Event Driven Private Counters

Eu-Jin Goh Philippe Golle
Stanford University Palo Alto Research Center
eujin@cs.stanford.edu pgolle@parc.com

Abstract. We define and instantiate a cryptographic scheme called
“private counters”, which can be used in applications such as prefer-
ential voting to express and update preferences (or any secret) privately
and non-interactively. A private counter consists of an encrypted value
together with rules for updating that value if certain events occur. Up-
dates are private: the rules do not reveal how the value of the counter is
updated, nor even whether it is updated for a certain event. Updates are
non-interactive: a counter can be updated without communicating with
its creator. A private counter also contains an encrypted bit indicating
if the current value in the counter is within a pre-specified range.

We also define a privacy model for private counters and prove that our
construction satisfies this notion of privacy. As an application of private
counters, we present an efficient protocol for preferential voting that
hides the order in which voters rank candidates, and thus offers greater
privacy guarantees than any other preferential voting scheme.

1 Introduction

There are many applications in which it is desirable to keep one’s personal prefer-
ences private. For example, consider the Australian national election, which uses
preferential voting. Preferential or instant runoff voting is an election scheme
that favors the “most preferred” or “least disliked” candidate. In preferential
voting, voters rank their candidates in order of preference. Vote tallying takes
place in rounds. In each round, the number of first place votes are counted for all
remaining candidates and if no candidate has obtained a majority of first place
votes, the candidate with the lowest number of first place votes is eliminated.
Ballots ranking the eliminated candidate in first place are given to the second
place candidate in those ballots. Every voters’ preferences must be made publicly
available in an anonymous manner for universal verifiability; that is, anyone can
verify that the tallying is done correctly. Unfortunately, revealing all the pref-
erences allows a voter to easily “prove” to a vote buyer that she has given her
vote to a specific candidate by submitting a pre-arranged unique permutation
out of the (n —1)! (n is the number of candidates) possible candidate preference
permutations. Note that n need not be large — n = 11 already gives over three
and a half million such permutations.

Ideally, we would like to keep the preferences of voters private to the extent
that the correct outcome of the election can still be computed.

Our Contribution. In this paper, we define a cryptographic scheme called “pri-
vate counters”, which can be used in any application where participants wish to
hide but yet need to update their preferences (or any secret) non-interactively.
We then present an efficient instantiation of a private counter using seman-
tically secure encryption schemes [17]. We also define a privacy model for a
private counter, and use this model to relate the security of our private counter
instantiation to the semantic security of the encryption schemes.

Using private counters, we develop a protocol to run preferential elections. In
our election scheme, the preferences of voters are kept private throughout vote
tabulation and are never revealed, which even a standard non-cryptographic
preferential voting scheme cannot achieve. Our solution can also be used in a
real world preferential election with physical voting stations for creating each
voter’s ballot to ensure privacy during vote tabulation. In addition, our election
scheme provides voter privacy, robustness, and universal verifiability.

Our preferential election scheme has computational cost O(nt?) for n voters
and ¢ candidates, whereas the current best cryptographic solution for preferential
voting without using mixnets has exponential cost O(n(t!log(n))?) and it also
reveals all the (unlinked) voter preferences for vote tabulation. Note that a mix
network solution also reveals all the voter preferences.

We note that our election scheme requires voters to submit a zero-knowledge
proof that the private counters that express their vote are well formed. For effi-
ciency, we require that these proofs be non-interactive, which typically involves
applying the Fiat-Shamir heuristic [14]. Hence, security of the voting scheme is
shown only in the random oracle model.

Simple solutions that do not work. We further motivate our construction of
private counters by discussing briefly two natural but unworkable approaches to
preferential elections. Consider a preferential election with ¢ candidates. Let E
denote a semantically secure encryption scheme with an additive homomorphism.
Binary counter. In “yes/no” elections based on homomorphic encryption, a
voter’s ballot typically consists of a ciphertext C; for each candidate i, where
C; = E(1) for the candidate ¢ for whom a vote is cast, and C; = E(0) for all
other candidates j # i. These ciphertexts can be viewed as binary counters
associated with the candidates. The encrypted votes can easily be tallied
because E has an additive homomorphism.
This approach fails in a preferential election because ballots cannot be effi-
ciently updated after one or more candidates are eliminated. Roughly speak-
ing, the difficulty is that binary counters are essentially stateless (they encode
only one bit of information), whereas updating counters requires keeping
track of more state. For example, a ballot needs to encode enough informa-
tion so that the ballot is transferred to the third most preferred candidate
if the first and second most preferred candidate have been eliminated. The
space cost required to update these binary counters non-interactively is ex-
ponential in #: a voter must give update instructions for all 2! possible sub-
sets of eliminated candidates. The space cost can be decreased if interaction

with the voters is allowed during vote tallying, which is undesirable for any
reasonably sized election.

