
Authenticating Streamed Data in the Presence of
Random Packet Loss

(Extended Abstract)

Philippe Golle Nagendra Modadugu
pgolle@cs.stanford.edu nagendra@cs.stanford.edu

Abstract

We propose a new scheme for authenticating streamed
data delivered in real-time over an insecure network. The
difficulty of signing live streams is twofold. First, authen-
tication must be efficient so the stream can be processed
without delay. Secondly, authentication must be possible
even if some packets in the sequence are missing. Streams
of audio or video provide a good example. They must be
processed in real-time and are commonly exchanged over
UDP, with no guarantee that every packet will be deliv-
ered. Existing solutions to the problem of signing streams
have been designed to resist worst-case packet loss. In
practice however, network loss is not malicious but occurs
in patterns of consecutive packets known as bursts. Based
on this realistic model of network loss, we propose an
authentication scheme for streams which achieves better
performance as well as much lower communication over-
head than existing solutions. We have implemented our
constructions as plug-ins to the RealSystem platform from
Real Networks to authenticate audio and video streams.

Keywords: authentication, non-repudiation, streams.

1. Introduction

Video and audio documents are delivered over a net-
work as a continuous sequence of packets (a stream.) We
would like a signature scheme that allows two parties to
exchange a stream with guarantees of integrity and non-
repudiation. Consider a radio station broadcasting over
the Internet. It is important to listeners to have guarantees
that the audio stream they receive was generated by the
station. It is equally important to the station that only con-
tent it generated be attributed to it. For example, malicious
parties should be prevented from injecting commercials or
offensive material into the stream.

There are two issues to consider when signing streams.

Supported by Stanford Graduate Fellowship

On the one hand, the signature scheme must be efficient
enough to permit authentication on the fly without intro-
ducing delays. On the other hand, the signature scheme
must be robust enough that authentication remains possi-
ble even if some packets are lost.

The naive solution to authenticate a stream is to sign
each packet in the stream individually. The receiver
checks the signatures of packets as they arrive and stops
processing the stream immediately if an invalid signature
is discovered. Immediate authentication is possible, but
the computational load on both the sender and the receiver
is too great to make this approach practical.

A more efficient solution is proposed in [4] by Gennaro
and Rohatgi. They observe that one-time signatures can
be used in combination with a single digital signature to
authenticate a sequence of packets. Each packet carries a
public-key, which is used in a one-time signature scheme
to sign the following packet. Only the first packet needs to
be signed with a regular digital signature. Since one-time
signatures are an order of magnitude faster to apply than
digital signatures, and can also be verified somewhat more
efficiently, this solution offers a significant improvement
in execution speed.

However, there is a major difficulty with this approach.
Recall that audio and video streams are sent using UDP,
which provides only ”best-effort” service and does not
guarantee that all packets will be delivered. If a packet
is missing, the authentication chain is broken and subse-
quent packets can not be authenticated. (Another problem
is that one-time signatures incur a substantial communi-
cation overhead1.)

Let us examine the issue of packet loss in more detail.
If a sequence is received incomplete, we would still like
to be able to authenticate all the packets that were not
lost. This defines resistance to loss in a strong sense: a
packet is either lost or authenticable. A weaker alterna-
tive would allow a few packets to be received unauthen-
ticated in case of packet loss. We offer two justifications

1We give a more complete survey in section .

for adopting the strong definition. First, it is essential for
some applications that only authenticated content be re-
ceived. Consider a stream that delivers stock quotes in
real time. While it might be acceptable to lose a quote, we
must ensure that only authenticated quotes are ever dis-
played. Secondly, our constructions which resist loss in
the strong sense can easily be adapted to the weaker no-
tion of resistance.

Existing authentication schemes that resist packet loss
have been designed to resist worst-case packet loss. Any
number of packets may be lost anywhere in the sequence,
without interfering with the receiver’s ability to authenti-
cate the packets that arrived. Studies conducted on packet
loss in UDP suggest that resisting worst-case packet loss
is an overkill. The focus should be instead on resisting
random packet loss. We will show how that leads to much
more efficient constructions.

