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Abstract— This paper gives an introductory account of
the origin, nature, and uses of bilinear pairings, arguably
the newest and hottest toy in a cryptographer’s toolbox.
A handful of cryptosystems built on pairings are briefly
surveyed, including a couple of realizations of the famously
elusive identity-based encryption primitive.

I. I NTRODUCTION

It can be said that much of contemporaneous cryp-
tography can be traced to Shannon’s legacy of “secrecy
systems”, an information theoretic foundation. To escape
from the one-time pad, however, it has become neces-
sary to appeal to a variety of computational complexity
notions,e.g., to leverage short secrets in order to protect
long messages. Modern cryptography is, in essence, a
computational game of cat and mouse between honest
secret holders and resource-bounded adversaries.

Traditionally, cryptographic scheme development has
evolved along two separate paths that differ in their
complexity theoretic meanderings. On the one hand, the
delicate art of “symbolic obfuscation” has roots in the
early ciphers of the Antiquity; from it most of today’s
secret-key systems and hash functions have been crafted,
due to its unsurpassed performance. On the other hand,
the comparatively recent advent of algebraic methods has
started to open, a few decades ago, a Pandora’s Box of
cryptosystems with astonishing features, encompassing
virtually all of today’s public-key cryptography.

Many public-key systems have been proposed in the
past three decased, based on sundry algebra and a fair
share of complexity theoretic assumptions. Some are
based on NP-hard problems or coding theoretic tricks
(e.g., the McEliece cryptosystem); others involve exotic
branches of group theory such as braid groups, or Lattice
reduction problems that blur the boundary between the
discrete and the continuous. The most prolific and suc-
cessful approaches, however, all rely on the same handful
of complexity assumptions, which are rooted either in the
hardness of integer factorization (e.g., RSA) or in that
of taking discrete logarithms (e.g., Diffie-Hellman).

Assumptions rooted in Factoring and the Discrete
Logarithm problem are interesting in that they tend to
have complementary properties. Factoring, via the RSA
and Strong-RSA assumptions, offers a realization of the
tremendously useful primitive of trapdoor permutation.
Discrete Logarithm, in the guises of the Computational
and Decision Diffie-Hellman (CDH and DDH), offers
us the option to work with either a computational or a
decisional complexity assumption, the latter being use-
ful to build public-key encryption systems with formal
proofs of security; by contrast, Factoring and RSA-like
problems are essentially computational, and are thus
inherently more suited for signature and authentication
schemes—although we note that the Random Oracle
heuristic blurs that disctinction, and exceptions abound.
The common situation before the apparition of bilinear
pairings was that CDH and DDH were concomitantly
hard in all algebraic groups of cryptographic interest.

Bilinear maps—or pairings as they are often called—
first appeared in cryptographic constructions around the
turn of the millennium [1] [2], although they had been
used cryptanalytically a few years prior [3]. Pairings
have vastly expanded the world of Discrete Logarithm
assumptions. The simplest examples of this is that they
provide algebraic groups in which the DDH problem is
easy even though CDH is still believed to be hard, a
state of affair abstractly referred to as the Gap Diffie-
Hellman (GapDH) assumption. GapDH is perhaps the
simplest non-trivial assumption to be made in bilinear
groups, although there are many others as we shall see.

We start in§II with a simple definition of pairings.
In §III we give a brief overview of a concrete number
theoretic implementation of pairings, and in§IV discuss
a few useful complexity theoretic abstractions. We then
turn our attention to the good uses that cryptographers
have made of pairings, with a keen interest in§V for
realizations of the identity-based encryption primitive,
and in§VI for signature schemes with novel properties.
We conclude in§VII with long-standing open problems.



II. B ILINEAR GROUPS

Before delving into the actual realization of bilinear
groups and maps, it is helpful to understand why they
are so desirable in cryptography.

For illustration, consider a cyclic groupG of (finite)
size or ordern, such as the setZn of integer residues
modulo n. If we use the multiplication symbol ‘·’ to
denote the group operation (which inZn is the arithmetic
addition modulon), then we know that every element
h ∈ G can be expressed as an integral power of some
fixed elementg ∈ G called a generator of the group,i.e.,
∃a ∈ Z : g · g · · · g︸ ︷︷ ︸

a times

= ga = g(a mod n) = h.

