (25)

〈conj-prin-exp〉 ::= 〈prin-var〉 | 〈conj-prin-struct〉 (26)
〈conj-prin-struct〉 ::= 〈prin〉 | 〈prin〉 “,” 〈conj-prin-struct〉 (27)

〈locale-decl-stmt〉 ::= “Local” “standsfor” 〈prin〉 (28)

〈program〉 ::= 〈list of rule〉 | 〈locale-decl-stmt〉 〈list of rule〉 (29)
〈query〉 ::= 〈body-formula〉 “?” (30)

Fig. 1. Syntax of D1LP in BNF, in which 〈pred〉, 〈var〉, 〈constant〉, and 〈prin〉 represent a

predicate symbol, a variable, a constant, and a principal respectively. The first two definitions,

〈list of X〉 and 〈formula of X〉, are macros.
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file1. A statement “keyBob says goodCredit(Carl)” means that keyBob supports
(believes) that Carl has good credit.

—In a delegation statement (8) “X delegates ba^d to PE ,” X is called the is-
suer of this statement; d is called the delegation depth (9) of this delegation (“∗”
means unlimited depth); and the principal expression PE is called the delegatee of
this delegation. In DL, the basic meaning of a delegation is transferability of sup-
port. For example, the delegation statement “Bob delegates goodCredit(?X)^1
to Carl” means that, if Carl supports that someone has good credit, then Bob
supports it as well. The meaning of delegation depths is discussed in Section 3.3.

—In a representation statement (10) “Y represents X on ba,” the issuer is de-
fined to be the special principal Local. This representation statement intuitively
means that Y has all power that X has with respect to the base atom ba, i.e., if
Local trusts X about ba, then it should also trust Y equally about ba. It is similar
to the delegation statement “X delegates ba^∗ to Y ,” but there are important
differences. These differences and the rationale for representation statements are
discussed in Section 3.5.

—A principal expression (11) is a principal variable or a principal structure (12,
13), which is a formula (2) of principals and threshold structures. Threshold
structures (14) introduce fault tolerance and aid flexibility in joint authorization.
D1LP has three kinds of threshold structures.

—In a static unweighted threshold structure (15) “threshold (k, [A1, . . . , An]),”
we call k the threshold value and “[A1, . . . , An]” the threshold pool, and require
k ≤ n and Ai 6= Aj for 1 ≤ i 6= j ≤ n.
For example, “threshold(2, [cardA, cardB, cardC])” is a static unweighted thresh-
old structure. It supports a base atom ba if at least two principals among the
threshold pool “[cardA, cardB, cardC]” support ba.

—In a static weighted threshold structure (16) “threshold (k, [(A1, w1), . . . ,
(An, wn)]),” we call the principal-weight pair set “[(A1, w1), . . . , (An, wn)]” the
threshold pool of this threshold structure, and require3 that k ≤ n and Ai 6= Aj

for 1 ≤ i 6= j ≤ n.
Weighted threshold structures enable the assignment of different weights to dif-
ferent principals in the threshold pool. Such a threshold structure supports a
base atom if the sum of the weights of all those principals that support the base
atom is greater than or equal to the threshold value k.

—A dynamic unweighted threshold structure (17) “threshold (k, ?X, Prin says
ba)),” in which we require that ?X appears in ba and define the threshold pool
to be the set of all principals A such that the direct statement “Prin says
pred(. . . A . . .)” is true, i.e., the expression “Prin says pred(. . .?X . . .)” becomes
true when A is substituted for ?X for each appearance throughout the direct
statement.

3It is possible to relax the restriction that k ≤ n for static threshold structures. For static
unweighted threshold structures, if k > n, then the threshold structure can never be satisfied. For
static weighted threshold structures, relaxing to permit k > n will require a more subtle discussion

about tractability. A relatively simple relaxation is to permit k to be at most αn, where α is some

integer constant, e.g., 10, in which case the complexity bound in Section 5 increases by a factor
of α.
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For example, “threshold (2, ?X, Bank says isCashier(?X))” is a dynamic thresh-
old structure. In another example, the principal structure

(threshold(1, ?X, companyA says accountant(?X)),
threshold(1, ?Y, companyA says manager(?Y)))

represents any conjunction of an accountant in companyA and a manager in
companyA. Note that, if a principal is both an accountant and a manager, then
the principal satisfies this principal structure. If one wants to make managers
and accountants disjoint, one needs to use non-monotonic features, which do not
exist in D1LP.

—A rule (20) is also known as a clause. In a rule “H if F ,” H is a direct
statement, a delegation statement, or a representation statement and is called
the head (21) of the rule; F is a formula of body statements and called the body
(22) of the rule. The body may be empty; if it is, the keyword “if” is omitted.
A rule with an empty body is also called a fact.
If a rule’s head H has a principal as its issuer, then this principal is also the
issuer of this rule. Otherwise H has a principal variable as its issuer, and the
issuer of this rule is the principal symbol Local.
For example, A is the issuer of the rule “A says p if B says q” and the issuer of “A
delegates p^1 to B.” Local is the issuer of “A represents B on p” and the issuer
of “?X says p(a) if Local says c(?X,a).” Intuitively, the issuer of a rule is the
principal who has the power to issue that rule. Before using a rule, one should
verify that the rule is actually issued by its issuer. This is discussed further in
Sections 3.4 and 3.5.

—A body-statement (23) is either a body-direct statement, a body-delegation state-
ment, or a representation statement. Body statements allow principal structures
to be used as issuers, so that one can use more expressive conditions in rules. A
delegation statement appearing in a query or a rule-body (because a rule-body is
implicitly a query) must have a delegatee that is a principal, a principal variable,
or a conjunction of principals. That is, such a delegatee is not permitted to con-
tain a disjunction or a threshold structure (which is disjunctive in nature). This
restriction is called the conjunctive-delegatee-queries restriction. It is imposed to
ensure computational tractability of D1LP. This rationale is discussed in detail
in Section 6.

—A body-direct statement (24) is more general than a direct statement in that
it permits the issuer to be a principal structure. For example, the following
is a body-direct statement: “threshold(2, [cardA, cardB, cardC]) says account-
Good(?X).”

—A body-delegation statement (25) allows the issuer to be a principal structure and
requires its delegatee to be a principal, a principal variable, or a conjunction of
principals.

—A locale-declaration statement (28) specifies that Local stands for a particular
principal. The intended use of this statement is to specify the current trust root
as this principal. Semantically, this statement is essentially a macro.

—A program (29) is a finite set of rules plus an optional locale-declaration state-
ment. The locale-declaration statement is required if Local appears in any of
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the rules. The set of rules is also known as a logic program (LP) or as a rule-set.
—A query (30) takes the form “F?” where F is a body formula.

As usual, an expression (e.g., term, base atom, statement, clause, or program)
is said to be ground if it does not contain any variables. A clause with variables
stands for all its ground instantiations.

3.2 Expressive Power of D1LP

In this section, we show how to use D1LP to express the policies in Section 2.1.

—Decentralized attribute. HA asserts that PA is a physician:
HA says isPhysician(PA).

—Delegation of attribute authority. HM trusts HA to identify physicians.
HM delegates isPhysician(?X)^1 to HA.

—Inference of attributes. HM allows anyone who is a physician to access a docu-
ment.

HM says access(fileA, ?X) if HM says isPhysician(?X).

—Attribute-based delegation of authority. HM trusts any entity that is a hospital
to identify physicians.

HM delegates isPhysician(?X)^1 to ?Y if HM says isHospital(?Y).

—Conjunction of attributes. HM allows anyone who is both a physician and a
manager to access a document.

HM says access(fileB, ?X)
if HM says isPhysician(?X), HM says isManager(?X).

—Attribute with fields. HM allows an entity to access the records of a patient if
the entity is the physician of the patient.

HM says accessDocument(?X, ?Y) if HM says isPhysicianOf(?X,?Y).

—Static threshold structures. A bank requires two out of four entities A,B,C,D to
cooperate in order to approve a transaction T.

Bank delegates approve(T) to threshold(2, [A,B,C,D]).

—Dynamic threshold structures. A bank requires two cashiers cooperate to coop-
erate in order to approve a transaction T.

Bank delegates approve(T)
to threshold(2, ?X, Bank says isCashier(?X)).

3.3 Discussions of Delegation Depth

As we defined earlier, a delegation statement has a depth, which is either a positive
integer or “∗.” We now discuss the meaning and rationale of delegation depths.

One way to view delegation depth is the number of re-delegation steps that are
allowed, where depth 1 means that no re-delegation is allowed, depth 2 means
that one further step is allowed, depth 3 means that two further steps are allowed,
and depth ∗ means that unlimited re-delegation is allowed. Consider the following
delegation statement:

Local delegates read(file1)^2 to Bob.
It means that Local delegates to Bob the permission to read file1 and allows Bob to
further delegate one more step. Bob can delegate this permission to another entity
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say, Carl, but one step of depth is consumed in this re-delegation step. Carl cannot
effectively delegate this permission further.

A depth-d delegation from A to B about a base atom ba implies all delegations
of depth smaller than d from A to B about ba. In particular, a depth-∗ delegation
implies all integer-depth delegations.

DL provides both integer depth and unlimited depth as ways to control re-
delegation. By contrast, there are three other more restricted approaches in the
previous literature: (1) no control, in which every delegation can be re-delegated
unlimitedly (i.e., depth * only), (2) boolean control, in which a delegation allows
either unlimited re-delegation or no re-delegation at all (i.e., depth 1 or * only),
and (3) integer control (i.e., integer depth only). KeyNote uses the approach of no
control, and SPKI uses the boolean approach. In Section 4 of [15], SPKI designers
gave the following two reasons for choosing boolean control over integer control (in
Section 4.1.4 of [15]):

The integer control option was the original design and has appeal, but
was defeated by the inability to predict the proper depth of delegation.
One can always need to go one more level down, by creating a temporary
signing key (e.g., for use in a laptop). Therefore, the initially predicted
depth could be significantly off.
As for controlling the proliferation of permissions, there is no control on
the width of the delegation tree, so control on its depth is not a tight
control on proliferation.