Stateful counters. Another approach is to associate with each candidate ¢ an
encryption C; = E(r;) of her current rank r; among the other candidates.
This approach also requires a O(t?) matrix containing encryptions of 0 and
1; row 7 is used to update the counters when candidate ¢ is eliminated.
These ciphertexts allow efficient updates: when a candidate is eliminated, we
decrease by one the rank of all the candidates ranked behind the eliminated
candidate (that is, we multiply the corresponding rank ciphertexts by E(—1))
and leave unchanged the ranks of other candidates (that is, we multiply
them by F(0), which is indistinguishable from FE(—1)). On the other hand,
it does not seem possible to tally such stateful counters efficiently without
also revealing the preferences of individual voters; recall that in preferential
elections, a vote goes to a candidate if and only if that candidate is ranked
first — other candidates do not receive “partial” credit based on their ranking.

Related Work. We first note that our notion of a private counter is different
from that of a cryptographic counter defined by Katz et al. [20]. Among other
differences, a cryptographic counter can be updated by anyone whereas a private
counter can only be updated by an authority or group of authorities holding a
secret key. In addition, a private counter has a test function that outputs an
encrypted bit denoting whether the counter’s current value belongs to a range
of values; this test function is crucial for our applications.

Cryptographic “yes/no” election schemes were proposed by Benaloh 8,6,
3] and such elections have since received much research interest [5,25,10,11,
18,15,12,2,19]. It is easy to see that any mix network scheme [7,25,18, 19, 16]
immediately gives a solution to a preferential election: the mix network mixes
encrypted ballots containing preferences and all ballots are decrypted at the end
of the mixing; the normal tallying for preferential voting takes place with the
decrypted preferences. The disadvantage of a mix network solution is that the
preferences for all voters are revealed after mixing. Although the preferences
cannot be linked to individual voters, revealing all the preferences allows a voter
to “prove” to a vote buyer that she has given her vote to a specific candidate by
submitting a unique permutation.

The only cryptographic solution not using mix networks to preferential vot-
ing that we are aware of is by Aditya et al. [1]. Let n be the number of voters and
t be the number of candidates. They propose a solution using Paillier encryp-
tion [22] that has communication cost t!log(n) bits per vote and a computation
cost of O(n(t!'log(n))?) to decide the outcome of the election. This exponential
inefficiency resulted in Aditya et al. recommending the use of mix networks for
a preferential election. Furthermore, their solution is no better (in terms of pri-
vacy) than a mixnet solution in that it also reveals all the permutations at the
end of the election. In this paper, we show that it is possible to have an efficient
solution to preferential voting, and yet provide more privacy than a standard
non-cryptographic solution (or a mixnet solution).

Notation. For the rest of the paper, we denote that x is a vector by writing
7. For a vector @, T'; denotes the ith element in the vector. Similarly, for a
matrix Y, Y; ; refers to the element in the ith row and jth column. If we have
k multiple instances of an object Z, then we differentiate these instances with
superscripts Z', ..., Z*. We denote the cartesian product of k integer rings of
order M (modulo M) Zy x -+- x Zp as Z%,. If E is an encryption scheme,
E(X) denotes an encryption of X using E, and E~!(Y") denotes the decryption
of ciphertext Y. Finally, we say that a function f : Z — R is negligible if for any
positive a € Z we have |f(z)| < 1/x* for sufficiently large x.

2 Private Counters With Encrypted Range Test

The following parameters define a private counter:

— An integer M > 1. We let Zy; = {0,..., M — 1} represent the integers
modulo M. We call Zj; the domain of the private counter.

— A range R C Zjs, and an initial value vy € Zy,.

A set of events Sy, ..., S, and corresponding update values uq, ..., u; € Zy;.
Two (possibly the same) semantically secure encryption schemes E and F,
with corresponding public/private key pairs (PKg,SKg) and (PKr,SKFr).
Note that the choice of a security parameter for the counter is implicit in
the choice of E and F'.

These parameters define a private counter comprised of a state C, and three
functions Eval, Test and Apply where:

— C is the state of the private counter;

— the function Eval(C,SKpr) = v € Zjp returns the current value of the
counter;

— the function Test(C') returns E(1) if Eval(C,SKFr) € R and E(0) otherwise;

— the function Apply(C, S;, SKr) = C’ outputs the new counter state C’ after
event S;;

and the following properties hold:

— if we denote Cj the initial state of the counter, we have Eval(Cy, SKr) = vp;

— if C" = Apply(C, S;, SKF), then Eval(C’, SKFr) = Eval(C, SKr)+u; mod M;

— the function Apply can be called at most once per event S; (this restriction
is perfectly natural for the applications we consider).

The function Eval plays no operational role in a private counter. It is introduced
here only to define Test and Apply (later we also use Eval in proofs), but is
never invoked directly. For that reason, we define a private counter as a triplet
(C, Test, Apply), leaving out Eval.