In this context, the CDH problem is the task of
calculatingga b given onlyg, ga, gb, and an implicit de-
scription ofZn. The DDH problem is to decide whether
or not h = ga b in a given quadruple of group elements
〈g, ga, gb, h〉. For G the set of integers under addition
modulo n, both problems are of course easy to solve.
On the contrary, if we takeG to be the multiplicative
subgroup of orderp in the set of integer residuesZq,
such thatp and q = 1 + 2 p are prime numbers, then
suddenly both CDH and DDH are believed to be hard
problems.

Now, abstractly, a bilinear pairing is an efficiently
computable mape : G× Ĝ → GT , where for simplicity
G and Ĝ are two cyclic groups of equal orderp that
are respectively generated by someg ∈ G and ĝ ∈ Ĝ.
(We could even haveG = Ĝ and g = ĝ, though in
general we do not.) The range ofe is a multiplicative
group of orderp, denotedGT , and generated bye[g, ĝ].
The pairing must be non-trivially bilinear, meaning that
the equalitye[ga, ĝb] = e[g, ĝ]c holds if and only if the
integer exponents satisfya b = c (mod p).

With this definition, it is easy to see that the pairing is
a powerful tool that lets us compute something similar
to a Diffie-Hellman operation, with the important caveat
that the process takes us fromG and Ĝ to the different
group GT from which we generally cannot get back.
Nevertheless, this is sufficient to give us a direct test for
the DDH problem (forG = Ĝ) or a dual-group version
of DDH (when G 6= Ĝ). Indeed, given an instance
〈g, ga, ĝb, ĥ〉 ∈ G2× Ĝ2, it is easy to determine whether
ĥ = ĝa b by verifying the equalitye[ga, gb] = e[g, ĥ].

In spite of this ability, it is not obvious how one
would computeĥ from 〈g, ĝ, ga, ĝb〉 without knowing
at least one of the exponentsa and b; in fact, it is
widely believed that this CDH-like problem is hard for
the bilinear pairings of cryptographic interest, which are
based on algebraic curves. We shall give a very rough
intuition for this in the next section.

III. A LGEBRAIC REALIZATIONS

Algebraic curves and elliptic curves in particular have
provided an avenue for the construction of cryptograph-
ically suitable bilinear pairings, known as the Weil and
the Tate pairings. In the next few paragraphs we give
a very brief overview of how these pairing come to
existence.

To start, consider a finite field (or Galois field)Fq

of size q, usually a large prime. Roughly speaking, an
elliptic curve over the fieldFq is defined by a bivariate
equation inx and y, such asE : y2 = x3 + a x + b,
wherea and b are constants inFq. We can view a pair
(x, y) ∈ Fq × Fq as representing the coordinates of a
point on the doubly periodic integer “plane” (or torus)
Fq × Fq. We say that such a point is on the curve if
its coordinates satisfy the curve equation inFq. It turns
out that the set of points on the curve (to which we
add a special zero point to serve as neutral element)
forms a group, denotedE(Fq), under a simple group
operation called point addition on the curve. Hasse’s
theorem states that the group size,#E(Fq), is always
roughly the same as the field size,#Fq = q; more
precisely,|#E(Fq)− (q + 1)| ≤ 2

√
q. With a suitable

choice of field and curve, the group size#E(Fq) can
be made to contain a large prime factorp, in which case
the groupE(Fq) will have a cyclic subgroup of prime
orderp, which can be our candidate forG.

To proceed, we consider the same curve equationE as
above, but on a larger fieldFqk which fork > 1 is called
an algebraic extension of the ground fieldFq. Elements
of Fqk can be represented,e.g., as polynomials of degree
(up to) k with coefficients inFq. What this entails is
that the elements ofFqk are compatible with those of
Fq, so that the product of, say,a ∈ Fq andx ∈ Fqk is a
well-defined element ofFqk . Thus, and by analogy with
what we did earlier, we can defineE(Fqk) as the set of
points(x, y) ∈ Fqk ×Fqk that satisfy the curve equation
in Fqk . Under the point addition rule,E(Fqk) forms a
group, albeit a much larger one thanE(Fq). The point of
this discussion is that ask is increased, there is a special
value of k > 1 for which E(Fqk) contains a subgroup
of order p. This subgroup will be our candidate for̂G,
and the smallest suchk its embedding degree inE(Fq).