We disagree with these arguments for the following three reasons. First, whether
delegation depths can be properly predicted depends on the application using the
system. Because TM systems are designed for a broad range of applications, saying
that one cannot predict adequate depth in any application seems unconvincing.
Second, in scenarios in which one needs to create a temporary signing key for
laptop use, DL’s approach works better than SPKI’s boolean approach. Suppose
that one’s policy is to give out permissions to users, not to let them delegate to other
users, but still allow them to empower temporary keys. In the boolean approach,
one has no choice but to allow infinite delegation. In DL, one can use delegation
depth 2. Although this is still not perfect, as one can use the extra depth to
delegate to another user, the control is much tighter than in the boolean approach.
Third, we cannot see why one should give up depth control because width control
is difficult. Moreover, as we will see in example 4, it is possible to control the width
of a delegation in DL, by using a conjunction of principals as its delegatee.

We believe that the verdict is still out on what kind of re-delegation control will
be found to be most useful in practice. However, we think that DL’s approach is
attractive because it is strictly more expressive than any of the other three. If one
does not need integer depth in one credential, one can always use just * and 1.

A more philosophical reason for limiting delegation with respect to depth is that
trust is not transitive (see [17; 36] for some interesting discussions). For example,
the delegation statement

Bob delegates goodCredit(?X)^1 to Carl

means that Bob trusts Carl about whether someone has good credit. That is, if



16 ·

Carl says that someone has good credit, then Bob believes it. However, even if Bob
trusts Carl about goodCredit(?X), and Carl trusts David about goodCredit(?X),
Bob does not necessarily trust David about goodCredit(?X). It is imaginable that
Bob trusts Carl’s ability to judge whether someone has good credit but does not
trust Carl’s ability to judge other principals’ ability to judge whether someone has
good credit. In this case, Bob should only delegate to Carl with depth 1. If Bob does
trust the principals that Carl trusts, then Bob should delegate to Carl with depth
at least 2. In some cases, Bob trusts Carl completely, and then Bob can delegate to
Carl with depth ∗. Under this intuition, each integer depth has a distinct meaning
and a larger depth conveys more trust than a smaller depth.

The above intuition based on trust transitivity yields the same behavior as the
intuition based on controlling re-delegation steps. One can use delegation depth,
without knowing or understanding this more philosophical reason for delegation
depths.

3.4 Using DL in Authorization Scenarios

In this subsection, we discuss how DL is used in authorization scenarios. Entities
in authorization scenarios are represented by principals in DL. These principals
issue credentials and requests. Typically, a principal in distributed authorization
is a public/private key pair. Such a principal issues a credential or a request by
digitally signing a message that contains it.

When an authorizer gets a request and some credentials that support this request,
this authorizer creates a query Q from this request and a DL program (rule-set)
P from the combination of the credentials and the authorizer’s local policies. Poli-
cies and credentials are translated into rules in DL. During the translation, the
authorizer should verify that each rule is indeed made by its issuer. A rule with a
principal as its issuer should be encoded in a credential that is signed by the rule’s
issuer. A rule with Local as its issuer should come from a local policy. Policies
that are securely stored locally do not need to be signed. Having a program P and
a query Q, the authorizer decides whether to authorize this request by inferring
whether the query Q is true relative to the program P. DL’s semantics gives a
proof procedure to answer Q relative to P. Consider the following example:

Example 1 (Determining credit status).

A merchant ShopA will approve a customer’s order if it can determine that the
customer has a good credit rating. ShopA trusts BankB and whomever BankB
trusts in determining credit ratings. ShopA also has a credential issued by BankB
saying that BankB believes that a principal has good credit if two out of three
particular credit-card companies certify that this principal has an account in good
standing. These policies and credentials are represented as follows:

ShopA says approveOrder(?U) if ShopA says creditRating(?U, good).
ShopA delegates creditRating(?U, ?R)^2 to BankB.

BankB says creditRating(?U, good)
if threshold(2,[cardW,cardX,cardY]) says accountGood(?U).

Now a customer Carl sends an order to ShopA and provides the following two cre-
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dentials: “cardX says accountGood(Carl)” and “cardY says accountGood(Carl).”
ShopA then generates a new program consisting of the above rules and queries
it with “ShopA says approveOrder(Carl)?” According to the DL semantics, the
answer is true, and so ShopA should authorize this request.

Suppose that another customer David also sends an order and provides the fol-
lowing two credentials: “cardY says accountGood(David)” and “cardZ says ac-
countGood(David).” ShopA will decline this request, because only one principal in
“[cardW, cardX, cardY]” supports accountGood(David).

Note that the above process of generating the program and inferencing is done
from the authorizer ShopA’s point of view. In DL, there is always a single, dis-
tinguished viewpoint: the viewpoint of the principal who is doing reasoning and
making authorization decisions, i.e., the current trust root, referred to as “Local.”
Note that Local is a special symbol that refers to the current trust root and, in
particular, that it is not another principal. For example, Local in example 1 is
ShopA.

Now let us step through ShopA’s reasoning process in example 1 to derive
“BankB says creditRating(Carl, good).” First, ShopA believes “cardX says ac-
countGood(Carl)” and “cardY says accountGood(Carl),” because these two facts
are signed by their respective issuers. To ShopA, the rule issued by BankB means
that: “If, for some principal x, I (ShopA) believe that at least two principals in
[cardW, cardX, cardY] support accountGood(x), then I (ShopA) should also be-
lieve that ‘BankB says creditRating(x, good)’.” From this rule and the two facts,
ShopA concludes that “BankB says creditRating(Carl, good).”

The above reasoning is done from ShopA’s point of view; however, this viewpoint
is not that different from that of any other principal. Because credentials are
signed by their issuers, any principal that sees the above three credentials should
believe that “BankB says creditRating(Carl, good).” When a principal X signs
and distributes a rule “X says p if Y says q,” X means: “To whoever sees this
credential, if you believe that ‘Y says q,’ then you can also believe that ‘X says p’.”

3.5 Discussion of Representation Statements

We now discuss the differences between a representation statement “Y represents
X on ba” and a depth-∗ delegation statement “X delegates ba^∗ to Y .”

The representation statement is strictly stronger than the delegation statement.
If “Y represents X on ba,” then Y has all the power that X has with respect
to ba, even if X is not allowed to re-delegate this power. In other words, conclusions
drawn from a representation statement don’t consume any delegation depth.
For example, given the following rules:

Alice delegates read(file1)^1 to Bob.
keyBob represents Bob on read(?File).
keyBob says read(file1).

one can conclude that “Alice says read(file1).” But if one changes the second
statement to:

Bob delegates read(?File)^∗ to keyBob.
then one can no longer conclude that “Alice says read(file1),” because Alice only
delegates to Bob with depth 1.



18 ·

One main reason for having representation statements is to handle delegations
to principals that cannot make (i.e., sign) statements directly, e.g., distinguished
names in X.509 or local names in SPKI/SDSI. Authorities are often delegated
to these names instead of to keys. The trust root must determine which keys
“represent” these names and issue representation statements for this.

In example 1, we have the following credential:
ShopA delegates creditRating(?U, ?R)^2 to BankB.

In many scenarios, BankB is a name and cannot issue statements; the credential
is most likely signed by a key of BankB. Let us call this key keyBankB. Assume
that ShopA trusts keyCA about the bindings of keys to names, and keyCA certifies
that keyBankB is BankB’s public key for business purposes, i.e., ShopA has the
following statements:

keyCA says isBusinessKey(keyBankB, BankB).
ShopA delegates isBusinessKey(?Key, ?X)^1 to keyCA.

Then, by adding the following statement, ShopA can derive the same conclusions
as in example 1.

?Key represents ?X on creditRating(?U, ?R)
if Local says isBusinessKey(?Key, ?X).

Using a representation statement, one can delegate a certain permission to the name
of an entity and separate this delegation from the binding of a key with this name.

As one can see, a representation statement essentially circumvents the delegation-
depth restriction. Therefore, a rule with a representation statement in its head
always has the principal Local, i.e., the trust root, as its issuer. A principal B
can issue a statement saying that B delegates to C. But B cannot say that C
represents B. The trust root may rely on information from other principals to
determine whether one principal represents another principal; however, only the
trust root can make the decision about what information to use in determining
representation statements; others cannot make that decision for the trust root.
Also note that the trust root has no incentive to cheat on depth, because it can
choose to authorize a request without consulting the trust-management engine. In
the above example, the trust root ShopA is implicitly putting a lot of trust in
keyCA (similar to the PKI being used today), but it is using delegation depth to
limit trust in BankB.

The difference between representation statements and delegation statements in
DL is similar to the difference between name certificates and delegation statements
in SPKI/SDSI. DL’s notion of representation is also similar to the notion of “speaks
for” in [2; 26]; however, there are two differences. First, DL’s representation relation
is defined on a per-base-atom basis. Principal B may represent principal A with
respect to one thing but not another. In [2; 26], if B speaks for A, then B speaks
for A with respect to everything. Second, in DL, a representation statement can
only be made by the trust root, but in [2; 26], “B speaks for A” is true if A says
so. This is more like DL’s delegation relationship, in which A delegates to B if A
says so.
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3.6 More Examples of D1LP

In this section, we give several examples that use D1LP to represent authorization
policies and credentials.

