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Symmetric Ciphers:  definition 

Def:   a cipher defined over   

 is a pair of “efficient” algs   (E,  D)   where 

   

 

 

 

• E  is often randomized.      D  is always deterministic. 
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The One Time Pad        (Vernam 1917) 

First example of a “secure” cipher 

key = (random bit string as long the message) 
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The One Time Pad        (Vernam 1917) 

 

  msg: 0  1  1  0  1  1  1 

key: 1  0  1  1  0  1  0 

CT: 

⊕ 
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You are given a message (m) and its OTP encryption (c).       

         Can you compute the OTP key from  m  and  c ?      

No, I cannot compute the key.  

Yes,  the key is    k = m ⊕ c.  

I can only compute half the bits of the key. 

Yes,  the key is   k = m ⊕ m.   
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The One Time Pad        (Vernam 1917) 

Very fast enc/dec !!      

 … but long keys   (as long as plaintext) 

 

 

Is the OTP secure?    What is a secure cipher? 
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What is a secure cipher? 
Attacker’s abilities:    CT only attack       (for now) 

Possible security requirements:    

    attempt #1:  attacker cannot recover secret key 

    attempt #2:  attacker cannot recover all of plaintext 

    Shannon’s idea:   
  CT should reveal no “info” about PT   
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Information Theoretic Security   
(Shannon 1949) 
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Information Theoretic Security   

R 

Def:   A cipher (E,D) over (K,M,C) has perfect secrecy if 

 ∀m0, m1 ∈M    ( |m0| = |m1| )    and    ∀c∈C 

  Pr[ E(k,m0)=c ]   =   Pr[ E(k,m1)=c ]       where  k ⟵K  
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Lemma:    OTP has perfect secrecy. 

Proof: 
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None 

1 

2 
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Lemma:    OTP has perfect secrecy. 

Proof: 
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The bad news … 
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End of Segment 
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Review 

Cipher over (K,M,C):   a pair of “efficient” algs  (E, D)  s.t. 

 ∀ m∈M,  k∈K:      D(k, E(k, m) ) = m 

Weak ciphers:    subs. cipher,  Vigener, … 

A good cipher:   OTP       M=C=K={0,1}n 

  E(k, m) = k ⊕ m   ,     D(k, c) = k ⊕ c 

Lemma:   OTP has perfect secrecy  (i.e. no CT only attacks) 

Bad news:   perfect-secrecy ⇒   key-len ≥ msg-len 
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Stream Ciphers:  making OTP practical 

idea:    replace “random” key by “pseudorandom” key 
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Stream Ciphers:  making OTP practical 



Can a stream cipher have perfect secrecy? 

Yes, if the PRG is really “secure”  

No, there are no ciphers with perfect secrecy 

No, since the key is shorter than the message 

Yes, every cipher has perfect secrecy 
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Stream Ciphers:  making OTP practical 

 

Stream ciphers cannot have perfect secrecy  !! 

 

• Need a different definition of security 

 

• Security will depend on specific PRG 
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PRG must be unpredictable 
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PRG must be unpredictable 

We say that  G: K ⟶ {0,1}
n
  is predictable if:

 

 

 

 

 

Def:   PRG is unpredictable if it is not predictable 

⇒   ∀i:  no “eff” adv. can predict bit (i+1) for “non-neg” ε 
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Suppose  G:K ⟶ {0,1}n  is such that for all k:    XOR(G(k)) = 1 

 

Is G predictable ?? 