Since packet loss on the network is not malicious,
it is natural to analyze the patterns of loss and design
our authentication schemes accordingly. In [6], Paxson
shows that on the Internet consecutive packets tend to
get lost together in a burst. We adopt this model and
propose authentication schemes designed to resist bursty
loss. Specifically, our goal is to maximize the size of the
longest single burst of loss that our authenticated streams
can withstand. Of course, this is not to say that our con-
structions resist only a single burst. As will be clear, once
a few packets have been received after a burst, our scheme
recovers and is ready to maintain authentication even if
further loss occurs.

In the next section, we will give a brief overview of
related work. In section 3, we present our authentica-
tion scheme, which is constructed to take advantage of the
burst model of packet loss suggested by Paxson. We show
that our solution is efficient both in terms of computation
and communication overhead. In section 4 we prove that
our scheme is optimal given certain constraints. In section
5, we argue that the model used to evaluate our authen-
tication scheme is robust, in the sense that our schemes
remain close to optimal even under slightly different as-
sumptions. Finally, we discuss the implementation of our
constructions in the last section.

2. Related work

The computational bottleneck of an authentication
scheme is the signing operation. Digital signatures are
expensive to generate and verify. As a rule of thumb, a
desktop making full use of its CPU can process on the
order of DSA signatures [5] per second. There are
two complementary approaches to improving efficiency:
designing faster signature schemes and amortizing each
signing operation by making use of a single digital sig-
nature to authenticate several packets. We will review in

turn these two approaches.
A variety of generic techniques exist for speeding up

signatures. For example, a small public key reduces work
for the verifier. The Chinese Remainder Theorem makes
fast “divide and conquer” computations possible. Fi-
nally, time/memory trade-offs are possible with precom-
putation. Using a combination of these techniques, Wong
and Lam propose in [9] an optimized version of the Feige-
Fiat-Shamir signature scheme [2, 3]. This optimization
achieves verification rates comparable to RSA with small
exponent, while signing is twice as fast as DSA. The same
paper introduces “adjustable and incremental” signatures,
i.e. signatures that can be verified at different levels of
confidence depending on the resources available to the
verifier.

One-time (or k-time) signature schemes (OTS) offer a
significant speed-up over regular signatures. In [4], Gen-
naro and Rohatgi propose a hybrid scheme, in which a
single digital signature is used to initiate a chain of OTS.
The drawback of OTS is that their size is proportional to
the number of bits of the quantity being signed. A OTS
computed on a message hashed with SHA-1 is on the or-
der of bytes. An approach to make OTS smaller is to
reduce the size of the message hash. In [8], Rohatgi shows
how this can be done without reducing security. The idea
is to hash the message with a family of Target Collision
Resistant (TCR) hash functions. A TCR family of
keyed -bit hash functions offers with only bits the
same security as a single -bit hash function, because
a birthday attack on the family is times harder. The
scheme proposed in [8] achieves 300 bytes per signature
for 1000 signatures per second.

Let us now turn to solutions which amortize each digi-
tal signature over several packets. In [9], Wong and Lam
propose buffering packets into groups. A single signa-
ture is computed for each group on some function of
all the hashes of the packets. In addition to this common
signature, each packet carries some ancillary information
from which the value can be recovered. This allows
each packet to be verified independently of the others. In
the simplest setting, the hashes of all the packets in the
group are concatenated into a string, and is a hash of this
string. The ancillary information consists of the hashes of
all the other packets. A variant uses a binary tree to reduce
the size of the ancillary information. The hashes of pack-
ets are placed at the leaves of the tree, while inner nodes
contain a hash of the concatenated values of their children.
To be verifiable, each packet need only include the values
of the siblings of the nodes along the path to the root.

Another variation on the same scheme uses the efficient
k-time signature of [8] which was introduced above. In-
stead of a hash, we sign a public-key for a k-time signa-
ture scheme at the root of the tree. An instance of this

signature is used for each packet. The communication
overhead per packet is higher, but unlike the proposal of
Wong and Lam, this variant does not require to buffer
packets into groups before sending them. The original
scheme and these variants are reasonably fast and resis-
tant to packet loss in the worst-case. There is a trade-off
between efficiency (many packets per group) and commu-
nication overhead (more ancillary information).