Example 2 (Using multiple certification systems).
Alice delegates isSiteKey(?K, ?S)ˆ3 to (XRCA,(YRCA;ZRCA)).
Alice delegates isSiteKey(?K,?S)ˆ∗

to threshold(1, ?X, Alice says trustedFriend(?X)).
Alice says trustedFriend(Bob).
Bob delegates isSiteKey(?K, ?S)ˆ1 to ZRCA

if Bob says belongsTo(?S, orgA).
Bob delegates belongsTo(?S, orgA)ˆ1 to orgAKey.
YRCA delegates isSiteKey(?K,?S)ˆ1 to YCA1.
YCA1 says isSiteKey(LKey, LSite).
ZRCA says isSiteKey(MKey, MSite).
orgAKey says belongsTo(MSite, orgA).

In this example, XRCA, YRCA, and ZRCA are root keys of three public-key cer-
tification systems. They all have at most three levels of CA’s. The first rule says
that, for Alice to accept a binding between a public key and a site, the binding must
be certified by system X and at least one of system Y and system Z. The second
rule says that Alice (unconditionally) trusts anyone who is a “trusted friend” for
the purpose of binding public keys with sites. The third rule says that Bob is a
trusted friend of Alice. The fourth rule says that Bob thinks certification by system
Z is good enough if the site belongs to a specific organization orgA. The fifth rule
says that Bob trusts the public key orgAKey to certify that a site belongs to the
organization. The rest of the rules are facts.

From the above rules and facts, DL can conclude that “Alice says isSiteKey(MKey,
MSite),” because this follows from Alice’s trust of Bob; however, DL cannot con-
clude that “Alice says isSiteKey(LKey,LSite),” because isSiteKey(LKey,LSite) is
only certified by system Y but not by system X.

Example 3 (Accessing medical records).
This example concerns access to medical records. It is based on an example in
[20]. HM is a hospital that controls the medical records of some patients; it only
authorizes those principals that are physicians of a given patient to access the
medical record of that patient. HM trusts any known hospital to certify that a
principal is the physician of a patient. HM knows some hospitals itself; furthermore,
it believes that a principal is a hospital if two known hospitals certify that it is.
The following D1LP program represents these policies and includes some facts.

HM says readMedRec(?X, ?Y) if HM says isPhysician(?X,?Y).
HM delegates isPhysicianOf(?X, ?Y)ˆ1 to ?Z if HM says isHospital(?Z).
HM delegates isHospital(?H)ˆ1 to threshold(2,?Z, HM says isHospital(?Z)).
HM says isHospital(HC).
HM says isHospital(HB).
HB says isHospital(HA).
HB says isHospital(HD).
HC says isHospital(HA).
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HA says isPhysicianOf(Alice, Peter).
HD says isPhysicianOf(David, Peter).

In this example, HM initially believes that HB and HC are hospitals. Because
both HB and HC certify that HA is also a hospital, HM concludes that it is. Because
HA says that Alice is the physician of Peter, DL can further conclude that “HM
says readMedRec(Alice, Peter)).”

Example 4 (Controlling delegation width).
Suppose that Alice wants to delegate to Bob the right to access a document docZ
(e.g., a confidential contract draft or a copyrighted report), and to allow Bob to
further delegate this right as long as the principals to which Bob delegates are
members of the organization orgA, where membership of orgA must be certified by
Carl. In other words, Alice does not want to control the depth of Bob’s delegation,
but she wants to restrict the delegation to be within a certain domain — the
members of orgA. In D1LP, Alice can represent this policy by the following two
delegation statements.

Alice delegates access(docZ)ˆ∗ to (Bob,tmpKey).
tmpKey delegates access(docZ)ˆ1 to

threshold(1, ?X, Carl says member(?X,orgA)).

Here, tmpKey is a new principal created by Alice. Alice first generates tmpKey,
a new pair of public/private keys, then signs the second statement with the new
private key and uses the new public key in the first statement. After signing the
second statement, Alice can throw the new secret key away, without having to
worry about keeping it in a safe place.

According to this policy, Alice will delegate to a principal if both Bob and tmp-
Key delegate to it. Bob can delegate freely. But tmpKey only delegates to those
principals certified by Carl to be members of orgA, and tmpKey does not allow
re-delegation. Therefore, this achieves the intended policy.

Suppose that we further have

Bob delegates access(docZ)ˆ2 to David.
Bob delegates access(docZ)ˆ2 to John.
Carl says member(David,orgA).

Then the delegation “Alice delegates access(docZ)^1 to David” is a conclusion, but
“Alice delegates access(docZ)^1 to John” is not.

4. SEMANTICS OF D1LP

In this section, we define the semantics of D1LP. This semantics defines a minimal
model for every D1LP P and gives an answer to every query Q relative to P. This
semantics is defined via two transformations: Trans and RevTrans. Trans takes
a D1LP and outputs an OLP. RevTrans takes a set of OLP conclusions (ground
facts) and outputs a set of D1LP conclusions.

A D1LP P is first transformed (essentially, compiled) into a definite OLP O =
Trans(P) in an OLP language LOP . According to the usual minimal-model se-
mantics of OLP, this OLP O has a minimal model MO that is a set of entailed
ground conclusions expressed in OLP. The minimal D1LP model of P, denoted
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by MP , is obtained by reverse-transforming MO back into D1LP syntax, i.e.,
MP = RevTrans(MO). MP is a set of entailed ground conclusions expressed
in D1LP. This inferencing procedure that computes the entire model MP is called
exhaustive (bottom-up) inferencing. It is useful when one wants to compute all the
conclusions of a program.

As in OLP, one does not always want to perform exhaustive inferencing. To
answer a particular D1LP query Q with respect to a D1LP P, one can transform
both Q and P into OLP and then use OLP’s query-answering mechanism to answer
the query. The procedure that does this is described in detail in Section 4.6. This
kind of query-answering avoids computing the entire minimal D1LP model; it is
also called goal-directed (top-down) inferencing.

In specifying Trans and calculating the size of its output P = Trans(P), we use
the following notation. N is the size of P. By “size,” we mean the number of
symbols, i.e., variables, constants, predicate symbols, keywords, logical operators,
etc. D is the largest integer delegation depth in P. Because it is difficult to imagine
an authorization decision that distinguishes between, say, depth 7 and depth 8,
normally we expect D to be a very small integer, e.g., less than five. We define
[0..∗] = [0..D] ∪ {∗}, [∗..∗] = {∗}, and d < ∗ for any d ∈ [0..D]. We also define the
following operation: For any d1, d2 ∈ [0..∗],

d1⊕ d2 =
{
∗ if d1 = ∗, or d2 = ∗, or d1 + d2 > D
d1 + d2 otherwise

We specify Trans in the next three subsections, first showing how to transform a
D1LP that doesn’t contain threshold structures, then showing how to handle static
and dynamic threshold structures as well.

4.1 Transformation from D1LP to OLP without Threshold Structures

The transformation Trans generates an OLP program that propagates direct state-
ments through delegations when the depth constraints are not exceeded. To do
so, the generated program maintains the number of depth-consuming delegation
steps that a conclusion has gone through. Because D1LP allows delegation queries,
the generated program also has rules that chain delegations together to derive new
delegations and rules to generate weak delegations from strong ones, so that, if a
stronger delegation is proved to be true, then the answer to a query that is a weaker
delegation is also true.

The first step of the transformation is to replace each occurrence (if there are any)
of Local in rules in P with the principal that is specified in the locale-declaration
statement. Recall that as a syntactical requirement, if Local occurs in rules in P,
then there must be a locale-declaration statement in P. After the replacement, the
locale-declaration statement is removed. The resulting program is P0.

There are two predicates in Trans(P)’s output language LOP : holds and
delegates. The predicate holds, used to represent direct statements that are made
in P0 or derived in the inference process, takes three parameters:

holds(issuer, ba, len)

The domain of issuer is Principals, a set that contains all principals in P0 plus a set
of dummy principals, one for each principal structure that appears as a delegatee
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in P0. The domain of ba is the set of all ground base atoms in PInst
0 (ground

instantiation of P0). The domain of len is [1..∗]. Note that base atoms in P0 are
used as terms here; for each predicate symbol in P0, we add to LOP a new function
symbol that has the same name as that predicate symbol. The field len stores
one plus the number of delegation steps this conclusion has gone through; an atom
“holds(Alice, goodCredit(Carl), 1)” thus represents “Alice says goodCredit(Carl).”
A “∗” in the field len means that it has gone through more steps than we need
to keep track of, i.e., the number of steps is greater than the maximum integer
delegation depth D.

The predicate delegates is used to represent delegation statements and represen-
tation statements that are made in P0 or derived in the inference process. It takes
five parameters:

delegates(issuer, ba, dep, dele, len)

Here, dep stands for depth and dele stands for delegatee. The domains of issuer
and ba are the same as they are in holds; the domain of dep is [1..∗]; the domain of
dele is Principals, the same as that of the issuer field; the domain of len is [0..∗].
Note that, unlike the len field in a holds atom, the len field in a delegates atom
can be 0; this will be the case for representation statements. Note that a delegates
atom can only represent a delegation to a single principal. Queries of delegations
to conjunctions of principals are handled by introducing dummy principals, as will
be shown soon.

We first consider how to transform a D1LP that does not contain threshold
structures. We define a function PExpand , which will be used in the transformation.

