Dan Boneh

Introduction

Course Overview

Welcome

Course objectives:

- Learn how crypto primitives work
- Learn how to use them correctly and reason about security

My recommendations:

- Take notes
- Pause video frequently to think about the material
- Answer the in-video questions

Cryptography is everywhere

Secure communication:

- web traffic: HTTPS
- wireless traffic: 802.11i WPA2 (and WEP), GSM, Bluetooth

Encrypting files on disk: EFS, TrueCrypt

Content protection (e.g. DVD, Blu-ray): CSS, AACS

User authentication

... and much much more

Secure communication

Secure Sockets Layer / TLS

Two main parts

1. Handshake Protocol: Establish shared secret key using public-key cryptography (2nd part of course)

2. Record Layer: **Transmit data using shared secret key** Ensure confidentiality and integrity (1st part of course)

Protected files on disk

Analogous to secure communication:

Alice today sends a message to Alice tomorrow

Building block: sym. encryption Alice E(k,m)=c C D(k,c)=m k

E, D: cipher k: secret key (e.g. 128 bits) m, c: plaintext, ciphertext

Encryption algorithm is publicly known

• Never use a proprietary cipher

Use Cases

Single use key: (one time key)

- Key is only used to encrypt one message
 - encrypted email: new key generated for every email

Multi use key: (many time key)

- Key used to encrypt multiple messages
 - encrypted files: same key used to encrypt many files
- Need more machinery than for one-time key

Things to remember

Cryptography is:

- A tremendous tool
- The basis for many security mechanisms

Cryptography is not:

- The solution to all security problems
- Reliable unless implemented and used properly
- Something you should try to invent yourself
 - many many examples of broken ad-hoc designs

End of Segment

Dan Boneh

Introduction

What is cryptography?

Secure communication:

But crypto can do much more

• Digital signatures

• Anonymous communication

But crypto can do much more

• Digital signatures

- Anonymous communication
- Anonymous **digital** cash
 - Can I spend a "digital coin" without anyone knowing who I am?
 - How to prevent double spending?

Protocols

D Elections • **Private auctions** \bullet winner = MAJ[votes] clection center winner auction = [highest bidder, winner = [Pays 2nd highest bid]

Protocols

- Elections
- Private auctions

Goal: compute $f(x_1, x_2, x_3, x_4)$

- "Thm:" anything that can done with trusted auth. can also be done without
- Secure multi-party computation

Crypto magic

A rigorous science

The three steps in cryptography:

• Precisely specify threat model

• Propose a construction

 Prove that breaking construction under threat mode will solve an underlying hard problem

End of Segment

Introduction

History

History

David Kahn, "The code breakers" (1996)

Symmetric Ciphers

Few Historic Examples (all badly broken)

1. Substitution cipher

$$k := \frac{a \rightarrow c}{b \rightarrow w}$$

$$c \rightarrow n$$

$$\vdots$$

$$2 \rightarrow a$$

Caesar Cipher (no key)

shift by 3: $a \rightarrow d$ $b \rightarrow e$ $c \rightarrow f$

What is the size of key space in the substitution cipher assuming 26 letters?

$$|\mathcal{K}| = 26$$

$$|\mathcal{K}| = 26! \qquad (26 \text{ factorial})$$

$$|\mathcal{K}| = 2^{26}$$

$$|\mathcal{K}| = 26^{2}$$

$$|\mathcal{K}| = 26^{2}$$

How to break a substitution cipher?

What is the most common letter in English text?

How to break a substitution cipher?

(1) Use frequency of English letters

"e": 12.7%, "t": 9.1%, "a": 8.1%

(2) Use frequency of pairs of letters (digrams)

"he", "an", "in", "th"

$$\implies$$
 CT only attack 11

An Example

UKBYBIPOUZBCUFEEBORUKBYBHOBBRFESPVKBWFOFERVNBCVBZPRUBOFERVNBCVBPCYYFVUFO FEIKNWFRFIKJNUPWRFIPOUNVNIPUBRNCUKBEFWWFDNCHXCYBOHOPYXPUBNCUBOYNRVNIWN CPOJIOFHOPZRVFZIXUBORJRUBZRBCHNCBBONCHRJZSFWNVRJRUBZRPCYZPUKBZPUNVPWPCYVF ZIXUPUNFCPWRVNBCVBRPYYNUNFCPWWJUKBYBIPOUZBCUIPOUNVNIPUBRNCHOPYXPUBNCUB OYNRVNIWNCPOJIOFHOPZRNCRVNBCUNENVVFZIXUNCHPCYVFZIXUPUNFCPWZPUKBZPUNVR

NC	11		
PU	10		
UB	10		
UN	9		
digrams			

→ IN → AT

UKB	6	→	THE
RVN	6		
FZI	4		

trigrams

2. Vigener cipher (16'th century, Rome)

$$k = \begin{bmatrix} C & R & Y & P & T & O \\ C & R & Y & P & T & O & C & R & Y & P & T \\ m = & W & H & A & T & A & N & I & C & E & D & A & Y & T & O & D & A & Y \\ m = & W & H & A & T & A & N & I & C & E & D & A & Y & T & O & D & A & Y \\ \end{array}$$

suppose most common = "H" \implies first letter of key = "H" - "E" = "C"

Dan Boneh

3. Rotor Machines (1870-1943)

Early example: the Hebern machine (single rotor)

Rotor Machines (cont.)