The last step involves a bit of magic. Recall that we
have identified two (distinct) subgroups of points on the
curveE, both of them having the same prime orderp.
Consider two pointsU ∈ E(Fq) and V ∈ E(Fqk). In
general, any elementg1 ∈ G ⊂ E(Fq) can be expressed
as a linear combination ofU andV , and the same is true
of any ĝ2 ∈ Ĝ ⊂ E(Fqk). SinceG and Ĝ are linearly
independent, the linear coefficients ofg1 and ĝ2 have a
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typically non-zero determinant:

∆ =
∣∣∣∣u1 v1
u2 v2

∣∣∣∣ for
g1 = Uu1 · V v1

ĝ2 = Uu2 · V v2

The Weil pairing (and the closely related Tate pairing)
can then be viewed as the functionω∆, whereω is some
primitive p-th root of unity inFqk . Bilinearity arises from
the observation that if we letg′

1 = ga
1 and ĝ′

2 = gb
2, we

get ∆′ = a b∆. The magic of the Weil pairing is that it
has an efficient algorithm, discovered by Miller [4], that
computes the value ofω∆ based solely ong1 and ĝ2,
without necessitating∆ or the linear coefficients. We
remark that fork as previously defined, the extension
field Fqk always has a multiplicative subgroup of order
p; this subgroup is our target groupGT .

All of the above is true in general, so in that sense
bilinear pairings are not hard to obtain. However, this
only works in practice if the embedding degreek is
small. The reason is that elements ofĜ are points
(x, y) ∈ Fqk×Fqk , whose coordinates will be intractably
difficult to represente and calculate with for largek.
Since a random curve generally produces extremely
large embedding degrees, a lot of recent effort has been
dedicated to devise clever ways to generate practical
curves, yielding large subgroups with tiny embedding
degrees—such ask = 2 and6 [5], and 12 [6].

Lastly, we mention that it is sometimes possible to
obtain a modified “symmetric” pairing whose arguments
are interchangeable and both live in the groupG. The
idea is to reduce this case to the earlier “asymmetric”
case, by lifting one of the arguments fromG into Ĝ
using a homomorphic distortion functionψ : G → Ĝ
(not to be confused with the more commonly available
trace mapφ : Ĝ → G, which goes in the other direction).
Distortion functions are guaranteed by a special algebraic
structure, exemplified by the so-called supersingular
curves that have enjoyed a recent bout of popularity in
cryptographic circles for precisely that reason.

IV. COMPLEXITY ASSUMPTIONS

The upshot of the previous section is that the cryp-
tographic pairing implementations that we know of, are
functions of the forme[g1, ĝ2] = ω∆ with ∆ =

∣∣u1 v1
u2 v2

∣∣
for g1 = Uu1 · V v1 and ĝ2 = Uu2 · V v2 .

As noted, the 2-by-2 determinant causes bilinearity.
Furthermore, since∆ appears in the exponent, it stands
to reason that a function that evaluates toω∆ should be
hard to invert, for the same reason that vanilla Discrete
Logarithm is presumed hard in the same groups.

Similarly to (non-bilinear) groups in which the formu-
lation of stronger assumptions such as CDH and DDH

have proven very useful, there are a many plausible DL-
like complexity assumptions that can be made in bilinear
groups, based on the preceding observations. We briefly
review some of the main ones, most of them having both
a computational and a decisional version.

a) Bilinear Diffie-Hellman (BDH): On input the
generatorsg ∈ G and ĝ ∈ Ĝ, and their powers to each
of the undisclosed exponentsa, b, c ∈ Zp, it is hard to
compute the elemente[g, ĝ]a b c ∈ GT (or to recognize it
from random, in the decisional version denoted D-BDH).
This assumption was formally stated in [7].

BDH and D-BDH are direct analogues of CDH and
DDH in non-bilinear groups, except that here a third
secret exponent is needed since it is easy to compute
e[g, ĝ]a b from ga and ĝb.

b) Strong Diffie-Hellman (SDH):Given as input
g ∈ G, and the powers of̂g ∈ Ĝ to each of the exponents
1, a, a2, ..., a` ∈ Zp for some number̀ and secreta, it
is hard to findb ∈ Zp andh ∈ G such thatha+b = g.
Purported solutions are easy to verify by checking that
e[h, (ĝa)(ĝ)b] = e[g, ĝ]. SDH was first stated in [8].