Function PExpand :
This function takes two parameters: a principal expression (a principal, a principal
variable, or a principal structure) and an atom (of predicate holds or delegates)
without the issuer field. Consider the case in which the principal expression is free
of threshold structures. In this case, the function PExpand is defined recursively
as follows:
PExpand((PE 1,PE 2), Atom) = (PExpand(PE 1, Atom),PExpand(PE 2, Atom))
PExpand((PE 1;PE 2), Atom) = (PExpand(PE 1, Atom);PExpand(PE 2, Atom))
PExpand(X, holds(ba, l)) = holds(X, ba, l)
PExpand(X, delegates(ba, dep, dele, l)) = delegates(X, ba, dep, dele, l)

where X is either a principal variable or a single principal.
The function PExpand transforms a statement that has a principal structure as its
issuer to an equivalent statement formula, in which each statement has a principal
or a principal variable as issuer. As we will soon see, PExpand deals with delegatees
that are principal structures and enables body statements to be more general than
head statements.

For now, PExpand simply returns a formula. When we deal with threshold
structures in Sections 4.3 and 4.4, we will extend the definition of PExpand ; then,
it will have side effects as well as returning a formula — it will generate some
additional rules and introduce some new constants.

Finally, we can start defining Trans. It is divided into two phases: body trans-
formation and head transformation.
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Phase I: Body transformation

This phase of the transformation changes rule-bodies in P0; the result is called P1.
It may also construct some new rules; the set of new rules is called Padd

1 .
This phase of the transformation does the following to the body of each rule in P0.

(1) Holds body translation:
Replace each body-direct statement AE says ba

with PExpand(AE , holds(ba, ∗)).
This step adds the length ∗ to body statements and uses PExpand to deal with
complex issuers. Intuitively, a direct statement “AE says ba” in the body of a
rule is true if we can prove that AE supports the base atom ba either directly
or through delegation. The length ∗ means that we do not require that the
conclusion be drawn within a certain number of delegation steps.

(2) Representation body translation:
Replace each representation statement B represents A on ba

with delegates(A, ba, ∗, B, 0).
This means that representation statements are special delegations that always
have depth ∗ and length 0.

(3) Simple delegates body translation:
Replace each body-delegation statement AE delegates ba^d to B

with PExpand(AE , delegates(ba, d,B, ∗)),
where B is a principal or a principal variable.
This step is similar to step (1), but it is for delegation statements. It adds the
length ∗ to body statements, because we do not require that a conclusion be
drawn within a certain number of delegation steps.

(4) Conjunction delegates body translation:
Replace each body-delegation statement

AE delegates ba^d to (B1, . . . , Bn)
with PExpand(AE , delegates(ba, d,Bnew, ∗)),

where B1, . . . , Bn are principals, and Bnew is a newly created principal.
In addition, for each Bi, i = 1..n, add the following fact to Padd

1 :
delegates(Bi, ba, ∗, Bnew, 0).

This step enables tractable inference of delegations that have conjunctions
of principals as delegatees. Remember that the dele field of the predicate
delegates is required to be a principal, rather than a conjunction of principals.
Therefore, we have introduced a dummy principal Bnew to represent the princi-
pal structure (B1, . . . , Bn). That Bnew represents (B1, . . . , Bn) is characterized
by the relationships that Bnew represents for every principal in (B1, . . . , Bn).
The new facts “delegates(Bi, ba, ∗, Bnew, 0)” are introduced for this purpose.
These facts are added to Padd

1 instead of P1, because they do not need further
processing; including them in the final output is sufficient.

Phase II: Head transformation

The input to this phase is P1. This phase of the transformation changes rule heads
in P1; the result is called P2. It also constructs some new rules; the set of the new
rules is called Padd

2 .
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For each rule R in P1, one of the following two cases applies:
Case one: When R’s head is a direct statement “A says ba,” do the following two
steps.

(5) Holds head translation:
Replace R’s head with “holds(A, ba, 1).”

(6) Holds length-weakening meta-rule:
For each len ∈ [1..D], add the following rule:

holds(A, ba, len⊕ 1) if holds(A, ba, len).
This meta-rule states that, if something is derived with smaller length, then it
may also be inferred when larger length is allowed.

Case two: When R’s head is not a direct statement, i.e., it is either a delegation
statement or a representation statement, do the following steps. Note that the
following steps may seem unnecessarily complicated, especially in the way they
deal with length and delegation depth. This complication arises from the need to
avoid introducing new variables in the transformation; this is essential in proving
tractability results.

Sub-case a: If R’s head is a delegation statement:
A delegates ba^d to BE ,

i.e., a depth-d delegation from A to BE , then let ll be 1 (ll will be used in the
transformation steps below). Let B be BE if BE is a single principal or a principal
variable; otherwise, let B be the newly introduced dummy principal that represents
BE .

Sub-case b: If R’s head is a representation statement:
B represents A on ba,

then let d be ∗, ll be 0, and BE be B.
For both sub-cases, do the following steps.

(7) Delegates head translation:
Replace R’s head with delegates(A, ba, d,B, ll).
We use B in place of BE , because the delegatee field of the predicate delegates
is restricted to be a single principal or a principal variable.

(8) Holds propagation meta-rule:
For each len ∈ [1..d], add the following rule:

holds(A, ba, len⊕ ll)
if delegates(A, ba, d,B, ll), PExpand(BE , holds(ba, len)).

This meta-rule propagates direct statements through a delegation as follows:
If the delegation in R’s head is true (by the previous step, it is true when the
body of R is true), and the delegatee BE supports something within len (≤ d)
delegation steps, then the issuer A supports the same thing within len⊕ll steps,
where ll is 1 if R’s head is a delegation and 0 if R’s head is a representation
statement.

(9) Delegation chaining meta-rule:
For each C ∈ Principals, for each dep ∈ [1..d], and for each len ∈ [0..d	 dep],
add the following rule:

delegates(A, ba, min(d	 len, dep), C, len⊕ ll)
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if delegates(A, ba, d,B, ll),
PExpand(BE , delegates(ba, dep, C, len)).

where, for any d1, d2 such that 0 ≤ d2 ≤ d1 ≤ D:

d1	 d2 = d1− d2
∗ 	 d1 = ∗
∗ 	 ∗ = ∗

This is the most complex and the most expensive (in terms of the size of the
new rules added) meta-rule. Intuitively, it means that, if A delegates to BE
with depth d (see step 7 for the relation between B and BE ), and one can also
derive within len ≤ d steps that BE delegates to C with depth dep, then A
delegates to C as well. The depth of this newly derived delegation is bounded
by the depth dep, because A should not trust C more than BE trusts C. It is
also bounded by the depth d minus the number of delegation steps that have
already been used to derive the delegation from BE to C.

Steps 8 and 9 provide a key part of the relationship between dummy principals
and the principal structures they represent.

(10) Self delegation meta-rule:
For each C ∈ Principals, for each dep ∈ [1..∗], and for each len ∈ [0..∗], add
the following fact:

delegates(C, ba, dep, C, len).
This meta-rule states that each principal delegates unconditionally to itself.

(11) Delegates depth-weakening meta-rule:
For each C ∈ Principals, for each len ∈ [0..∗], and for each dep ∈ [1..D], add
the following rule:

delegates(A, ba, dep, C, len) if delegates(A, ba, dep⊕ 1, C, len).
This meta-rule states that a smaller-depth delegation may be derived if a cor-
responding larger-depth delegation is derived.

(12) Holds length-weakening meta-rule:
For each len ∈ [1..D], add the following rule:

holds(A, ba, len⊕ 1) if holds(A, ba, len).
This meta-rule is the same as step 6. It appears again, because it is also needed
for case two.

(13) Delegates length-weakening meta-rule:
For each C ∈ Principals, for each dep ∈ [1..d], and for each len ∈ [0..D], add
the following rule:

delegates(A, ba, dep, C, len⊕ 1) if delegates(A, ba, dep, C, len).
This meta-rule states that any delegation that is derived within a certain length
may also be derived within a larger length.

Example 5 (Holds propagation).
r1: B1 delegates p^2 to B2.
r2: B2 delegates p^1 to B3.
r3: B3 says p.

From r3, applying the holds head translation (5), one has “holds(B3, p, 1).”
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From r2, applying the delegates head translation (7), one has
“delegates(B2, p, 1, B3, 1).”

From r2, applying the holds propagation meta-rule (8) with len = 1, one has
“holds(B2, p, 2) if delegates(B2, p, 1, B3, 1), holds(B3, p, 1).”

From the above rules, one concludes “holds(B2, p, 2).”
From r1, applying (7), one has “delegates(B1, p, 2, B2, 1).” Applying (8) with

len = 2, one has “holds(B1, p, 3) if delegates(B1, p, 2, B2, 1), holds(B2, p, 2).”
From the above rules, one concludes “holds(B1, p, 3).”

Example 6 (Delegation chaining).
r1: B1 delegates p^3 to B2.
r2: B2 delegates p^∗ to B3.
r3: B3 delegates p^4 to B4.

From r3, applying (7), one has “delegates(B3, p, 4, B4, 1).”
From r2, applying (7), one has “delegates(B2, p, ∗, B3, 1).”
From r2, applying delegation-chaining meta-rule (9) with C = B4, dep =

4, and len = 1, one has “delegates(B2, p, 4, B4, 2) if delegates(B2, p, ∗, B3, 1),
delegates(B3, p, 4, B4, 1).”

From the above rules, one concludes “delegates(B2, p, 4, B4, 2).”
From r1, applying (7), one has “delegates(B1, p, 3, B2, 1).” Applying (9)

with C = B4, dep = 4, and len = 2, one has “delegates(B1, p, 1, B4, 3) if
delegates(B1, p, 3, B2, 1), delegates(B2, p, 4, B4, 2).”

From the above rules, one concludes “delegates(B1, p, 1, B4, 3).” The delegation
depth of this conclusion is 1, because B1 delegates to B2 with depth 3 and two
steps are consumed while deriving the delegation from B2 to B4.