Yes, given the first bit I can predict the second 

No, G is unpredictable 

Yes, given the first (n-1) bits I can predict the n’th bit 

It depends 
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Weak PRGs     (do not use for crypto) 

 

 

 

 

glibc random(): 

 r[i+ ← ( r[i-3] + r[i-31] )  % 232 

 output  r[i] >> 1 
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End of Segment 
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Negligible and non-negligible 

• In practice:     ε  is a scalar and  

– ε non-neg: ε ≥ 1/230       (likely to happen over 1GB of data) 

– ε negligible: ε ≤ 1/280  (won’t happen over life of key) 

• In theory:    ε  is a function    ε: Z
≥0

 ⟶ R
≥0   and 

– ε non-neg: ∃d:  ε(λ) ≥ 1/λd   inf. often (ε ≥  1/poly, for many λ) 

– ε negligible:   ∀d, λ≥λd:    ε(λ) ≤ 1/λd  (ε ≤  1/poly, for large λ) 



Dan Boneh 

Few Examples 

ε(λ)  = 1/2λ    :  negligible        
 

 

    1/2λ        for odd λ 

ε(λ)  =     1/λ1000   for even λ  

Negligible 

Non-negligible 

ε(λ)  = 1/λ1000   :    non-negligible 
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PRGs:   the rigorous theory view 

PRGs are “parameterized” by a security parameter    λ 

• PRG becomes “more secure” as   λ   increases 

 

Seed lengths and output lengths grow with   λ 

 

For every   λ=1,2,3,…  there is a different PRG   Gλ:       

    Gλ  :   Kλ  ⟶  {0,1}
n(λ) 

      (in the lectures we will always ignore   λ ) 
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An example asymptotic definition 

We say that  Gλ  :  Kλ  ⟶  {0,1}
n(λ)   is predictable at position  i   if: 

 

 there exists a polynomial time (in λ) algorithm  A   s.t. 

 Prk⟵Kλ
[  A(λ,  Gλ(k) 

1,…,i  
) =  Gλ(k) 

i+1   
]    >    1/2 + ε(λ) 

 for some non-negligible function   ε(λ) 
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End of Segment 
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Review 

OTP:       E(k,m) = m ⊕ k      ,     D(k,c) = c ⊕ k  

 

 

Making OTP practical using a PRG:       G: K ⟶ {0,1}n  

Stream cipher:       E(k,m) = m ⊕ G(k)      ,     D(k,c) = c ⊕ G(k)  

 

Security:  PRG must be unpredictable   (better def in two segments) 
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Attack 1:    two time pad is insecure !! 

Never use stream cipher key more than once !! 

  C1    m1    PRG(k) 

   C2    m2    PRG(k) 

Eavesdropper does: 

   C1    C2               m1   m2  

 

Enough redundancy in English and ASCII encoding that: 

    m1   m2             m1 ,  m2 
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Real world examples 

• Project Venona 

 

• MS-PPTP   (windows NT): 

 

 k k 

Need different keys for    C⟶S    and    S⟶C 
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Real world examples 

802.11b WEP: 

 

 

 

 

 

Length of IV:     24 bits 

• Repeated IV after 224 ≈ 16M frames 

• On some 802.11 cards:   IV resets to 0 after power cycle 

k k 

m CRC(m) 

PRG(  IV  ll  k )  

ciphetext IV 
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Avoid related keys 

802.11b WEP: 

 

 

 

 

 

key for frame #1:     (1 ll k) 

key for frame #2:     (2 ll k) 

 

k k 

m CRC(m) 

PRG(  IV  ll  k )  

ciphetext IV 

⋮ 
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A better construction 

k k 
PRG 

⇒  now each frame has a pseudorandom key 

better solution:   use stronger encryption method (as in WPA2) 
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Yet another example:  disk encryption 



Dan Boneh 

Two time pad:   summary 

Never use stream cipher key more than once !! 