SDH is a Discrete Logarithm counterpart to Strong
RSA. Both assumptions have in common that a prob-
lem instance has not one but a very large number of
admissible solutions. SDH, like S-RSA before it, has
found many application in signatures and authentication
schemes. It has no obvious decisional version.

c) Linear: On input g, ga, gb, ga x, gb y ∈ G, it is
hard to computegx+y ∈ G (or to distinguish it from
random, in the decisional version of the assumption).
Linear was originally proposed in [9].

Since (D-)Linear instances involve no elements of
GT , the assumption remains meaningful in ordinary
non-bilinear groups. Its appeal in bilinear groups stems
from the design as a weakening of (DDH/)CDH that is
believed to hold even in the presence of a bilinear map.

We note that many more complexity assumptions
have been stated and used in the context of pairings—
probably more than in any other branch of cryptography.
The flexibility to tailor complexity assumptions to build
cryptosystems with novel properties has undoubtedly
been a major factor in the rapid rise of pairings. We shall
describe some of those in the remaining few sections.

Although it is reasonable to be suspicious of assump-
tions made for a single purpose, we note that in many
cases powerful supportive arguments can be made based
on generic group structural arguments. In other words,
properly constructed cryptosystems based on pairings
can be impervious to (mathematical) attacks, unless the
underlying pairing realization itself has a vulnerability
independent of the cryptosystem.
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V. I DENTITY-BASED ENCRYPTION

Public-key differs from secret-key encryption in that
the key used for encryption cannot feasibly be used for
decryption, which requires a separate key. The two keys
are related “by birth” through the key pair generation
process; and obviously the encryption key must be made
available to the encrypting party before the system can
be used. Usually, a public key is bound to her owner’s
legal name or other identifying information with a digital
signature issued by a trusted certificate authority.

Identity-based encryption (IBE) is public key encryp-
tion with a twist. Here, the public key can be any string,
such as the legal name of the recipient. The private key is
generated from it by a central trusted authority (TA) who
holds a master secret key. To encrypt in such a system,
one needs only to know the name of the recipient, and
a set of public system parameters that are common to
all users under the purview of the TA. Since the public
key does not functionally depend on the private key, the
sender need not wait for the recipient to send him her
public key. Also, there is less of a need for certificates
and revocation lists, since public keys can be reasonably
short lived and are unambiguous by design.

The notion of IBE was suggested two decades
ago [10], without any suggestion as to how it could be
realized. Slow progress was made over the years using
traditional cryptographic techniques, until it became ap-
parent that bilinear maps provided the perfect answer
to the question [2] [7]. This came as a breakthrough
in 2001 with the publication of the first practical IBE
system whose security could be reduced to the simple
BDH complexity assumption [7]. As good things never
come alone, the same year saw a completely different
proposal for a simpler but less practical IBE based on
a Factoring assumption [11]. The discovery of pairing-
based IBE has spurred a great deal of research in this
new area, which in particular resulted in the invention
of a less demanding and more flexible paradigm [12]
that was also more secure: its distinct advantage was
to admit a security reduction that did not rely on the
random oracle heuristic.

We now describe the two main IBE schemes.

A. Boneh-Franklin (BF) [7]

The Boneh-Franklin system ideally necessitates a
“symmetric” bilinear mape : G × G → GT (cf. §III),
and requires a “full domain” cryptographic hash function
H from identities to elements ofG, available to all.

Setup: The master secret is a random integerσ ∈ Zp.
The public parameters areg andf = gσ ∈ G.

Issue: To issue a private key to a user with name ID,
the TA returnsd = (H[ID])σ ∈ G.

Encr.: To encrypt a message for a user named ID,
the sender picks a randomr ∈ Zp and uses
e[H[ID], f ]r as session key. The headerh = gr

is added to the ciphertext.
Decr.: To decrypt a ciphertext with headerh, the

recipient recovers the session key ase[d, h],
which will be correct if the identities match.

This is a simplified description; in the real scheme
additional hash functions are needed in order for the
security proofs to go through. Nonetheless, the scheme is
very simple to understand once we have abstracted away
the notion of pairing. In practice, the requirement to hash
into G complicates matters with asymmetric pairings.

B. Boneh-Boyen (BB1) [12]

The Boneh-Boyen system works well with the general
bilinear mape : G×Ĝ → GT , and uses only a collision-
resistant hash functionH from identities to (a subset of)
Zp, or none at all if identities are encoded as integers.