Example 7 (Self Delegation).
r1: A delegates p^3 to (B1,B2).
r2: B1 delegates p^3 to B2.

From r2, applying (7), one has “delegates(B1, p, 3, B2, 1).”
From the self delegation meta-rule (10), with C = B2, dep = 3, len = 1, one has

“delegates(B2, p, 3, B2, 1).”
For r1, a dummy principal T is introduced to represent (B1, B2). Applying (7),

one has delegates(A, p, 3, T, 1).
From r1, applying (9) with C = B2, dep = 3, len = 1, one

has “delegates(A, p, 2, B2, 2) if delegates(A, p, 3, T, 1), delegates(B1, p, 3, B2, 1),
delegates(B2, p, 3, B2, 1).”

From the above, one concludes that “delegates(A, p, 2, B2, 2).”

Example 8 (Conjunctive delegation in body).
r1: A delegates p^1 to (B1, B2).
r2: A says qq if A delegates p^1 to (B1, B2, B3).

Given rules r1 and r2, one should conclude holds(A, qq, 1).
Two dummy principals are introduced: T1 for (B1, B2) and T2 for (B1, B2, B3).
From r2, applying the conjunctive delegates body translation (4) and the

head translation (5), one has “holds(A, qq, 1) if delegates(A, p, 1, T2, ∗)”
as well as “delegates(B1, p, ∗, T2, 0),” “delegates(B2, p, ∗, T2, 0),” and
“delegates(B3, p, ∗, T2, 0).”
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From r1, applying (7), one has “delegates(A, p, 1, T1, 1)”; applying (9) with
C = T2, dep = 1, and len = 0, one has “delegates(A, p, 1, T2, 1) if
delegates(A, p, 1, T1, 1), delegates(B1, 1, p, T2, 0), delegates(B2, 1, p, T2, 0).”

From the rules above, one can then infer “delegates(A, p, 1, T2, 1).”
From r1, applying the delegates length-weakening meta-rule (13), one

has “delegates(A, p, 1, T2, ∗) if delegates(A, p, 1, T2, 1).” Therefore, one has
“delegates(A, p, 1, T2, ∗).”

Therefore, one concludes that “holds(A, qq, 1).”

The result of the transformation Trans is:

O = Trans(P) = P2 ∪ Padd
1 ∪ Padd

2 .

The transformation process introduces dummy principals to replace principal
structures that occur as delegatees. The transformation process also outputs the
list DUM of all dummy principals and which principal expressions they replace.
This list is useful when converting conclusions drawn from O back to D1LP.

Lemma 1. Given a D1LP P that does not use any threshold structures, let N
be the size of P, D be the maximal integer depth in P, and O = Trans(P), then
|O| = O(N3D2).

Proof. Our counting argument focuses on the ratio |O|/|P|, which we call the
growth factor. We show that the growth factor is O(N2D2).

Note that |PExpand(BE , Atom)|/|Atom| = O(|BE |). Clearly, |BE | < N . There-
fore, the growth factor of PExpand is O(N).

In the body-transformation phase, a body statement is replaced by the result of
a corresponding PExpand call. Therefore, |P1|/|P| = O(N). If a body statement
has a conjunctive delegatee, the program Padd

1 has one additional fact for each
principal in the delegatee. Because there are at most N principals in any delegatee,
and each additional fact has size linear in the size of the original body statement,
|Padd

1 |/|P| = O(N). Note that this phase does not change rule-heads.
In the head-transformation phase, if a rule has a direct statement as its head, up

to D new rules are added, each of which has size linear in the size of the original
head. Therefore, |Padd

2 |/|P| = O(D). The size of P2 remains unchanged from P1,
and so |P2|/|P| = O(N).

In the head-transformation phase, if a rule R has a delegation statement or
a representation statement as its head, several transformation steps apply; each
adds a set of rules to Padd

2 , but the size of P2 remains unchanged from P1. Step
9 (the delegation chaining meta-rule) generates the largest set of rules. It adds
O(|Principals|D2) transformed rules for the rule R. Recall that Principals is the
set of all principals in P1 ∪ Padd

1 . Because at most one new principal is introduced
per statement in P, |Principals| = O(N). Each transformed rule may use PExpand
to change parts of it. Therefore, the growth factor for step 9 is O(ND2) times the
growth factor of PExpand .

Because O = P2 ∪ Padd
1 ∪ Padd

2 , |O|/|P| = O(N2D2), and so this claim holds.

Of this N2D2 growth factor, one N comes from the size of Principals, which is
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likely to be the order of |P|. The other N comes from the bound on the size of one
principal structure; this usually will be much smaller than |P|.

4.2 Generating Typed OLP

To ensure tractability, we would like Trans(P) to be Datalog when P is. However,
Trans(P) introduces logical function symbols that have non-zero arities. For each
predicate pred in P, Trans(P) has one corresponding function symbol. As we will
see in Sections 4.3 and 4.4, Trans(P) also introduces several pre-defined function
symbols for threshold structures.

This problem is addressed by generating a typed OLP as output. The intuitive
idea of a typed logic program is that there are several sorts of variables, each ranging
over a different domain. Therefore, one can use typing to limit the terms that are
used to instantiate a variable, thus limiting the instantiated size of a program.

There are different typing systems for logic programs. For our purposes, the
simplest form of typing — many-sorted typing — suffices. (For more advanced
typing systems in logic programs, see [39].) In a many-sorted LP language, there
is a finite set of types. Variables and constants have types such as τ . Predicate
symbols have types of the form τ1 × . . . × τn, and function symbols have types
of the form τ1 × . . . × τn → τ . Variables of one type can only be instantiated to
terms of the same type. The type of a given predicate specifies the type of each
of its arguments; the type of a given function symbol func also specifies the type
of its “return value,” i.e., the type of any term of the form func(...). There are
simple techniques to translate programs from a many-sorted language to an untyped
language (see pages 18–20 of [35]). Many-sorted logic programs can be executed
with the same efficiency as untyped logic programs [38].

We use many-sorted typing to ensure that, for each variable in Trans(P), there
are O(|P|) ground terms that can instantiate it. Because variables in Trans(P)
come from P, these variables must be instantiated only to ground terms in P and
not to terms constructed using the function symbols introduced during the trans-
formation. The simplest typing that achieves this goal has two types in LOP . All
the variables and constants coming from P have one type. All the terms intro-
duced during the transformation have the other type. Because all the variables in
Trans(P) actually come from P, all the variables in LOP have the first type. This
fact will be crucial to the tractability result of D1LP inferencing in Section 5.2.

It has been argued that logic programs often make implicit assumptions about
types and that a logic program only satisfies its intended meaning if type informa-
tion is added to it [37]. We observe that, in authorization, there are conceptually
different types of entities, e.g., subjects, objects, groups, roles, etc. Most predi-
cates conceptually should only take arguments of certain types. One might thus
add typing directly and explicitly to DL and its syntax. Actually, a degree of typing
is implicitly present in DL. DL has principals and principal variables; thus, there
is an implicit “principal” type. Typing might also be used to relax the Datalog
restriction on DL’s syntax. As long as variables are only allowed to be instantiated
to a limited number of ground terms, the program does not need to be Datalog.
Although we think that adding types to DL is potentially very useful, we do not
pursue this topic further in this paper, because it is not our main topic.
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4.3 Transformation with Static Threshold Structures

To handle static unweighted threshold structures, we add a new function symbol
“suth” to LOP ; it stands for static unweighted threshold structures. We also extend
the domain of the issuer field for predicates holds and delegates to include terms
of the form “suth(i, [A1, . . . , An]),” where i is an integer representing the threshold
value that needs to be satisfied and Ai’s are principals. Then we extend the defini-
tion of PExpand to include the following:

PExpand(threshold(k, [A1, . . . , An]), holds(ba, l))
= holds(suth(k, [A1, . . . , An]), ba, l)

PExpand(threshold(k, [A1, . . . , An]), delegates(ba, dep, dele, l))
= delegates(suth(k, [A1, . . . , An]), ba, dep, dele, l)

The function PExpand , for calls of the above forms, results in side effects besides
returning a formula; it generates the following new rules. These rules reason about
atoms that have issuers of the form “suth(i, [A1, . . . , An]).”

Case one: PExpand is called with a holds atom.
“PExpand(threshold(k, [A1, . . . , An]), holds(ba, l))” does the following.

—For i = k to 1, for j = 1 to n, add the rule:
holds(suth(i, [Aj , Aj+1, . . . , An]), ba, l)

if holds(Aj , ba, l), holds(suth(i− 1, [Aj+1, . . . , An]), ba, l).
When j = n, the added rule contains [An+1, . . . , An], which we define to be the
empty list [].
This meta-rule means that, if Aj supports ba, and there are no fewer than i− 1
principals in [Aj+1, . . . , An] that support ba, then there are no fewer than i prin-
cipals out of [Aj , Aj+1, . . . , An] that support ba .

—For i = k to 1, for j = 1 to n, add the rule:
holds(suth(i, [Aj , Aj+1, . . . , An]), ba, l)

if holds(suth(i, [Aj+1, . . . , An]), ba, l).
This meta-rule means that, if there are no fewer than i principals in [Aj+1, . . . , An]
that support ba, then there are no fewer than i principals in [Aj , Aj+1, . . . , An]
that support ba.

—For j = 1 to n + 1, add the fact:
holds(suth(0, [Aj , . . . , An]), ba, l).

This meta-rule means that it is always true that there are no fewer than 0 prin-
cipals in [Aj , . . . , An] that support ba.

Case two: PExpand is called with a delegates atom.
“PExpand(threshold(k, [A1, . . . , An]), delegates(ba, dep, dele, l))” does the follow-
ing. This case is similar to case one, but with delegates taking the place of holds.