Extension. We can define more general counters that can handle tests of subset
membership instead of just ranges. Since our applications do not require such
general counters, we will not consider them further.

2.1 Privacy Model

Informally, a private counter should reveal no information about either its initial
value or the update values associated with events. Note that these two properties
imply that the subsequent value of the counter after one or several invocations
of Apply remains private. We formally define privacy with the following game
between a challenger C and an adversary A.

Privacy Game 0

Setup: C generates public/private key pairs (PKg,SKg) and (PKg,SKF) for
encryption schemes F and F', and also chooses a domain Zj,; and a set of
events Sq,...,S5k. C gives A the public keys PKg, PK g, together with the
domain and set of events. A outputs the range R C Zj;, together with
two initial values v*,v’ € Zj; and two sets of corresponding update values

w*,u' € 7%, for the k events.

Challenge: C flips a random bit b. C constructs the challenge private counter
(Cp, Test, Apply) from A’s parameters in the following way — If b = 0, C
constructs a private counter Cy using initial value v* and update values u *;
if b = 1, C constructs private counter C; with initial value v’ and update
values .

Queries: A can request invocations to the function Apply from C.

Output: A outputs its guess g for the bit b.

We say that A wins privacy game 0 if A guesses bit b correctly.

Definition 1. A counter scheme is private according to game 0 if all polyno-
mial (in security parameter t) time algorithms win game 0 only with negligible
advantage Adv(t) = |Pr[g = b] — 1/2|.

We use sets of counters in our applications so we extend privacy game 0 to
multiple counters and denote the extended game as privacy game 1. Extending
game 0 is straightforward and we give a precise definition in Appendix A. Privacy
game 1 allows us to prove that we can use a set of private counters simultaneously
while preserving privacy of individual counters; the proposition and proof is also
found in Appendix A.

Note. The privacy requirements for our applications may appear different than
the definition given by privacy game 0. For example, an adversary in an appli-
cation may perform actions that are not described in privacy game 0 such as
requesting for decryptions of the output of Test. In later sections describing each
application, we will define precisely their privacy requirements and then show
that the privacy definition given by game 0 is sufficient.

2.2 Construction

We present a private counter construction with domain Z,;, subset R C Z,y,
initial value vy € Zp; and a set of k events Sy, ..., S with corresponding update
values uy,...,ur € Zy;. Furthermore, we restrict the domain Z,; to be at most

polynomial in size. Let E' denote any semantically secure encryption scheme such
as ElGamal [13] or Pailler [22], and let F' be a semantically secure encryption
scheme with an additive homomorphism modulo M such as Naccache-Stern [21]
or Benaloh [4].

Counter State. The counter state consists of three parts: a (k+1)-by-M matrix
of ciphertexts called (), a pointer p that points to an element of the matrix @,
and two vectors of ciphertexts called @ and @. The matrices Q and two vectors
@, are fixed and the function Apply only affects the value of the pointer p.
The matrix @Q, pointer p, and vectors @, © are defined as follows:

Matrix Q. We first define a vector W = (wo,...,wp—1): let w; = E(1) if
j € Rand w; = E(0) if j ¢ R. We now define the (k + 1)-by-M matrix Q

using w.
Let Q°, ..., QF denote the rows of Q. Let ag, ..., ar be k+ 1 random values
chosen uniformly independently at random from Zj;. For i = 0,...,k, we

define the row @Q° as the image of the vector W cyclically shifted a; times
to the right. That is, if we let ();; denote the element of @) in row Q' e
{0,...,k}, column j € {0,...,M — 1}, we have Q; ; = wj_q,, where the
subscript j — a; is computed modulo M.

Pointer p. The pointer is a pair of integers p = (4,5), where ¢ € [0, k] and
J €10, M — 1], that refer to ciphertext @, ; in matrix ¢). The initial state of
the counter is defined as p = (0, ap + vo).

Vectors ', u. Vector @ contains k + 1 ciphertexts F(ao), ..., F(ax), which
are the encryptions of the k+1 random values ay, . . . , a; chosen for matrix Q.
Vector U contains k ciphertexts F'(uy), ..., F(uy), which are the encryptions
of the k update values w1, ..., ug.

Only the public key for E' is needed to construct @, and only the public key for
F is required to build @ and .

Computing Eval. Recall that the function Eval plays no operational role in a
counter. Nevertheless, we describe how to compute Eval to help the reader
understand the intuition behind our construction. Let (4,j) be the current
value of the pointer p. Eval(C, SKF) returns the current value of the counter
as the integer (j —a;) mod M.

Computing Test. Let (7, j) be the pointer’s current value. Test(C') returns the
ciphertext @ ;.