Finally, Perrig et all propose in [7] two efficient solu-
tions to the problem of authenticating streams in a lossy
environment. In the first scheme (TESLA,) packets are
authenticated with MACs. The MAC keys are disclosed
after a certain time interval, to enable verification. The
delay before disclosure is chosen long enough to ensure
that the keys can no longer be used to corrupt packets.
TESLA is highly efficient and versatile, but it requires the
ability to synchronize the clocks of the sender and the re-
ceiver within some margin. The second scheme (EMSS,)
uses one-way hashes in combination with digital signa-
tures to achieve authentication, following an idea intro-
duced in [4]. To resist loss, the hash of each packet is
stored in multiple locations (we use a similar strategy.)
EMSS proposes to choose these locations at random, and
provides probabilistic guarantees that a packet can be au-
thenticated given a certain amount of loss in the stream.
In contrast, our constructions are deterministic (thus pos-
sibly easier to implement,) and optimized to resist bursty
loss.

3. Our scheme

We consider a stream exchanged between a sender and a
receiver over an insecure, unreliable channel such as UDP.
Lost packets are not retransmitted, and packets may arrive
out of order. We make the assumption that loss occurs
in bursts. A burst starts at a location randomly chosen in
the sequence and lasts for a randomly chosen number of
packets.

Our approach to signing the stream follows an idea in-
troduced in [4]. We use a combination of one-way hashes
and digital signatures to authenticate packets. The idea is
as follows: if a collision-resistant hash of packet is ap-
pended to packet before signing , then the signature
on guarantees the authenticity of both and .

More generally, a packet can be authenticated as
long as there exists a sequence of packets such
that: the hash of is appended to , whose hash is in
turn appended to , etc, and the last packet is signed.

We divide the stream into sequences of packets. A se-
quence may consist of anywhere between a few hundred
and a few thousand packets. From now on, we restrict
ourselves to the problem of authenticating one sequence,
the last packet of which is signed. We study where to ap-
pend the hashes of packets within the sequence to provide

optimal resistance to bursty loss.
Throughout the paper, we make use of the following

notations:

: the number of packets buffered on the sender side
before transmission. For a stream broadcast strictly
in real-time, . In most applications we expect
some buffering, and thus is usually a small integer.

: the capacity of the buffer that the sender uses to
store packet hashes. is the average number of items
present in the buffer.

: the maximum number of hashes that may be ap-
pended to a packet. is the average number of
hashes appended to a packet.

Likewise, we consider that the receiver has a packet
buffer and a hash buffer to process the stream. On the
receiver side however, the packet buffer only serves to re-
store the order of the packets as they arrive. A packet is
considered lost if it is not received by the time the buffer is
full. We thus ignore the packet buffer for the receiver and
assume that a packet is either considered lost or arrives in
order.

We represent a sequence of packets by a
directed acyclic graph. Only the last node is signed.
A directed edge from to indicates that the hash of
packet has been appended to packet . The graph may
not contain a cycle (so in particular), but there is no
requirement that . The sequence is fully authenti-
cable if there exists at least one directed path from every
node to the last signed node.

We are not concerned with the possible loss of the sig-
nature packet. For one thing, if the number of packets per
sequence is large enough, it is highly unlikely that the sig-
nature packet will be lost. In any case, it is always possible
to transmit multiple copies of the signature.

Two parties must agree on an authentication scheme to
exchange sequences of any length. This scheme specifies
where hashes should be appended in a sequence of pack-
ets. Using our graph representation, we define a scheme
as a function: where is a directed acyclic
graph on a set of nodes, or more. (We allow padding
with dummy packets.)

We require that the sequence be generated and
verified in the following way. The sender computes all
the hashes that need to be appended to the first packet to
be sent. This may trigger recursive hash computations.
For example, if the hashes of packets and must be ap-
pended to packet , the sender has to compute these hashes
first. This can not be done until the hashes that must be
appended to packets and respectively have themselves
been computed. Since there are no cycles in the graph,
these recursive calls eventually come to an end. The first

packet is then ready to be sent, and the operation is re-
peated with the next packet. Of course, packet hashes are
computed only once, and then buffered in memory until
they are no longer needed.

The receiver verifies a sequence in much the same way.
Each time a packet arrives, the hashes found appended to
it are buffered. They are kept in memory until the packet
they authenticate has arrived or been lost. We define:

: the buffer capacity neeeded by the receiver to
validate any sequence of packets.

: the capacity sufficient to validate sequences for
which no packet was lost.