Most famous: the Enigma (3-5 rotors)

keys = $26^4 = 2^{18}$ (actually 2^{36} due to plugboard)

4. Data Encryption Standard (1974)

DES: # keys = 2^{56} , block size = 64 bits

Today: AES (2001), Salsa20 (2008) (and many others)

End of Segment

See also: http://en.wikibooks.org/High_School_Mathematics_Extensions/Discrete_Probability

Introduction

Discrete Probability (crash course, cont.)

Dan Boneh

U: finite set (e.g. $U = \{0,1\}^n$)

Def: **Probability distribution** P over U is a function P: $U \rightarrow [0,1]$

such that
$$\sum_{x \in U} P(x) = 1$$

Examples:

- 1. Uniform distribution: for all $x \in U$: P(x) = 1/|U|
- 2. Point distribution at x_0 : $P(x_0) = 1$, $\forall x \neq x_0$: P(x) = 0

Distribution vector: (P(000), P(001), P(010), ..., P(111))

Events

• For a set $A \subseteq U$: $Pr[A] = \sum_{x \in A} P(x) \in [0,1]$

note: Pr[U]=1

• The set A is called an event

Example: $U = \{0, 1\}^8$

• $A = \{ all x in U such that <math>lsb_2(x)=11 \} \subseteq U$

for the uniform distribution on $\{0,1\}^8$: Pr[A] = 1/4

The union bound

• For events A_1 and A_2

 $\Pr\left[\mathsf{A}_{1} \mathsf{U} \mathsf{A}_{2}\right] \leq \Pr[\mathsf{A}_{1}] + \Pr[\mathsf{A}_{2}]$

 $A_1 \cap A_2 = \phi \implies lr[A, \forall A_2] = lr[A_1] + lr[A_2]$

Example:

 $A_1 = \{ all x in \{0,1\}^n s.t \ lsb_2(x)=11 \} ; A_2 = \{ all x in \{0,1\}^n s.t. \ msb_2(x)=11 \}$

$$\Pr[Isb_2(x)=11 \text{ or } msb_2(x)=11] = \Pr[A_1UA_2] \le \frac{1}{4}+\frac{1}{4} = \frac{1}{2}$$

Random Variables

Def: a random variable X is a function $X:U \rightarrow V$

Example: X: $\{0,1\}^n \longrightarrow \{0,1\}$; X(y) = lsb(y) $\in \{0,1\}$

For the uniform distribution on U:

More generally:

rand. var. X induces a distribution on V: $Pr[X=v] := Pr[X^{-1}(v)]$

Dan Boneh

The uniform random variable

Let U be some set, e.g. $U = \{0,1\}^n$

We write $r \leftarrow U$ to denote a **uniform random variable** over U

for all
$$a \in U$$
: $Pr[r = a] = 1/|U|$

(formally, r is the identity function: r(x)=x for all $x \in U$)

Let r be a uniform random variable on $\{0,1\}^2$

Define the random variable $X = r_1 + r_2$

Then
$$Pr[X=2] = \frac{1}{4}$$

Hint: Pr[X=2] = Pr[r=11]

Randomized algorithms

• Deterministic algorithm: $y \leftarrow A(m)$

• Randomized algorithm

$$y \leftarrow A(m; r)$$
 where $r \leftarrow \{0, 1\}^n$

output is a random variable

Example: A(m; k) = E(k, m), $y \leftarrow A(m)$

End of Segment

See also: http://en.wikibooks.org/High_School_Mathematics_Extensions/Discrete_Probability

Introduction

Discrete Probability (crash course, cont.)

Dan Boneh

Recap

U: finite set (e.g. $U = \{0,1\}^n$)

Prob. distr. P over U is a function P: U \rightarrow [0,1] s.t. $\sum_{x \in U} P(x) = 1$

$$A \subseteq U$$
 is called an **event** and $Pr[A] = \sum_{x \in A} P(x) \in [0,1]$

A random variable is a function $X: U \rightarrow V$.

X takes values in V and defines a distribution on V

Independence

<u>**Def</u>**: events A and B are **independent** if $Pr[A and B] = Pr[A] \cdot Pr[B]$ </u>

random variables X,Y taking values in V are **independent** if $\forall a, b \in V$: Pr[X=a and Y=b] = Pr[X=a] · Pr[Y=b]

Example:
$$U = \{0,1\}^2 = \{00, 01, 10, 11\}$$
 and $r \leftarrow \mathbb{R}$ U

Define r.v. X and Y as: X = lsb(r), Y = msb(r)

Dan Boneh

Review: XOR

XOR of two strings in $\{0,1\}^n$ is their bit-wise addition mod 2

An important property of XOR

<u>**Thm</u>**: Y a rand. var. over $\{0,1\}^n$, X an indep. uniform var. on $\{0,1\}^n$ </u>

Then $Z := Y \bigoplus X$ is uniform var. on $\{0,1\}^n$

The birthday paradox

Let $r_1, ..., r_n \in U$ be indep. identically distributed random vars.

<u>**Thm</u></u>: when \mathbf{n} = 1.2 \times |\mathbf{U}|^{1/2} then \Pr[\exists i \neq j: r_i = r_j] \ge \frac{1}{2}</u>**

notation: |U| is the size of U

<u>Example</u>: Let $U = \{0,1\}^{128}$

After sampling about 2⁶⁴ random messages from U, some two sampled messages will likely be the same

samples n

End of Segment