Computing Apply. We show how to compute the function Apply(C,S;, SKr).
Let p = (4,4) be the current value of the pointer. Compute the ciphertext
F(a; —a; +u;) by using the additive homomorphism of F' on the appropriate
ciphertexts from @ and . Let d be the decryption of the ciphertext F(a; —
a; +up). Apply(C, S;, SKF) outputs the new pointer p’ = (I, j + d) where the
value j + d is computed modulo M.

Privacy. Our counter construction is only private according to the privacy game
0 if the function Apply is never called twice for the same event. We note that

our voting application always satisfies this condition. Furthermore, the function
Apply takes as input the secret key SK g, which lets the owner(s) of SK g enforce
this condition. We give a detailed proof of privacy in Section 2.3.

Cost. The size of our counter is dominated by O(kM) ciphertexts from E and
O(k) ciphertexts from F. The computational cost of building a private counter
is dominated by the cost of creating the ciphertexts. Computing the function
Apply requires one decryption of F.

2.3 Proof of Privacy

We now prove that the construction of Section 2.2 is private provided the en-
cryption schemes F and F are semantically secure and the function Apply is
never called twice for the same event.

Recall that semantic security for an encryption scheme is defined as a game
where the challenger C first provides the public parameters to the adversary A,
upon which A chooses and sends two equal length messages My, M7 back to C.
C then chooses one of the messages M, and returns the encryption of M, to
A. The goal of the adversary is to guess the bit b. In our security proof, we
use a variant of the semantic security game where the challenger returns both
Ey = E(M) and E; = E(Mj_p) to the adversary. It is easy to see that this
variant is equivalent (with a factor of two loss in the security reduction) to the
standard semantic security game.

In the privacy game, recall that the adversary outputs two sets of initial
values and update values v*,uj,...,u} and v/,u},...,u} as the choice for its
challenge. The main difficulty in the security proof is in embedding the semantic
security challenge ciphertexts Ejp, E1_; into the private counter’s matrix @ so
that if b = 0, the matrix @) represents initial value v, and if b = 1, the matrix @
represents initial value v’. Similarly, we have to embed the challenge ciphertexts
F,, Fy_p into the private counter’s vector u so that if b = 0, vector @ contains
F(u}),...,F(u}), and F(u}),..., F(u}) otherwise.

Proposition 1. If the encryption schemes E and F are both semantically se-
cure, the counter of Section 2.2 is private according to privacy game 0.

Proof. We prove the proposition using its contrapositive. Suppose the counter
of Section 2.2 is not private. Then there exists an algorithm A that wins the
privacy game with non-negligible advantage; that is, A non-trivially distinguishes
between a private counter with initial value v* with update values uj, ..., u;, and
a private counter with initial value v* with update values v/, ..., u). A standard
hybrid argument shows that A can distinguish between two private counters
with non-negligible advantage when the two counters have either —

Case 1: different initial values (v* # v') but the same update values (uf =]
for 1 <i<k).

Case 2: the same initial values (v* = v’) but different update values (u} # u}
for at least one ¢ where 1 <i < k).

Case 1 implies that A distinguishes between two private counters based solely
on the initial value and case 2 implies that A4 distinguishes based solely on the
update values. If case 1 holds, then we build an algorithm B; that breaks E. If
case 2 holds, then we build an algorithm Bs that breaks F'. Recall that F' has
an additive homomorphism modulo k.

Algorithm B;. We define an algorithm B; that uses A to break the semantic
security of E with non-negligible advantage. Algorithm B; simulates A as follows:

Setup: Algorithm B; is given the encryption scheme E with the public key

PK g for a security parameter ¢t. B; generates the key pair (PKr, SKr) for
encryption scheme F. B; begins by choosing two plaintexts My = 0 and
M; = 1 and receives as its challenge two ciphertexts Ey = E(M;) and
E, = E(M;_y) for a random bit b. The goal of B; is to guess the bit b.
B runs A with initial input the public keys PK g, PKF, an arbitrarily chosen
domain Zjy; (where M is polynomially large), and a set of events Si, ..., Sk.
In return, A outputs the range R C Zj;, together with two initial values
v*,v" € Zpn where v* # v' and two sets of update values uj,...,u}; € Zy
and uf,...,u} for the events.

Challenge: B; constructs a private counter starting with matrix Q. We define
two vectors:

L w* = (wg,...,wy_) where w; =11if j € R, and w; =0if j ¢ R, and
D) —>/_(/ /)_(* * * * *)
W = (W, W) = (W e Wit e g5 W1y W e ey Wape s

where the subscripts are computed modulo M. Note that w’ is w*

cyclicly shifted by v* — v’ (a negative value results in a right shift).