A scheme is periodic of period if the following
two properties hold:

The function is piece-wise constant over intervals
of length .

There exists such that for all ,
is obtained by prepending to itself the first nodes of

along with the edges coming out of them (see Figure
).

N times

Figure 1. A periodic scheme of period

Finally, we define as the largest integer such
that a burst of length starting at packet
leaves the rest of the sequence () fully
authenticable.

We extend this definition to a periodic scheme :
where the minimum is taken over

a period of .
where the average is taken over a

period of .

3.1. Our solution in the case (no packet
buffering on the server side)

This simple case is of practical importance and intro-
duces the basic building block for our generic construc-
tion. We propose a family of schemes , parametrized
by the integer variable . is a periodic authentication
scheme of period defined as follows: the hash of packet

is appended to two other packets: and .
The last node is signed. We call a chain of strength

.

Figure 2. The authentication chain

Characteristics of these schemes: This family of
schemes is well-defined: all the are acyclic. The
maximum number of hashes appended to any packet (de-
noted), and the average number of hashes appended to
a packet () are both equal to .

Sender: Chain can be executed by a sender who
buffers packet and has a hash buffer of capacity

.

Receiver: If no packets are lost, the hash of packet can
always be verified when arrives and then discarded.
Therefore . After a burst of loss, the only extra
hash to remember is that of the packet immediately pre-
ceding the burst, and so .

Resistance to Loss:
It is not hard to convince oneself that bursts of length up to

do not disconnect any packet from the signature. We
will prove in the next section that chain is optimally
resistant to bursty loss among all the schemes that can be
executed by a sender who buffers packet and has a hash
buffer of size . Intuitively, resists loss because it
stores packet hashes in locations as far apart as the size of
the sender hash buffer allows.

3.2. The generic construction for

When the sender buffers packets, it becomes pos-
sible to append the hash of a packet to one that precedes it.
In fact, with a buffer of size , we may append to a packet
any of the hashes of the next packets.

The constructions we propose are extensions of chains.
We introduce additional packets between those of the
original chain to create augmented chain . We will
soon discuss how to link these new packets to integrate
them in the authenticated sequence.

We start with a simple example (see Figure) to show
how to augment chain when or . We
number the newly inserted packets with integers, and use
letters for the packets of the original chain. The drawing at
the top of figure corresponds to the case (a single
additional packet between packets of the original chain.)
We have represented both the newly inserted edges, and
those belonging to the original chain. For (two new
packets between those of the original chain,) we have only

shown the new packets (and) and the new edges to be
inserted between the packets of the original chain.

A B1

A 1 2 B

2 3C D

Figure 3. Augmented chain with (on
top) and (below)

Let us now consider the general case. We propose two
ways of inserting new packets, which are equally resistant
to bursty packet loss. Our first structure is described in
figure . The hash of each new packet is appended both
to the packet preceding it and to the packet from the orig-
inal chain following it. This structure is very easy to im-
plement, but has the drawback that the maximum num-
ber of hashes appended to a packet grows linearly with
(although observe that the average number of hashes ap-
pended is). This simple structure is well suited for
small values of .

BA 1 2 3 4

Figure 4. A simple way of inserting additional
packets

We now present a more complex structure for which
is constant. This is our main scheme. We refer to it as
augmented chains and will analyze it in detail below.

We define recursively how to insert an (even) number of
new packets in the original chain. The starting point is the
structure proposed in the bottom part of Figure , which
indicates how to insert two new packets (and) between
the packets of the original chain (and .)

Now to insert packets between and , we proceed
recursively (see Figure 5.) We first insert two new packets

and as above, then insert two more packets and
between and in exactly the same way that and were
inserted between and . This process is generalized in
a straightforward way to insert any even number of new
packets.
Characteristics of augmented chains: The family of
augmented chains is well-defined: all the are
acyclic. The maximum number of hashes appended to any

A B1 23 4

Figure 5. Recursive insertions for augmented
chains

packet is constant (), and the average number of
hashes appended to a packet is .

Sender: Augmented chain can be executed by a
sender who buffers packets and has a hash buffer of ca-
pacity . Indeed, the hashes of the inner
packets must now be stored in addition to the hashes
corresponding to packets in the main chain.