—For i = k to 1, for j = 1 to n, add the rule:
delegates(suth(i, [Aj , Aj+1, . . . , An]), ba, dep, dele, l)

if delegates(Aj , ba, dep, dele, l),
delegates(suth(i− 1, [Aj+1, . . . , An]), ba, dep, dele, l).

—For i = k to 1, for j = 1 to n, add the rule:
delegates(suth(i, [Aj , Aj+1, . . . , An]), ba, dep, dele, l)

if delegates(suth(i, [Aj+1, . . . , An]), ba, dep, dele, l).
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—For j = 1 to n + 1, add the fact:
delegates(suth(0, [Aj , . . . , An]), ba, dep, dele, l).

Next we consider how the size of O is affected. A call of PExpand with a static
unweighted threshold structure returns an atom of the same size as its input and
generates a number of new rules. We define the growth factor of PExpand with
threshold structures to be the total size of all the generated rules plus its output,
divided by the size of its input.

Lemma 2. The growth factor of PExpand with a static unweighted threshold is
O(N2).

Proof. Each time PExpand encounters a static unweighted threshold structure,
O(k, n) new rules are generated, where k ≤ n is the threshold value, and n is the
size of the threshold pool. Each new rule has size linear in the size of PExpand ’s
input. The worst-case bound for O(kn) is O(N2).

Static weighted threshold structures are handled similarly to static unweighted
threshold structures; a new function symbol “swth” is introduced. We extend the
domain of the issuer field for predicates holds and delegates to include terms of the
form “swth(i, [(A1, w1), . . . , (An, wn)]).” Then we extend the definition of PExpand
to include the following:

PExpand(threshold(k, [(A1, w1), . . . , (An, wn)]), holds(ba, l))
= holds(swth(k, [(A1, w1), . . . , (An, wn)]), ba, l)

PExpand(threshold(k, [(A1, w1), . . . , (An, wn)]), delegates(ba, dep, dele, l))
= delegates(swth(k, [(A1, w1), . . . , (An, wn)]), ba, dep, dele, l)

Case one: “PExpand(threshold(k, [(A1, w1), . . . , (An, wn)]), holds(ba, l))” does the
following.

—For i = k to 1, for j = 1 to n, add the rule:
holds(swth(i, [(Aj , wj), (Aj+1, wj+1), . . . , (An, wn)]), ba, l)

if holds(Aj , ba, l),
holds(swth(max(i− wj , 0), [(Aj+1, wj+1), . . . , (An, wn)]), ba, l).

—For i = k to 1, for j = 1 to n, add the rule:
holds(swth(i, [(Aj , wj), (Aj+1, wj+1) . . . , (An, wn)]), ba, l)

if holds(swth(i, [(Aj+1, wj+1), . . . , (An, wn)]), ba, l).

—For j = 1 to n + 1, add the fact:
holds(swth(0, [(Aj , wj), . . . , (An, wn)]), ba, l).

Case two: PExpand is called with a static weighted threshold structure and a
delegates atom. This case is similar to case one, but with delegates taking the
place of holds. The details are omitted.

Lemma 3. The growth factor of PExpand with a static weighted threshold is
O(N2).

Proof. Similar to Lemma 2.
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4.4 Transformation with Dynamic Threshold Structures

To handle dynamic threshold structures, we need a listing of all principals in P0.
Let M be the number of different principals in P0 and [C1, C2, . . . , CM ] be a list of
all principals in P0.

We introduce a new function symbol “duth,” which stands for dynamic un-
weighted threshold structure, and extend the domains of the issuer field for the two
predicates holds and delegates to include terms of the form “duth(i, j, t),” where i
and j are integers, and t is a newly generated constant. The integer i is the threshold
value that needs to be satisfied, and the integer j is an index into the list of princi-
pals “[C1, C2, . . . , CM ].” The newly generated constant t is used to uniquely identify
the overall dynamic threshold pool defined by “?X, Prin says pred(. . .?X . . .).”
We also extend the definitions of PExpand to include the following:

PExpand(threshold(k, ?X, Prin says pred(. . .?X . . .)), holds(ba, l))
= holds(duth(k, 1, t), ba, l)

PExpand(threshold(k, ?X, Prin says pred(. . .?X . . .)),
delegates(ba, dep, dele, l))

= delegates(duth(k, 1, t), ba, dep, dele, l)

Each time PExpand is called with a dynamic unweighted threshold structure argu-
ment, it generates a new constant t and a set of new rules, in addition to returning
an atom as defined above.

Case one: “PExpand(threshold(k, ?X, Prin says pred(. . .?X . . .)), holds(ba, l))”
does the following. If k is greater than M , do nothing — the threshold cannot
be satisfied. Otherwise, do the following.

—For i = k to 1, for j = 1 to M , add the rule:
holds(duth(i, j, t), ba, l)

if holds(Prin, pred(. . . Cj . . .), ∗),
holds(Cj , ba, l),
holds(duth(i− 1, j + 1, t), ∗)), ba, l).

—For i = k to 1, for j = 1 to M , add the rule:
holds(duth(i, j, t), ba, l) if holds(duth(i, j + 1, t), ba, l).

—For j = 1 to M + 1, add the rule:
holds(duth(0, j, t), ba, l).

Case two: PExpand is called with a dynamic unweighted threshold structure and
a delegates atom. This case is similar to case one, but with delegates taking the
place of holds. The details are omitted.

Lemma 4. The growth factor of PExpand with a dynamic unweighted threshold is
O(N2).

Proof. For each dynamic threshold structure, O(min(k,M)M) rules are added,
where k is the threshold value. Recall that M is the number of different principals
in P0, and so M = O(N). Thus, the worst-case growth factor of PExpand with
dynamic threshold structures is still O(N2), the same as it is with static threshold
structures. However, dynamic threshold structures are more expensive in practice,
because M is typically much larger than n. (Recall that n, used in Section 4.3, is
the size of one static threshold pool.)
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Dynamic weighted threshold structures
We also considered incorporating dynamic weighted threshold structures [31] into

DL; however, they pose difficulties for ensuring tractability.

4.5 Reverse Transformation of Conclusions

In Section 4.1, we defined the transformation from a D1LP P to an OLP O. We now
define a reverse transformation that maps an OLP model of O to a D1LP model
of P. This reverse transformation is useful if one wants all the D1LP conclusions
entailed by P. In the transformation from D1LP to OLP, a dummy principal is
introduced when a principal expression other than a principal or a principal variable
occurs as the delegatee of a delegation statement. In the reverse transformation,
these principals are replaced by the principal structures to which they correspond,
when they appear as delegatees of conclusions of delegates. The mapping DUM
of dummy principals to principal structures, produced by the transformation, is
needed here. The reverse transformation is as follows.

—For each atom of the form: holds(A, ba, len),
where A is a non-dummy principal, include the D1LP-conclusion:

A says ba.

—For each atom of the form: delegates(A, ba, ∗, D, 0),
where A and D are non-dummy principals, include the D1LP-conclusion:

D represents A on ba.

—For each atom of the form:
delegates(A, ba, dep,D, len),

where A is a non-dummy principal, D is a principal, and len > 0.
When D is a non-dummy principal, include the D1LP-conclusion:

A delegates ba^dep to D.
Otherwise, when D is a dummy principal introduced for the principal structure
BE , include the D1LP-conclusion:

A delegates ba^dep to BE .
(Note that, because of the way the semantic transformation is defined, there are
no atoms with both len = 0 and dep < ∗.)

Note that we ignore conclusions that have dummy principals or threshold structures
as issuers and do not convert them back to D1LP, because these are intermediate
results. Also note that length can be ignored after the OLP conclusions are drawn.
The minimal D1LP model of P, denoted by MP , is obtained by applying the above
reverse-transformation to MO, the minimal OLP model of O.

4.6 Query Answering

An answer to a D1LP queryQ is a set of variable bindings that makesQ true relative
to P. WhenQ is ground, the answer is just the truth value ofQ. Although the truth
value of Q relative to P is determined by P’s minimal D1LP model MP , one cannot
simply check whether Q is in MP to answer it, because the syntactic expressiveness
of a D1LP query is considerably greater than that of a D1LP conclusion. A query
may have a principal structure as issuer, and it may have a conjunction of principals
as delegatee.
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Next, we give an algorithm to answer the query Q relative to P, without doing
exhaustive inferencing:

(1) Transform Q into an OLP query, using the same procedure as the one used
to transform rule-bodies, i.e., the body transformation (see Section 4.1). This
transformation changes Q into an OLP query Q′ and generates a new set of
OLP rules Qadd (possibly empty).

(2) Form an OLP O′ = O ∪Qadd.
(3) Answer the OLP query Q′ with respect to O′, using some backward OLP

inference engine, e.g., Prolog. The resulting bindings directly yield the answer
to the query Q relative to P.

5. TRACTABILITY RESULTS

In this section, we give upper bounds on the worst-case computational complexity
of Trans, the transformation from D1LP to OLP, and of overall D1LP inferencing
using Trans. In Section 5.1, we show that Trans is tractable. In Section 5.2, we
show that, under the restriction that each rule has a bounded number of variables,
overall D1LP inferencing is also tractable. This restriction is similar to that for
guaranteeing tractability of Datalog inferencing and relational databases.

5.1 Tractability of the Transformation from D1LP to OLP

From Lemmas 1, 2, 3, and 4 in Sections 4.1, 4.3, and 4.4, it follows straightforwardly
that the growth factor of the transformation Trans is O(N3D2), where N = |P|,
and D is the maximal delegation depth in P. Therefore, we have the following
result.