We want to construct the vector w = (wy,...,wpr—1) with the following
property: if b = 0, then W is the encryption of wW* and is defined exactly as
described in Section 2.2 with domain Zj; and subset R C Z;; if b = 1, then
W is the encryption of @W’. To obtain this property, vector @ is built from
—r % —/

w* and w’ as follows:

— If wf =0 and w; =0, we let w; = E(0).

*

- Ifwgf:Oandwi-:l, we let w; = Ep.

= Ifw; =1 and w} = 1, we let w; = E(1).

— If w; =1 and w} = 0, we let w; = E1.
The (k+1)-by-M matrix @ is constructed exactly as described in Section 2.2
with our vector w and a set of random values ao, ..., a,. The vector @ is
built as (F'(ag), - .., F(ax)) and initial value of pointer p is set to (0, ag+v™*).
To construct vector u, By flips a coin and if 0 uses u?,..., uy, to build u,
and if 1 uses uf,...,u}, instead.

By gives the resulting counter C' to A. Note that if b = 0, A receives a
counter for initial value v*, whereas if b = 1, A receives a counter for initial

value v'.
Queries: B; can compute Apply for A because By knows the values ay, ..., ax
and also uj,...,u} (respectively uf,...,u}).

Output: B; outputs g = 0 if A guesses that C has initial value v*. Otherwise,
By outputs g = 1.

With probability 1/2, B; chooses the right set of update values for vector u and
the counter is well formed. It follows directly that B; wins the semantic security
game with non-negligible advantage.

Algorithm B;. We define an algorithm B that uses A to break the semantic
security of F' with non-negligible advantage. Algorithm By simulates A as follows:

Setup: Algorithm Bs is given the encryption scheme F' with the public key
PKp for a security parameter ¢t. By generates the key pair (PKg,SKEg)
for encryption scheme E. Bs begins by choosing two plaintexts My = 0
and M; = 1 and receives as its challenge two ciphertexts Fy = F(M,) and
Fy, = F(M;i_y) for a random bit b. The goal of Bs is to guess the bit b. The
rest of the Setup phase is identical to that for algorithm Bj.

Challenge: Bs constructs a private counter as follows. The (k + 1)-by-M ma-
trix Q and vector @ is constructed exactly as described in Section 2.2. To
construct pointer p, By flips a coin and if 0 uses initial value v* to build p,
and if 1 uses initial value v instead. The vector of encrypted update values
U = (F(w),...,F(ug)) is created from uj, ..., u} and u}, ..., u) as follows:
forall1 <i <k,

1. if uf = u}, then F(u;) = F(u}) = (u;)

9. if uf < u/, then F(u;) = F(ul) - F~ = F(ur +b(u, — u})).

3. if uf > ul, then F(u;) = F(ul) - F' " = F(u} + (i — b)(uf —u})).
If b= 0, then ¥ is the update vector created using uj,...,u}. If b = 1, then
W is update vector created using uf,...,u}. Note that the update vector
W is computable because F has an additive homomorphism modulo &, and
also because u}, u; € Zy; and Z); is polynomial in size. Finally, By gives the
resulting counter to A.

Queries: Before any Apply queries are answered, By flips a coin and if 0 uses
ui,...,u; to answer Apply queries, otherwise By uses uj,...,u}, instead.
With this guess, By can answer Apply queries because By generates (and
knows) ag, . .., ak.

Output: Algorithm By outputs g = 0 if A guesses that the counter contains
the update values u7,...,u;. Otherwise, By outputs g = 1.

With probability 1/2, Bs uses the correct set of update values to answer Apply
queries, in which case, Bs wins the semantic security game for F with non-
negligible probability. (]

3 Preferential Voting

In this section, we give a cryptographic solution to preferential voting using our
private counter construction. The participants of the election are:

1. n voters labelled b1, ..., b,.
2. t candidates standing for election labelled z1, ..., z;.

3. a number of election authorities that collect the votes, verify them, and
collectively compute the result of the election. These election authorities
share a single public key but the corresponding private key is shared among
all of them. Encryptions are performed with the public key of the election
authority but (threshold) decryption requires the consent of a quorum.

In voting, a voter’s preferences must remain anonymous and her current first
place candidate must never be revealed during vote tabulation. Despite this
restriction, the election authorities must 1) tally up votes for each candidate,
and 2) verify that ballots are valid by ensuring that a ballot has exactly one first
place candidate and that preferences do not change arbitrarily from round to
round.

Setup. The election authorities jointly generate the public/private key pair using
a threshold protocol and publish the public parameters. For preferential voting,
we require that E is the Paillier encryption scheme [22], which has an additive
homomorphism. In addition, £ should be a threshold version of the Paillier
encryption scheme [15,12]. The encryption scheme F' can be any scheme with an
additive homomorphism modulo ¢ such as Naccache-Stern [21] and Benaloh [4].