Receiver: and . Indeed,
let us consider the impact of the new packets for the
receiver. The first of those are linked together and can
be processed at the cost of remembering one extra hash
only. But they also carry the hashes of the last inner
packets, bringing the total number of hashes that must be
stored in the buffer to .

Resistance to loss:
The first step is to observe that packets newly inserted be-
tween two packets of the original chain are reachable from
either of these chain packets. Now let us consider a burst
of loss. Let and be the packets in the outer chain
immediately preceding and succeeding the burst. All the
packets between and the start of the burst are reach-
able from . Similarly, all the packets between the end
of the burst and are reachable from . Thus the whole
chain remains authenticable as long as is connected in
the outer chain to a packet beyond . This is always the
case if . In the next section we prove that
this value of is optimal.

To parametrize our construction on the resources avail-
able to the sender, we can rewrite the equation as

. Recall that and are respectively the sizes of
the packet and the hash buffer on the sender size. If the
server can distribute available memory between a buffer
for hashes and a buffer for packets, is maximal when the
memory is equally allocated between these two buffers.
In practice, if a hash is bytes and a packet bytes,
one would expect . Of course, other considera-
tions might come into play when deciding on the respec-
tive sizes of the hash and the packet buffer.

3.3. Comparison with other schemes

We compare our scheme with those proposed by Wong
and Lam in [9]. Recall that the schemes of [9] come in

three basic flavors, depending on how packets are orga-
nized into groups. Figure summarizes these three op-
tions.

...........................

Tree (full)

............

Star

...........

Tree (2 levels)

Figure 6. The schemes of Wong and Lam

For our comparison, we consider a stream divided into
groups (called sequences in our scheme) of packets. A
single digital signature is generated by the sender and ver-
ified by the receiver for each group. We use the following
measures to compare our scheme with others:

Hash: the total number of hashes computed by the
sender(The number is the same for the receiver.)

Overhead: the overhead per packet in bytes.
Loss: the type of loss that the scheme resists.
Delay: the delay on the receiver side (in number of

packets) before authentication is possible.

Scheme Hash Overhead Loss Delay
WL star 17 340 any 0
WL tree(2 levels) 21 160 any 0
WL tree(full) 31 120 any 0
Augmented chain 16 43 bursts 16

Applications
The family of augmented chains is a highly efficient

authentication scheme for streams, with obvious applica-
tions in settings where computational and communication
resources are limited, and where there is no guarantee that
all packets will be delivered.

Even where network bandwidth is not scarce, the low
communication overhead possible with our scheme may
be crucially important for the following reason. Short of

opening a special communication channel for authentica-
tion (a costly solution,) authentication data must be em-
bedded within the stream itself, conforming to protocols
for sending and receiving streams that were not designed
to allow authentication. A number of techniques for em-
bedding authentication data in the stream are described
in [4]: water-marking, use of a USER-DATA section in
MPEG audio or video, etc... These techniques offer either
very little space, or offer space at the cost of degrading the
quality of the data.

We expect that the low computation and communica-
tion overhead of our schemes will make them useful in a
variety of applications.

4. Proof of optimality

We show here that the constructions of the previous sec-
tion offer optimal resistance to bursty packet loss for au-
thenticated streams, given the resources available to the
sender and the receiver.

Let us start with a simple observation. If authentication
is to be possible when packets may get lost, the hash of
each packet must be stored in at least two distinct locations
inside the stream. This implies that the average number of
hashes appended to each packet can not be less than .
Our scheme achieves this lower bound (.)

We now turn to the proof that augmented chains are op-
timally resistant to bursty packet loss given the resources
allocated to the sender. We must first introduce some no-
tations. We define the scope of a packet with the fol-
lowing two variables:

Forward scope: is the maximum of over all
indices for which there exists a directed edge from

to . If there is no such , set .
Backward scope: is the maximum of over

all indices for which there exists a directed path
from to . If there is no such , set

. Observe that a periodic scheme is executable by
a sender who buffers packets if and only if for all ,

for all .

A periodic scheme is executable by a sender with a
hash buffer of capacity (resp of average capacity) if
and only if for all and for all , there are
nodes (resp. on average nodes) for which either:

and .
and .

Indeed, the hash of packet must be present in the hash
buffer over the interval . The condi-
tion expresses that the buffer may contain at most hashes
at node .