Setup: The master secret is a triple of random integers
α, β, γ ∈ Zp. The public system parameters are
g, u = gα, w = gγ ∈ G, andz = e[g, ĝ]α β .

Issue: To issue a private key to a user with name ID,
the TA selects a randomt ∈ Zp and outputs
d0 = ĝα β+(γ+α H[ID]) t andd1 = ĝt.

Encr.: To encrypt a message for a user named ID, the
sender selects a randomr ∈ Zp and usesvr

as session key. A header consisting ofh0 = gr

andh1 = wr ·ur H[ID] is added to the ciphertext.
Decr.: To decrypt a ciphertext with headerh0 andh1,

the recipient recovers the session key as the
ratio e[h0, d0]/e[h1, d1], which will be equal
to zr if the identities match.

Again, this is a simplified description. Here, the pri-
vate keys are randomized. This scheme appears more
complicated than the previous one, but it is faster since
all exponentiations are to fixed bases, and hence can be
greatly optimized.

Much like BF, the BB1 scheme has been extended
in many ways to offer,e.g., hierarchical identities [13],
improved security [14], and threshold decryption [15].
Both schemes are secure under the BDH assumption,
without random oracles in the case ofBB1. Both can be
made to conceal the recipient identity in addition to the
message, as well as to withstand active attacks.

Very recently, Boyen and Waters [16] built a fully
anonymous hierarchical IBE scheme, upon the Linear
assumption. Systems that exploit stronger complexity
assumptions have also been suggested; these include
Boneh and Boyen’s second IBE construction (BB2) [12],
as well as a very recent IBE scheme by Gentry [17],
whose proofs both rely on SDH-like assumptions.
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VI. SIGNATURE AND AUTHENTICATION

It has been observed that IBE implies digital signature:
disguise the messages as identities, and use the IBE
private keys as signatures. Since aBF private key is a
single element ofG, it is natural to seek to turnBF IBE
into a compact signature (in the random oracle model).
This is the essence of theBLS signature scheme [18],
which unlikeBF uses asymmetric pairings to reduce the
size of elements ofG. Notably, these signatures can be
aggregated [19]. The basicBLS scheme is as follows:

Setup: The signing key is a random integerσ ∈ Zp.
The verification key iŝg and f̂ = ĝσ ∈ Ĝ.

Sign: To sign a messageM , gives = (H[M ])σ ∈ G.
Verif.: To verify 〈M, s〉, checke[s, ĝ] = e[H[M ], f̂ ].
Short signatures built from pairings need not directly

correspond to an IBE scheme. TheBB scheme [8] uses
a construction whose security can be directly reduced to
the SDH assumption without requiring random oracles.
A collision-resistant functionH into Zp is needed only
if messages cannot be encoded inZp. The scheme is:

Setup: The signing key is a pair of integersα, β ∈ Zp.
The verification key is made of̂a = ĝα, b̂ = ĝβ ,
ĝ, andz = e[g, ĝ].

Sign: To sign a messageM , choose a randomr ∈ Zp,
and outputr ands = g1/(α+β r+H[M]) ∈ G.

Verif.: To publicly verify a signed message〈M, r, s〉,
test the equalitye[s, â · b̂r · ĝH[M ]] = z.

Bilinear maps have been useful in more complicated
schemes, such as group and ring signatures. In these,
signers sign on behalf of a plurality of users, who have
willingly constituted a group, or are conscripted in a
ring. In group signatures, a tracing authority also has
the ability to expose the true signer. Group signatures
have especially benefited from pairings [9] [20] [21], for
they blend authentication and encryption: with bilinear
maps, complementary goals can be tackled by combining
assumptions (e.g., SDH for signing, Linear for tracing).

Other surprising ways in which pairings have been
used include homomorphic encryption [22] as well as
non-interactive zero-knowledge proof systems [23].

VII. C ONCLUSION

In this tour, we have explored some of the foundations
and applications of bilinear maps in cryptography.

For the mathematician, a long-standing open question
concerns the existence of multilinear maps, which could
have far reaching consequences in both cryptography and
cryptanalysis. For the cryptographer, as a counterpoint to
IBE appearing to be so closely connected to pairings, a
fascinating open problem is to devise an IBE scheme
from generic trapdoor permutations.
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