Theorem 5 (Tractable Transform Size).
Given a D1LP P, the size of O = Trans(P) is O(N4D2), where N = |P|, and D

is the maximal delegation depth in P.

We observe that the definition of Trans corresponds straightforwardly to an al-
gorithm to perform this transformation. We observe further that this algorithm
takes time linear in the size of the output OLP. Following these observations and
theorem 5, we have the following theorem.

Theorem 6 (Tractable Transform Time).
Computing O takes time O(N4D2). The transformation from D1LP to OLP is

thus computationally tractable.

As discussed before, we expect that D will typically be a small constant, e.g.,
less than five.

Next, we discuss how the complexity picture will often in practice be significantly
better than the worst-case bound of O(N4D2). Overall, we observe that each rule
grows independently and that most rules are simple ones that have small growth
factors. A rule with a direct statement as its head is simpler than a rule with a
delegation statement or a representation statement as its head. A rule that does
not have any threshold structure is simpler than a rule that does.

Consider a rule R that does not contain any threshold structures (either in the
head or in the body): Let SR be the size of the largest principal structure in R;
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certainly SR is bounded by the size of R, which is in turn bounded by N . We
expect that SR will usually be a small constant. If R’s head is a direct statement,
R’s growth factor is max(SR, D), which is a small constant assuming that SR and
D are small constants. Thus the simplest rules typically have a constant growth
factor. If R’s head is a delegation statement or a representation statement, R’s
growth factor is “|Principals|SRD2.” Clearly |Principals| = O(N). Assuming
that SR and D are constants, this “|Principals|SRD2” factor becomes O(N) with
a relatively large constant factor (e.g., 20–100).

Transformation of rules that contain threshold structures is more expensive.
However, having threshold structures in one rule does not affect the growth factor
of other rules. We expect that, in practice, most D1LP programs consist mostly of
simple rules that do not have threshold structures.

Now we break down the O(N3D2) growth factor as follows.

—Having complex principals structures contributes O(N2), which is the max of the
following two cases.
—Having conjunctions and disjunctions contributes O(S), where S is the size of

the largest principal structure in P. Clearly S = O(N). Typically, S is a small
constant.

—Having threshold structures contributes O(N2), which is the max of the fol-
lowing two cases.
—Having static threshold structures contributes O(min(k, n)n).
—Having dynamic threshold structures contributes O(min(k,M)M).
Note that k is typically a small constant, in which case the overall growth
factor when complex principal structures are involved is O(N).

—Having integer delegation depth contributes O(D2), because Trans loops over all
lengths and depths to derive delegation conclusions. This factor is reduced to
O(D) if we do not answer delegation queries, because then Trans only needs to
loop over all lengths.

—Answering delegation queries contributes O(N), as Trans needs to loop over all
principals in the set Principals.

5.2 Tractability of D1LP Inferencing

Next, we review some previously known results about OLP inferencing [35]. We
say that an LP (either OLP or D1LP) obeys the VB restriction when it has an
upper bound v on the number of (logical) variables. To indicate that the per-rule
bound on the number of variables is v, we also say that the LP is VB(v). We say
that an LP is VBD(v) if it is VB(v) and is either Datalog or ground. Datalog
means without function symbols of non-zero arity. Function symbols with non-zero
arity makes it possible to generate an infinite number of ground terms; therefore,
the minimal model of a non-Datalog program may be infinite. For example, given
one arity-1 function symbol f and one constant a, one can construct terms such as
f(a), f(f(a)), f(f(f(a))), etc.

Given a definite OLP S that is VBD(v), its inferencing (computing its minimal
model or answering a query relative to it) takes time O(|S|v+1). This is because
inferencing of a definite OLP takes time linear in the size of its ground instantiation,
and S’s ground instantiation has size O(|S|v+1). For each variable, there are O(|S|)
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ground terms that can be used to instantiate it, and so, for each rule, there are at
most O(|S|v) ways to instantiate it. Thus, instantiating S increases its size by a
factor of O(|S|v).

We cannot directly use the above result for D1LP inferencing, because the gener-
ated OLP Trans(P) is not Datalog, even though P is. By generating a many-sorted
OLP O, we, however, ensure that only ground terms from P are used to instantiate
variables in O. We thus have the following theorem.

Theorem 7 (Tractable D1LP Inferencing).
Given a D1LP P that is VB(v), computing the minimal D1LP model of P has time
complexity O(Nv+4D2), where N = |P|, and D is the maximal delegation depth in
P.

Proof. If P is VB(v), then O = Trans(P) is also VB(v), because Trans does
not introduce any new variables. Recall our discussion above of typing in O. All
variables in O are from P, and there are at most N ground terms to instantiate
each variable, because all the function symbols in P are constants. By Theorem 5,
therefore, the instantiated size of O is O(|O|Nv) = O(Nv+4D2). Then, computing
the minimal OLP model of O takes time O(Nv+4D2), and the size of this model is
O(Nv+4D2). The reverse transformation takes time linear in the size of this model.
By Theorem 6, the transformation takes time O(N4D2). So, overall, computing
the minimal D1LP model of P has time complexity O(Nv+4D2).

6. DISCUSSION OF THE CONJUNCTIVE-DELEGATEE-QUERIES RESTRICTION

In Section 3.1, we defined D1LP to obey the conjunctive-delegatee-queries restric-
tion: A delegation statement appearing in a query or a rule-body must have a
delegatee that is a principal, a principal variable, or a conjunction of principals;
that is, such a delegatee is not permitted to contain a disjunction or a threshold
structure (which is disjunctive in nature). In this section, we discuss in detail the
tractability motivation behind the conjunctive-delegatee-queries restriction.

6.1 Understanding D1LP’s Inferencing of Delegation

D1LP allows delegation statements to appear in queries. To answer these queries
correctly, D1LP’s semantics infers weaker delegations from stronger ones. Delega-
tions can be compared on several bases: the base atoms that they are about, their
delegation depths, and their delegatees. As we have discussed earlier, all other
things being equal, a higher-depth delegation is stronger than a lower-depth one.
This stronger-than relation is transitive and reflexive; therefore, it is a partial or-
der. Not all pairs of delegations are comparable; for example, “A delegates p^1 to
B” and “A delegates q^2 to B” are not, because they are about two different base
atoms.

We now consider the stronger-than relation between two delegations that differ
only in their delegatees. For simplicity of presentation, we omit the implicit base
atom and the depth in the following discussion. We compare the relative strength of
delegations on the basis of the intuitive interpretation of delegation: “A delegates to
B” means that “if B says something, then A agrees.” Following this interpretation,
“A delegates to (B;C)” is logically equivalent to the conjunction of “A delegates
to B” and “A delegates to C.” By contrast, “A delegates to (B,C)” is weaker than
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either “A delegates to B” or “A delegates to C,” because either of the last two
delegations implies the first, but not vice versa.

A conjunction of principals can be equivalently represented by the set of all
principals in it, and so we often call a conjunction of principals a principal set and
use set operators directly on it. For any two different principal sets PT 1 and PT 2,
“A delegates to PT 1” is different from “A delegates to PT 2”; furthermore, they
are incomparable when neither PT 1 ⊆ PT 2 nor PT 2 ⊆ PT 1.

As one can see, given N principals, the number of different principal sets among
these principals is exponential in N . In fact, one delegation fact “A delegates to
((B11; . . . ;B1n), (B21; . . . ;B2n), . . . , (Bm1; . . . ;Bmn))” would imply nm delegations
“A delegates to (B1i1 , B2i2 , . . . , Bmim

),” where 1 ≤ ij ≤ n for j ∈ [1..m]. Therefore,
a semantics that generates all delegations to conjunctions of principals could be
exponential in size of the program.

In order to keep D1LP’s semantics tractable, we impose the limitation that D1LP
only generates delegation to a single principal as conclusions. As a result, D1LP’s
semantics can only directly answer those delegation queries that have a single princi-
pal as delegatee. A delegation query with a delegatee that is a principal conjunction
is handled by first introducing a new “dummy” principal to represent the conjunc-
tion and then transforming the query into a delegation to the new dummy principal.
D1LP’s semantics only generates as a conclusion a delegation to a conjunction of
principals when this delegation is asked, i.e., included in a query or a rule-body.
This is a form of lazy evaluation.

Conjunctive delegation queries are useful in the following scenario: when a re-
quest is signed by multiple principals, one may need to determine whether there is
a delegation from Local to the conjunction of all the signers.

Example 9 (Answering delegation queries).
r1: A delegates p^2 to (B1, B2).
r2: B1 delegates p^1 to (C1,C2).
r3: B2 delegates p^1 to (C3, C4).
r4: A says qq if A delegates p^1 to (C1, C2, C3, C4, C5).

Given these rules, one should conclude that “A says qq.” We now give a high-level
description of how this is done in D1LP inferencing. Trans, the transformation
from D1LP to OLP, would generate a new principal T1, replace the last rule with
“A says qq if A delegates p^1 to T1,” and add facts “T1 represents C1 on p,” “T1
represents C2 on p,” ..., and “T1 represents C5 on p.” (Note that Trans generates
rules in OLP syntax, but here we use D1LP syntax for ease of discussion.)

From rule r2 and the two facts “T1 represents C1 on p” and “T1 represents C2 on
p,” one concludes that “B1 delegates p^1 to T1 on p.” Similarly, from rule r3 and
the two facts “T1 represents C3 on p” and “T1 represents C4 on p,” one concludes
that “B2 delegates p^1 to T1.” Then, from these two new conclusions and rule r1,
one concludes that “A delegates p^1 to T1.” (Note that all depth constraints are
satisfied.)

6.2 Handling Delegation Queries with Disjunctive Delegatees

Having explained how D1LP deals with conjunctive delegation queries, we now show
how to extend that approach to answer delegation queries that contain disjunctions
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or static threshold structures, if they are allowed. This approach has exponential
computational complexity.