Lemma 4.1

In particular for a node without back-edges (that is,
),

Proof Let . Now con-
sider the interval . We show that any
directed path from to the signature goes through
at least one node of . Thus the disappearance of in a
burst of length leaves the signature unreachable from

which proves the lemma.
Now let be a path from to . By definition
of , for all we have . Let be
the maximum index such that for all we have

. with .
Then .

4.1. Optimal with constraints on and

We have shown that augmented chain can sustain
a burst of length up to . The following proposition
shows that this is the maximum possible for a scheme that
can be executed by a sender who buffers packets and has
a hash buffer of capacity .

Proposition 4.2 Let be an authentication scheme that
can be executed by a sender who buffers packets and
has a hash buffer of capacity . Then if

we have , and if we have

Proof Let be the period of . Let us con-
sider a sequence of nodes We consider
the subsequence of nodes which have no back-edges:

Observe that since the
sender buffers at most packets. Now let be the in-
dex (or one of the indexes if there are several) for which

is maximal.
We consider the nodes without back-edges
preceding . By lemma 4.1

At least one of those nodes cannot have any forward
edge extending beyond , for otherwise the hash buffer
would contain hashes at point .
Therefore

Since for all , ,
If we consider the expression above as a function of ,
the maximum is obtained for . But re-
member that we also require

So if we have , and if
we have

4.2. Structure of optimal schemes.

In fact, the proof of Proposition 4.2 reveals the structure
that a scheme must have in order to maximize . The fol-
lowing definition will help expose this structure. We say
that a directed acyclic graph on nodes has
the extremity property if for all () the follow-
ing two conditions hold:

There exists a directed path from to included in
the interval

There exists a directed path form to included in
the interval

Proposition 4.3 Let be an authentication scheme which
can be executed by a sender who buffers packets and has
a hash buffer of size . If is maximal, then has
the following structure:

Nodes without back-edges are regularly spaced, at in-
tervals of nodes.

The subgraph of between two consecutive nodes
without back-edges has the extremity property.
Proof Follows directly from the proof of proposition .

5. Alternate models

In this section we argue that our model for stream au-
thentication is robust, in the sense that our constructions
remain close to optimally resistant to bursty packet loss
under slightly different assumptions.

We study first what happens if we constrain the average
capacity (rather than the maximum capacity) of the buffer
available to the sender to store hashes. For a sender servic-
ing several clients in parallel, the average memory require-
ment of each connection over time might be a more mean-
ingful measure than the maximum capacity required by
each connection. We prove in section 5.1 that the longest
burst a sequence can sustain in this setting is essentially
the same.

In section 5.2, we consider the problem of maximizing
, the length of the average longest burst of loss that an

authenticated sequence can sustain (here, the average is
taken over the locations where the burst may start.) As-
suming that network loss is not malicious, it makes sense
to maximize the longest burst that can be sustained on av-
erage. We prove that the longest average burst a sequence
can sustain is close to the longest worst-case burst, and
that our constructions remain close to optimally resistant
to bursty packet loss.

5.1. Hash buffer of average capacity.

Proposition 5.1 Let be a scheme that can be executed
by a sender who buffers packets and has a hash buffer
of average capacity . If , we have

. If , we have .

This result should be compared with Proposition 4.2.
The bounds we get when we constrain the maximum ca-
pacity of the hash buffer () and when
we constrain the average capacity ()
are on a similar order of magnitude. We start the proof of
Proposition 5.1 with the following lemma:

Lemma 5.2 Let be a scheme of period , that can
be executed by a sender who buffers packets and has
a hash buffer of average capacity . Let be
any sequence of consecutive nodes of . We have

Proof In section 4 we proved that the hash of
must be present in the hash buffer over the interval

which is of length .
Taking the average over a period of the scheme, we get the
lemma.

Proof (proposition 5.1) Let be the period of . We
consider consecutive nodes . At least of
those nodes have no back-edges, say . Now
by lemma 4.1:

Since by lemma 5.2

We have

But for all , , and so

We must now give a lower bound for . For
any node between and , . Tak-
ing the sum over all nodes between and gives

. Finally sum-
ming over all intervals, we get

But and therefore:

So finally

If we consider the expression above as a function of ,
the maximum is obtained for . But remember

that we also require .