Vote Creation. Each voter ranks the candidates in decreasing order of prefer-
ence. For example, if a voter ranks 3 candidates in the order (xq,x3,x1) where
candidate x5 is the first choice and candidate x; the last, we say that candidate
29 has rank 0, candidate x3 has rank 1, and candidate x; has rank 2. Note that
the rank of candidate x; is equal to the number of candidate ranked ahead of x;.

Before describing how votes are created, we explore how eliminating a can-
didate affects the current preferences of voter b;. Suppose that candidate x; has
been eliminated. If b; ranked x1 ahead of x5, the rank of x5 should now be de-
creased by 1, moving it closer to first place. If z; was ranked behind x5, then the
rank of x5 is unaffected by the removal of x;. Note that this statement holds true
regardless of the number of candidates (up to ¢t — 2) that have been eliminated
so far. Therefore, the change in rank of x5 when z; is eliminated depends only
on whether x5 ranked ahead or behind z; in the initial ranking of b;.

Voter b; creates her vote as follows. The vote consists of ¢ private counters
pbier P (one counter for each candidate x; where j € [1,1]), together
with zero knowledge proofs that these counters are well-formed (see Section 3.1).
The domain D of each private counter is D = [0,¢ — 1) (the range of possible
ranks) and the range R is 0 € D. In private counter P%%i:

1. The initial value v is the initial rank assigned to candidate x; by voter b;.

2. Events Si,...,S; are the events that candidate z; for [€ [1,t] is eliminated.

3. The update value u;, associated with event Sy, for k € [1,¢] is ux = 0 if voter
b; ranks), with a higher rank than x;, and u;, = —1 if z;, has a lower rank
than z;.

Note that the the number of update values that are -1 is equal to the initial rank
of candidate x;, since the rank denotes the number of candidates preferred to
xj. Thus when a counter reaches 0 (first place choice), it can go no lower.

Vote Checking. The election authority checks that all the votes are well-formed
(see Section 3.1), and discards invalid votes.

Vote Tallying. Recall that Test returns E(1) if candidate z; is the first place
candidate and F(0) otherwise. During each round of vote tallying, the election
authorities compute the encrypted tally of first place votes for each candidate
xj as [[;—; Test(P, »,). The tally for each candidate is decrypted, requiring the
consent of a quorum of private key holders. Note that since Test can be computed
publicly, an honest election authority participates in the threshold decryption of
the tally only if it is correctly computed.

Vote Update. If no candidate wins a majority of votes, the candidate with the
fewest number of votes (say, candidate xy) is eliminated. Voters who ranked the
eliminated candidate xj in first place now have their vote transferred to their
second most preferred candidate in subsequent rounds. To do so, the election
authorities update every voter’s private counters to reflect their new first place
preferences. The election authorities:

1. remove the k-th private counter from all votes; that is, remove counters
PPk for i € [1,n].

2. invoke Apply on every vote’s t — 1 remaining private counters with the event
that candidate xy, is removed. That is, for voter b; where i € [1,n],i # k, the
election authorities invoke Apply(P%%i Sy, SKF) for j € [1,t]. Note that no
single election authority possesses SKr and a quorum must be obtained for
the necessary threshold decryptions for the Apply function.

The vote tallying, updating, and verifying process continues with successively
less candidates until a candidate wins a majority of first place votes.

Cost. Each vote contains ¢ private counters and so the space cost is O(t3)
ciphertexts; as we will see in the next section, the space cost of the proofs is
O(t*) ciphertexts. The computation required to create a vote is dominated by
the cost of O(t*) encryptions for the proofs. Verifying a single vote costs O(t4).
Tallying the first place votes for a single candidate requires one decryption.
Updating a vote after each candidate is eliminated requires ¢ decryptions. In
summary, the election authority performs O(nt*) decryptions to compute the
outcome of the election.

Security. During vote tabulation, the outputs of the function Test on the private
counters in each ballot for all voters are tallied and decrypted. The adversary
thus learns the decryption of the function Test “in aggregate”. Informally, as long
as A controls no more than a small fraction of the total number of voters, the
aggregate tally reveals little about the individual vote of any voter. We note that
every voting scheme that tallies votes using a homomorphic encryption scheme
a la Cramer et al. [10,11] has the same weakness.

Assuming that decryption of the aggregate counters is safe, the privacy of
each voter’s ballot follows directly from the privacy guaranteed by Proposition 1.
That is, a voter’s preferences are never revealed throughout vote submission
and tabulation (even to the election authority). In preferential voting, a voter

can submit a unique permutation of preferences (which is revealed for universal
verifiability) to “prove” how she voted. Non-cryptographic preferential voting
and preferential voting using mix networks cannot prevent such privacy leaks but
our scheme can because each voter’s preferences are never revealed. Furthermore,
the election is universally verifiable and anyone can verify that the submitted
votes are valid and that the tallies every round are correctly computed. Lastly,
the quorum of election authorities ensures that the voting scheme is robust,
provided no more than a fraction of them are malicious.