Let us view principals as propositions and principal structures as negation-free
formulas in propositional logic. A principal or a principal structure is true if it
“says” something (the implicit base atom we are talking about) and is false if it
does not. Given two principal structures PS1 and PS2, “A delegates to PS1” is
stronger than “A delegates to PS2” if and only if PS2 ⇒ PS1 is a tautology. The
reason is as follows. Given that “A delegates to PS1,” if PS1 says something, then
A agrees. If further given PS2 ⇒ PS1, then whenever PS2 says something (thus
PS2 is true), PS1 is also true, and so A also agrees. Therefore, “A delegates to
PS2” should also be true.

We give an approach for answering delegation queries that is based on transform-
ing principal structures into “normal forms” (essentially disjunctive normal forms
of formulas in propositional logic) and then replace a disjunctive delegation query
with an equivalent query that is a conjunction of delegation statements. A prin-
cipal structure PS is in normal form when it is of the form: (PT 1;PT 2; ...;PT r),
where each PT i is a principal set and, for any i 6= j, PT i 6⊆ PT j . If one views
PS as a propositional formula; then PS’s normal form PT 1;PT 2; ...;PT r is the
result of converting the propositional-logic formula into its reduced disjunctive nor-
mal form (DNF). “Reduced” means that there is no subsumption, neither within a
disjunct PT i (i.e., no repetitions of principals) nor between any two disjuncts (i.e.,
no disjunct is a subset of another disjunct).

The normal form of “threshold(k, [(A1, w1), (A2, w2), . . . , (An, wn)])” is the dis-
junction of all minimal subsets of {A1, . . . , An} whose corresponding weights sum
to be greater than or equal to k. For example, the normal form of “threshold(3,
[(A,2), (B,1), (C,1), (D,1)]” is “((A,B); (A,C); (A,D); (B,C,D)). ” After two prin-
cipal structures have been transformed, their conjunction and disjunction can be
transformed to normal forms using methods from propositional logic.

Knowing a principal structure PS’s normal form: (PT 1; . . . ;PT r), a delegation
“PE delegates to PS” in a query or a rule-body is transformed into “(PE delegates
to PT 1, PE delegates to PT 2, . . ., PE delegates to PT r).” Now consider an
example that has a delegation to a threshold structure in a rule-body.

Example 10 (Query of delegation to static threshold structures).
A delegates p^1 to (B,(C;D)).
A delegates p^1 to (C,D).
A says do something if A delegates p^1 to threshold(2,[B,C,D]).

The last rule would be translated into the following rule:
A says do something

if A delegates to (B,C), A delegates to (B,D), A delegates to (C,D).
D1LP’s semantics will answer true to each of “A delegates to (B,C),” “A delegates
to (B,D),” and “A delegates to (C,D),” using the dummy-principal approach we
described earlier. Therefore, “A says do something” is true (concluded).

When a principal structure is converted to its normal form, its size may grow ex-
ponentially. The normal form of the threshold structure “threshold(k, [A1, . . . , An])”
has size Θ(

(
n
k

)
), which is exponential in k. The principal structure “((A11; . . . ;A1n),

(A21; . . . ;A2n), . . . , (Am1; . . . ;Amn))” contains mn principals and has size Θ(mn),
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but its normal form has size Θ(mnm). This motivates the conjunctive-delegatee-
query restriction.

6.3 Queries of Delegations to Dynamic Threshold Structures

A delegation query that has a dynamic threshold structure as delegatee is non-
monotonic (in the sense used in knowledge representation) in that it may go from
true to false when more information is known. Consider the following example.

Example 11 (Nonmonotonicity of Delegation to dynamic threshold).
A delegates to (B,C).
A delegates to (B,D).
A delegates to (C,D).
A says friend(B).
A says friend(C).
A says friend(D).

From the above program, one should conclude that “A delegates to threshold(2,
?X, A says friend(?X)),” because the three delegation facts in the program combined
are equivalent to “A delegates to threshold(2, [B,C,D])”; however, if we further
add the fact “A says friend(E)” to the program, the delegation “A delegates to
threshold(2, ?X, A says friend(?X))” is no longer true, because the delegation “A
delegates to threshold(2, [B,C,D,E])” also implies that “A delegates to (B,E),”
which is not a conclusion of the program.

7. DISCUSSION

7.1 Implementation

We have implemented D1LP in XSB [18], a Prolog-variant logic-programming sys-
tem developed by Warren et al. at SUNY Stony Brook. This implementation is
called XD1LP and is available [28]. XD1LP includes a compiler that compiles a
D1LP into OLP rules in an internal format and a meta-interpreter that can answer
queries using these rules. XD1LP turns the XSB engine into a D1LP engine.

XSB has several nice features that most Prolog systems do not have. It uses
SLG resolution [10], which has tabling ability. SLG resolution enables XSB to
evaluate correctly many recursive logic programs that would make SLD-resolution-
based Prolog systems get into an infinite loop. This is crucial to our work, because
delegation relationships can be circular.

XD1LP implements a slightly less recent version of D1LP, which omits locale-
declaration statements.

XD1LP uses an alternative transformation that is different from (but similar to)
the one we gave in Section 4. This alternative transformation generates an output
program that has size linear in the size of the input program, but it does introduce
new variables. We call this an “ungrounded transformation.”

7.2 Other Issues in Using DL

There are several additional infrastructural issues, beyond what we discussed here,
that are practically important for developing real-world systems based on DL, and
which are the subject of current and future work. For example, how can differ-
ent entities agree on meanings of predicates? Which data structures and com-
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munication protocols should one use for exchanging DL rules between distributed
applications/principals/Internet-sites?

However, there are work-arounds for using DL in the absence of such a com-
munication infrastructure. One way is first to translate certificates from multiple
public-key infrastructure systems into DL “facts” and then write local policies to
control the use of these certificates. For example, these local policies may specify
trust of different PKI systems for various purposes and to varying degrees and/or
how certification from multiple systems is required to gain sufficient confidence for
critical applications.

Another unresolved infrastructural question is how an authorizer obtains all the
credentials needed to make the decision. There are several possible ways in which
such credentials could flow to the authorizer. One is that the requester submits
credentials together with its request. Another is that the authorizer asks the re-
quester for additional credentials during the evaluation of the request. Yet another
is that the authorizer asks other entities for relevant credentials during the evalua-
tion of the request. Mixes of the above are also interesting. How to obtain relevant
credentials dynamically during DL inference is a topic we are exploring.

7.3 Extending D1LP with Nonmonotonic Features

In Section 1, we mentioned that DL also extends Definite Ordinary Logic Programs
with nonmonotonic reasoning. The version of DL with nonmonotonic features is
called D2LP and is described in [29]. D2LP has negation-as-failure (a.k.a. default
negation), classical negation, and prioritized conflict handling. As discussed in [29],
integrating delegation and nonmonotonicity results in some difficulties. Because of
these difficulties, D2LP as defined in [29] prohibits delegation statements from
appearing in queries or rule-bodies. Also note that, when using nonmonotonic
policies, one often needs complete information about certain things in order to
derive correct conclusions, and complete information is inherently hard to obtain
in distributed environments. These difficulties need to be resolved before one can
use nonmonotonic policies in trust management.

7.4 Subsequent Related Work

Several related works have appeared since the first paper on Delegation Logic ap-
peared in 1999. SD3 (Secure Dynamically Distributed Datalog) [24] and Binder [14]
both use the approach of extending Datalog with explicit issuers. The RT (Role-
based Trust-management) framework [34; 33] is also based on Datalog. RT ad-
dresses name agreement and distributed storage and discovery of credentials.

8. CONCLUSIONS

In this paper, we presented D1LP, the monotonic version of a logic-programming-
based trust-management language Delegation Logic (DL) for representing security
policies and credentials for authorization in large-scale, open, distributed systems.
We gave a list of sample policies for testing expressive powers of TM systems and
showed that previous TM systems lack important expressive features. (Exceptions
are those systems, e.g., PolicyMaker, that allow programs in general-purpose pro-
gramming languages to be used in credentials and policies, and thus can express
almost any policy. However, declarativeness and usability suffer as a result.) We
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also showed that D1LP can express these policies.
Our general approach to designing DL was to extend existing well-understood

logic-programming (LP) languages with features that are needed in distributed au-
thorization. D1LP extends Definite Ordinary LP (a.k.a. Definite LP, see [35]) with
issuers and delegation constructs. Our approach to defining the semantics of DL
was to define a transformation from DL programs into programs in the underly-
ing logic-programming language. The transformation-based approach gives us easy
access to the established results for OLP; for example, every DL program has a
minimal model. Therefore, D1LP has a clearly specified notion of proof of compli-
ance that is based on model-theoretic semantics and is thus abstracted away from
choice and details of implementation. We showed that each of these transforma-
tion steps is computationally tractable and that D1LP inferencing is thus tractable
under a broad restriction similar to that which ensures tractability of OLP infer-
encing. The transformation-based approach also yields a natural implementation
architecture for DL; it can be implemented by using a delegation compiler from DL
to OLP. This enables DL to be implemented modularly on top of existing technolo-
gies for OLP, which include not only Prolog but also SQL relational databases and
many other rule-based/knowledge-based systems.

In summary, the main contribution of this paper is the TM language D1LP, which
is expressive, declarative, tractable, and practically implementable. We also studied
how to support delegations with integer depths and unlimited depth, delegations
to complex principal structures, and inferencing of delegations. Although the prac-
tical importance of some of these features, e.g., integer depth, is still debatable,
we nevertheless believe that clarifying how these features work and interact is a
contribution.
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