So if we have , and if

we have

5.2. Optimal

Proposition 5.3 Let be a scheme that can be executed
by a sender who buffers packets and can store an aver-
age of hashes in memory. Then

This result should be compared with Proposition 4.2
and Proposition 5.1. It turns out that the optimal value
for is not far from the optimal value for .

Proof Let be the period of . We consider consecu-
tive packets . Necessarily and so by
lemma 4.1,

So

Since by lemma 5.2 , we have

6. Implementation

We have implemented our constructions as plug-ins to
the RealSystem platform from Real Networks [10] to au-
thenticate audio and video streams.

RealSystem consists of a streaming server and many
client RealAudio players. The server itself consists of a
core and many supporting modules which are responsible
for reading files, packetizing data, adding transport head-
ers and so on.

Our implementation replaces the file-format plug-in.
This plug-in is responsible for providing the server core
with packetized data that contain authentication informa-
tion.

The file-format plug-in can be controlled through a con-
figuration file. This file specifies how often signatures are
computed and for testing purposes, how often a burst of
packet loss occurs. In our example configuration we set

(the number of packets buffered on the sender
side,) and computed signatures every 49 packets. Figure
7 shows the state of a player after a signature has verified.
Figure 8 shows the state after a signature verification fails.

Figure 7. Verified signature

Figure 8. Signature verification failed

In order to ensure that authenticated streams are appro-
priately associated with our rendering plug-in, we cre-
ated a new mime-type. We append the extension “.apf”
to the original filename and associate our client plug-in
with this mime-type. For example the server delivers the
file “demo.rm” with authentication information when the

client requests “demo.rm.apf”. Appending our own ex-
tension allows our plug-in to dynamically determine the
original rendering plug-in for the requested stream.

It should be noted that without our plug-in a player is
unable to play streams with embedded authentication in-
formation.

The plug-ins and source code are available for down-
load from [11].

7. Conclusion

We propose a new stream authentication scheme. In
contrast to existing solutions, our scheme resists random
packet loss rather than worst-case packet loss. We prove
that our construction is optimally resistant to bursty packet
loss given the resources available to the sender and the re-
ceiver, and has the lowest possible communication over-
head.

Acknowledgments

Since the beginning of their work on this paper, the
authors are grateful to Dan Boneh for discussions and
numerous helpful comments. We would like to thank the
anonymous reviewers for their suggestions to improve the
exposition of this paper.

References

[1] S. Even, O. Goldreich and S. Micali. On-
line/Off-line Digital Signatures. In Journal of
Cryptology, Volume 9, Number 1, Winter 1996.

[2] U. Feige, A. Fiat and A. Shamir. Zero Knowl-
edge Proofs of Identity. In Proc. of the 19th An-
nual ACM Symposium on Theory of Computing,
1987.

[3] A. Fiat and A. Shamir. How to Prove Your-
self: Practical Solutions to Identification and
Signature Problems. In Advances in Cryptology
- CRYPTO ’86, pages 186-194. Lecture Notes in
Computer Science 263, Springer-Verlag, 1986.

[4] R. Gennaro and P. Rohatgi. How to Sign Digital
Streams. In Advances in Cryptology - CRYPTO
’97, pages 180-197. Lecture Notes in Computer
Science 1294, Springer-Verlag, 1997.

[5] National Institute of Standards and Technology.
Digital Signature Standard. NIST FIPS PUB 86,
U.S. Department of Commerce, May 1994.

[6] V. Paxson. End-to-End Internet Packet Dynam-
ics. IEEE/ACM Transactions on Networking,
7(3):277-292, June 1999.

[7] A. Perrig, R. Canetti, J.D. Tygar and D. Song.
Efficient Authentication and Signing of Multi-
cast Streams over Lossy Channels. In Proc. of
IEEE Security and Privacy Symposium, May
2000.

[8] P. Rohatgi. A Compact and Fast Hybrid Signa-
ture Scheme for Multicast Packet Authentica-
tion. In th ACM Conference on Computer and
Communication Security, November 1999.

[9] C.K. Wong and S.S. Lam. Digital Signatures for
Flows and Multicasts. In Proc. IEEE ICNP ’98,
October 1998.

[10] http://www.realnetworks.com

[11] http://crypto.stanford.edu/ nagendra/projects/
StreamAuth/StreamAuth.html