3.1 Proving that a Vote is Valid

In many electronic election schemes, the voter must attach with her ballot, a
proof (typically zero-knowledge or witness indistinguishable) that the ballot is
correctly formed. For example, in a yes/no election, the voter must prove that
the ballot really is an encryption of 0 or 1. Otherwise, the tally may be corrupted
by a voter sending an encryption of an arbitrary value.

Efficient interactive zero knowledge proofs of bit encryption can be con-
structed for well known homomorphic encryption schemes such as Paillier [22,
12, 2] and Benaloh [4, 11]. These proofs are made non-interactive by applying the
Fiat-Shamir heuristic, which replaces communication with an access to a random
oracle [14]. In practice, the random oracle is replaced by a cryptographic hash
function. Security holds in the random oracle model and not in the standard
model [23]. Instead of applying the Fiat-Shamir heuristic, we could instead use
a trusted source of random bits such as a beacon [24] so as to obtain security in
the standard model, but the resulting constructions are less efficient.

In our election scheme, a voter must prove to the election authority in non-
interactive zero-knowledge (NIZK) that the ¢ counters expressing her vote are
well-formed. Specifically, the voter must prove 1) that the counters only express
one first place vote at any given time, and 2) that the transfer of votes as candi-
dates are eliminated proceeds according to a fixed initial ranking of candidates;
that is, a vote must always be transferred to the next most preferred candidate
among those remaining.

We require NIZK proofs that the decryption E~1(C) (resp. F~1(C)) of a ci-
phertext C lies within a given set of messages my, .. ., m;; we denote such a proof
as NIZKP {E~1(C) € {my,...,m;}} (resp. with F). The size and computational
cost to create and verify such a proof is linear in ¢ (the size of the set) [12,2,
11]. These proofs can also be combined conjunctively and disjunctively using
standard techniques [9, 26].

Recall that we denote by ¢ the number of candidates. A vote consists of ¢
counters, with matrices @', ..., Q?, initial pointers p!, ..., p?, cyclic shift vectors
a',...,d? and update vectors uw',...,u*t. To prove that these counters are
well-formed, a voter does the following:

1. The voter commits to her initial ranking of candidates. This commitment
takes the form of ¢ ciphertexts, C1,...,C}, where C; is an encryption with
F of the initial rank of candidate z;.

The voter proves that the commitment given in step 1 is well-formed; that is,
the voter proves that the ciphertexts C1, ..., C; are encryptions of the values
0,...,t—1 permuted in a random order. This property is proved by showing
that for all ¢ € {0,...,t—1}, there exists j such that C; = F (). Formally, the
voter proves for all ¢ € {0,...,t—1} that \/;,_, , NIZKP {F~1(C)) e {i}}.
The voter proves that each matrix Q¥ for k € {1,...,t} is well-formed:

—forall k€ {1,...,t},i€{0,...,t}, and j € {1,...,¢}, the entry ij of
matrix Q¥ is an encryption of either 0 or 1. Formally, the voter creates
NIZKP {E‘l(fj) e {0, 1}}

— for all k € {1,...,t} and for all i € {0,...,t}, there is one and only one
entry in row 4 of matrix Q¥ that is an encryption of 1. Since the encryp-
tion scheme F has an additive homomorphism and we know already that
E~Y(Q¥,) € {0,1}, the proof is NIZKP {E—I(Hj.:1 Qk) e {1}}.

The voter proves that the pointers are well-formed; that is, for all &k €
{1,...,t} we have p* = F~Y(C%) + F~(@¥). Formally, the voter gives
NIZKP {F‘l(Ck -ah) e {pk}}.

The voter proves that the cyclic shift vectors are well-formed; that is, for all
ke {l,...,t} and all i € {0,...,t}, if @F = F(j) then ij = E(1). For-
mally, the proof is NIZKP { F~*(a'}) € {j}} \V NIZKP{E~*(QF;) € {0}}.
The voter proves that the update vectors are well-formed; that is, show
that for all k € {1,...,t} and all i € {0,...,t}, we have u¥ = F(-1) if
F~YC;) < F7Y(Cy) and ¥ = F(0) otherwise. Formally, the voter gives

(\/ (NIZKP {F7}(Cy) € {A})

Ae{0,...,t—1}
ANIZKP {F~1(C;) € {0,...,. A= 1}}) A\ NIZKP {F~'(u}) € {—1}})
\/ NIZKP {F~'(u}) € {0}} .

Acknowledgments

The authors would like to thank Kobbi Nissim and the anonymous reviewers for
their comments.

References

1.

@

R. Aditya, C. Boyd, E. Dawson, and K. Viswanathan. Secure e-voting for prefer-
ential elections. In R. Traunmller, editor, Proceedings of Electronic Government
2003, volume 2739 of LNCS, pages 246-249, 2003.

