Obfuscating Straight-line Arithmetic Programs

Ramarathnam Venkatesan
Microsoft Research (Redmond and India)

Srivatsan Narayanan*
IIT Madras, CMU

Ananth Raghunathan*
IIT-Madras, Stanford

*Work done as interns at Microsoft Research India, Bangalore
What is obfuscation?

\[P \rightarrow Obf \rightarrow Obf(P) \]

Adversary \[Obf(P) \]

\[\approx_c \]

Sim
Properties of Obf()

- Polynomial time in $|P|$
- At most polynomial blowup in the program size
 - $|Obf(P)| \leq poly(|P|)$
- Every adversary with access to $Obf(P)$ can be simulated by a good program Sim with only oracle access (i.e., functionality) to P
Why obfuscation?

- **Holy grail** of cryptography
- Prevents “cracking” of commercial software
 - Software protection for proprietary software
 - Prevents reverse-engineering
- Convert any private-key crypto-system into a public-key crypto-system
- Allow delegation of computation (like digital signatures) to untrusted parties
Previous results

- [Barak et al '01] Impossible to obfuscate all functions (there are inherently unobfuscatable functions)
 - These functions were however not natural for cryptographic applications

- [Goldwasser-Kalai '05] Stronger notion of obfuscation (with auxiliary input)
 - Showed impossibility for “natural” functions – pseudo random functions, probabilistic digital signatures schemes
Then why discuss obfuscation?

• These models are too strong. Impossibility results are expected

• Positive results with weaker models
 • [Lynn et al '04] Access control in the random oracle
 • [Wee STOC '05] Point-functions assuming trapdoor one-way permutations
 • [Hohenberger et al TCC '07] Obfuscating re-encryption
 • [Goldwasser et al CRYPTO '08] One-time programs with hardware support
Overcoming negative results

- Weaker notions of security
 - Limit security requirement over smaller class of functions (like in [Wee '05] and [Hohenberger et al '07])

- Additional support for obfuscator
 - Secure, tamper-proof hardware
 - One-time hardware ([Goldwasser et al '08])
Secure Tamper-proof Hardware

• Sufficiency [Goldreich-Ostrovsky '96]
 • Tamper-proof stateful CPU with encryption can obfuscate any program
 • Overkill! Cannot make entire CPU from tamper-proof hardware

• More practical notion of tamper-proof hardware
 • Stateless hardware token (eg. USB stick)
 • Small secret stored in hardware token (independent of program)
 • Can this help obfuscate programs obfuscation?
How to realize this?

• Computer vendor programs CPU to interact with a secure hardware token T via USB (say)

• When running a obfuscated program
 • Naïve execution on CPU will not work
 • Small number of interactions between CPU and USB stick (modeled as oracle calls)
 • Sufficient to successfully execute obfuscated program
 • If USB stick is secure software program cannot be cracked or reverse-engineered
Previous Work

- Obfuscating circuits [Goyal-V. '09]
 - Notion of Obfuscation-complete oracle
 - Single circuit which if stored in secure tamper proof hardware can obfuscate all circuits
 - Overhead of only $\log(|C|)$ where $|C|$ is the size of the circuit
 - Better than the [Goldreich-Ostrovsky] construction by $O(\log^2(|C|))$
- Can we extend this to classes beyond circuits? Yes!
Straight-line Arithmetic Programs

• Let \(F \) be a field and \(X=\{x_1,x_2,\ldots,x_m\} \) be a set of intermediates. \(P(X,V,C,S) \) is an arithmetic straight-line program over \(K=F(x_1,\ldots,x_m) \) if

 \(S=\{s_1,s_2,\ldots,s_k\} \subseteq F \), \(V=v_1,v_2,\ldots,v_l \), \(V \cap K=\emptyset \) (\(X=\) set of inputs, \(V=\) set of variables, \(S=\) scalars)

• We define a computation sequence on \(S \cup X \cup \{v_1,v_2,\ldots,v_l\} \)

• \(F \in F[X_1,X_2,\ldots,X_m] \), a polynomial, is said to represent or compute the straight-line program
Obfuscation Model

- **OracleGen(1^k) produces (Obf, S)**
- T is a **tamper-proof hardware** with the secret S embedded inside.
- k is the security parameter
- 3 properties
 - Encrypted functionality
 - Polynomial Slowdown and Efficient Hardware
 - Security
Obfuscation Model (contd)

- Obf takes input program P and oracle access to T and outputs $P' = \text{Obf}^T(P)$
- Obfuscated program P' uses oracle access (with small number of oracle queries) upon input x, and enables T to compute $P(x)$ in polynomial time
- T then outputs $\text{Enc}(P(x))$ where $\text{Enc}()$ is some encryption function
Why encryption?

• Old result by Kaltofen
• [Kal 85] Straight-line arithmetic programs are “learnable”
• In other words, there is an algorithm that given $f \in \mathbb{F}[X_1, X_2, ..., X_m]$ outputs irreducible h_i each given by a straight-line program of polynomially bounded length, and e_i such that

$$f = \prod (h_i)^{(e_i)}$$

• Therefore, given a polynomially number of evaluations of f, we can “reconstruct” f as a product of irreducible factors
• Previous work by [Ostroovsky-Skeith '05] on obfuscation with encryption
Polynomial Slowdown and Efficient Hardware

• There exist polynomials $p()$ and $q()$ such that for sufficiently large k and $|P|$ we have

$$|\text{Obf}(P)| \leq p(|P|, k)$$

$$|S| \leq q(k)$$

• In other words, the size of the output obfuscation and the secret are polynomial in both the input program size and the security parameter.
Security