. O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard. Practical

multi-candidate election system. In N. Shavit, editor, Proceedings of the ACM
Symposium on the Principles of Distributed Systems 2001, pages 274-283, 2001.
J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, 1987.
J. Benaloh. Dense probabilistic encryption. In Proceedings of the Workshop on
Selected Areas in Cryptography 1994, pages 120-128, May 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In Proceedings of
the 26th ACM Symposium on Theory of Computing, pages 544-553, 1994.

. J. Benaloh and M. Yung. Distributing the power of a government to enhance to

privacy of voters. In Proceedings of the 5th Symposium on Principles of Distributed
Computing, pages 52-62, 1986.

D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84-88, 1981.

J. Cohen and M. Fischer. A robust and verifiable cryptographically secure election
scheme. In Proceedings of 26th IEEE Symposium on Foundations of Computer
Science, pages 372-382, 1985.

R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Y. Desmedt, editor, Proceedings
of Crypto 1994, volume 893 of LNCS, pages 174-187, 1994.

R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret-
ballot elections with linear work. In U. Maurer, editor, Proceedings of Eurocrypt
1996, volume 1070 of LNCS, pages 72—-83, 1996.

R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. Furopean Transactions on Telecommunications,
8(5):481-490, Sep 1997.

I. Damgard and M. Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In K. Kim, editor, Proceedings of
Public Key Cryptography 2001, volume 1992 of LNCS, pages 119-136, 2001.

T. ElGamal. A public key cryptosystem and a signature scheme based on disc rete
logarithms. IEEE Transactions on Information Theory, 31(4):469-472, Jul 1985.
A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. Odlyzko, editor, Proceedings of Crypto 1986, volume
263 of LNCS, pages 186-194, 1986.

P.-A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of
voting or lotteries. In Y. Frankel, editor, Proceedings of Financial Cryptography
2000, volume 1962 of LNCS, pages 90-104, 2000.

J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An implementation of
a universally verifiable electronic voting scheme based on shuffling. In Proceedings
of Financial Cryptography 2002, pages 16-30, 2002.

S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the 14th ACM Symposium
on Theory of computing, pages 365-377, 1982.

M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryp-
tion. In B. Preneel, editor, Proceedings of Furocrypt 2000, volume 1807 of LNCS,
pages 539-556, 2000.

M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic voting
by randomized partial checking. In D. Boneh, editor, Proceedings of USENIX
Security Symposium 2002, pages 339-353, 2002.

J. Katz, S. Myers, and R. Ostrovsky. Cryptographic counters and applications to
electronic voting. In B. Pfitzmann, editor, Proceedings of Furocrypt 2001, volume
2045, pages 78-92, 2001.

D. Naccache and J. Stern. A new public key cryptosystem based on higher residues.
In Proceedings of the 5th ACM Symposium on Computer and Communications
Security, pages 5966, 1998.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Proceedings of Furocrypt 1999, volume 1592 of LNCS, pages
223-238, 1999.

23. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer,
editor, Proceedings of Eurocrypt 1996, volume 1070 of LNCS, pages 387-398, 1996.

24. M. Rabin. Transaction protection by beacons. Journal of Computer and System
Science, 27(2):256-267, 1983.

25. K. Sako and J. Kilian. Receipt-free mix-type voting scheme. In L. C. Guillou
and J.-J. Quisquater, editors, Proceedings of Eurocrypt 1995, volume 921 of LNCS,
pages 393-403, 1995.

26. A. D. Santis, G. D. Crescenzo, G. Persiano, and M. Yung. On monotone for-
mula closure of SZK. In Proceedings of the IEEE Symposium on Foundations of
Computer Science 199/, pages 454-465, 1994.

A Privacy Game 1 (Multiple Counters)

Privacy Game 1 (for z counters)

Setup: same as Privacy Game 0, except that A outputs two sets of z initial
values ‘_/*, ‘_/’ € 73, and their corresponding sets of update values ﬁ* € 73k
and U' € 7 for the events.

Challenge: C flips a random bit b. A constructs the challenge set of private
counters Cy from SKg,SKp, and A’s parameters in the following way —
If b = 0, C constructs z private counters using initial values in ‘_/)* and the
update values in U)*; if b = 1, C constructs z private counters with initial
values in V' and update values in U’

Queries: A can request invocations to the function Apply from C.

Output: A outputs its guess g for the bit b.

We say that A wins privacy game 1 if A guesses bit b correctly.

Definition 2. A counter scheme is private according to game 1 if all polyno-
mial (in security parameter t) time algorithms win game 1 only with negligible
advantage Adv(t) = |Pr[g = b] — 1/2|.

Proposition 2. If a counter scheme is private according to Game 1, then that
same counter scheme is private according to Game 0.

The proof follows from a standard hybrid argument.