• For every PPT adversary A that takes input $\text{Obf}(P)$ and is able to output P' there exists a negligible function $e()$ such that for every polynomial p, we have

$$\Pr[P'(x)=P(x) \mid A(\text{Obf}(P),1^k)=P'] \leq e(k)$$

for all x,
Hard-to-factor polynomials

- Shamir's work back in 1993
- Algebraic form
 - Multivariate polynomial where each coefficient is a rational function of params (a,b,...)
- Algebraic collection (for n=pq)
 - Set of all polynomials (mod n) is the set of all polynomials in variables x,y,z,... with numeric coefficients that are obtained by substituting params a,b,... with all values in [0,n)
- Induces a distribution on the class of all multivariate polynomials in x,y,z
Main Result in [Sha '93]

• Pick two polynomials P and Q from a class C.
 • i.e., two assignments to params $a, b, ...$

• Set $F = PQ \pmod{n}$

• Recovering two polynomials S and T such that $ST = F \pmod{n}$ is at least as hard as factoring

• Can be provably reduced to factoring n

• Can we use this provable reduction to obfuscate polynomials? (notice, F is obfuscating P and Q)
Outline of construction

- OracleGen \((1^k)\) chooses sufficiently many primes \(p_i\) and \(q_i\). \(n_i = p_i q_i\). This comprises secret \(S\).
- \(\text{Obf()}\) on input \(f\) does the foll. for each \(i\):
 - Computes \(f \pmod{p}\)
 - Chooses random \(g \pmod{q}\) and uses chinese remainder theorem to create \(P \pmod{n}\) which is
 \[= f \pmod{p} \quad \text{and} \quad = g \pmod{q} \]
 - Chooses a random \(Q \pmod{n}\) from same distribution as \(P\)
- Publish \(<PQ, P+Q>\) and \(n\). However, \(p, q\), are private
Outline of construction (contd)

- How to execute the obfuscated program?
 - Adversary A on input x evaluates $a = P(x) Q(x) \pmod{n}$ and $b = P(x) + Q(x) \pmod{n}$
 - Passes a and b to token t
 - Token computes $a' = a \mod p$ and $b' = b \mod p$
 - It solves for y and z such that
 \[yz = a' \pmod{p}\] and \[y + z = a' \pmod{p}\]
 \textbf{Intractable} for p not prime, but \textbf{easy to do} for primes of the form $4t + 1$ (extracting square roots)
 - Repeat for each p_i and output (using CRT) $\text{Enc}(f(x)) \pmod{\prod p_i}$
 - If i is suitably large, this is equal to $f(x)$
Proof outline

• Encrypted functionality

• Polynomial Slowdown and Efficient Hardware
 – Extract square root in polynomial time for primes of the form $4n+3$
 – $\text{deg}(P') = 2\text{deg}(P)$ therefore constant blowup in program size
 – $|S| = O(|p| + |q|) = O(2k) = O(k)$ therefore secret is linear in the security parameter
Proof Outline - Secrecy

- **Definition of β-adversary**
 - $\beta=(\beta_1,\beta_2,\ldots,\beta_m)$ such that $\Sigma\beta_i=\deg(P)=d$
 - An adversary that outputs the coefficient of the polynomial P (given $\text{Obf}(P)$) corresponding to the β-monomial $x_1^{(\beta_1)}x_2^{(\beta_2)}\ldots x_m^{(\beta_m)}$

- **We show the following theorem:**
 - If there exists an adversary who is either a β-adversary for any β, OR, is able to evaluate the polynomial on a random input with non-negligible advantage, then we can factor $N=pq$ with non-negligible advantage
Proof Outline (contd)

• For the above proof we need two theorems.

• Theorem 1 (consequence of [Sha '93])

 – Consider $P_1 \in F$ with degree $d = O(\log k)$ and P_2, Q random (mod q) and (mod n) respectively

 – Set $P = (P_1, P_2)$. Any adversary who can factor PQ (mod n) into P' and Q' such that $PQ = P'Q'$ (mod n) with non-negligible advantage can factor $n = pq$ into p and q with non-negligible advantage.
Proof Outline (contd)

• Theorem 2

 Consider input polynomial $P \in \mathbb{F}$ and randomly chosen Q. An adversary A who does not necessarily output P, but instead is able to output $P(x) \ (\text{mod} \ n)$ for any random input value x with non-negligible probability is powerful enough to factor $n=pq$ with non-negligible probability.

• Proofs of Theorem 1 and Theorem 2 are there in the paper (as Theorem 2, and Theorem 4 respectively)
Proof Outline (contd)

- The reduction of a factoring adversary (i.e., an adversary who solves \(n=pq \)) to \(\beta \)-adversary is along the lines of the proof of Theorem 1 (also there in [Sha '93])
 - This concludes the proof of security for \(\beta \)-adversaries

- For adversaries who evaluate the polynomial on random input, the proof of security is identical to proof of Theorem 2 (stated previously)
Elaboration on secrecy

- Why does the extension to [Sha '93] result hold?
- Why is it difficult to extract P (or Q) given PQ and $P+Q$?
- We show:
 - Equivalent to finding out the square root of a polynomial
 - Can reduce this to finding out the square root of a single (leading) coefficient.
 - In general (even if monic) extracting square root of leading coefficient (mod n) is as hard as factoring
 - Hence reduces to impossibility of factoring n
 - Same hardness assumption as [Sha '93] result!
Conclusions

• New motivation and definition of hardware-assisted obfuscation
• Positive result on an interesting class of programs (with efficient practical constructions)
• Elaboration on the construction of hard-to-factor polynomials
• First provably secure obfuscation result from the difficulty of factorizing $n=pq$
Thank you!
Any questions?