 

• Network traffic:    negotiate new key for every session (e.g. TLS)  

 

• Disk encryption:   typically do not use a stream cipher 
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Attack 2:   no integrity   (OTP is malleable) 

Modifications to ciphertext are undetected and  
have predictable impact on plaintext 

m 
enc  ( ⊕k ) 

m⊕k 

dec ( ⊕k ) 
m⊕p 

p 

(m⊕k)⊕p 

⊕ 
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Attack 2:   no integrity   (OTP is malleable) 

Modifications to ciphertext are undetected and  
have predictable impact on plaintext 

From: Bob 
enc  ( ⊕k ) 

From: Bob 

⋯ 

From: Eve 
dec ( ⊕k ) 

From: Eve 

⊕ 



Dan Boneh 

End of Segment 
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Old example (software):  RC4     (1987) 

• Used in HTTPS and WEP 

• Weaknesses: 

1. Bias in initial output:     Pr[ 2nd byte = 0 ]  =  2/256 

2. Prob. of   (0,0)   is     1/2562  +  1/2563 

3. Related key attacks 

2048 bits 
128 bits 

seed 

1 byte 
per round 
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Old example (hardware):   CSS    (badly broken) 

Linear feedback shift register  (LFSR): 

 

 

 

 

 

DVD encryption (CSS):    2 LFSRs 

GSM encryption (A5/1,2):    3 LFSRs 

Bluetooth (E0):   4 LFSRs 

all broken 
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Old example (hardware):   CSS    (badly broken) 

CSS:     seed = 5 bytes = 40 bits 
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Cryptanalysis of CSS   (217 time attack) 

For all possible initial settings of 17-bit LFSR do: 

• Run 17-bit LFSR to get 20 bytes of output 

• Subtract from CSS prefix   ⇒   candidate 20 bytes output of 25-bit LFSR 

• If consistent with 25-bit LFSR, found correct initial settings of both !! 

Using key, generate entire CSS output 

17-bit LFSR 

25-bit LFSR 

+  (mod 256) 

8 

8 

8 
encrypted movie 

prefix 

CSS prefix 

⊕ 
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Modern stream ciphers:     eStream 

 PRG:     {0,1}s  ×  R  ⟶   {0,1}n 

 

 

 

Nonce:   a non-repeating value for a given key.  

 

 E(k, m ; r)  =  m ⊕ PRG(k ; r) 

 

The pair  (k,r)   is never used more than once.    
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eStream:   Salsa 20   (SW+HW) 

Salsa20:    {0,1} 128 or 256  ×  {0,1}64  ⟶   {0,1}n              (max n = 273 bits) 

 

Salsa20( k ; r)   :=   H( k , (r, 0))   ll   H( k , (r, 1))   ll … 
 

 

 

 

 

 

 

h:  invertible function.    designed to be fast on x86   (SSE2) 

τ0 
k 
τ1 
r 
i 

τ2 
k 
τ3 64 bytes 

k
r 
i 

32 bytes 

64 byte 
output ⊕ h 

(10 rounds) 

64 bytes 
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Is Salsa20 secure  (unpredictable) ? 

• Unknown:   no known provably secure PRGs 

 

• In reality:   no known attacks better than exhaustive search 
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Performance: Crypto++  5.6.0      [ Wei Dai ] 

AMD Opteron,   2.2 GHz     ( Linux) 

 

 

  PRG   Speed  (MB/sec) 

  RC4   126 

  Salsa20/12    643 

  Sosemanuk  727 

 

  

eStream 
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Generating Randomness    (e.g. keys, IV) 

Pseudo random generators in practice:     (e.g.  /dev/random) 

• Continuously add entropy to internal state 

• Entropy sources: 

• Hardware RNG:   Intel RdRand inst. (Ivy Bridge).    3Gb/sec.   

• Timing:  hardware interrupts  (keyboard, mouse) 

NIST SP 800-90:    NIST approved generators 
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End of Segment 
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Let   G:K ⟶ {0,1}n   be a PRG  

 

Goal:    define what it means that 

 

  

 is “indistinguishable” from 
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Statistical Tests 

Statistical test on {0,1}n:    

  an alg.  A  s.t.   A(x)  outputs  “0” or “1” 
 

Examples: 
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Statistical Tests 

More examples: 
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Advantage 

Let   G:K ⟶{0,1}n   be a PRG    and    A  a stat. test on  {0,1}n 

 

Define:   

 

 

 

 

 

A silly example:    A(x) = 0   ⇒    AdvPRG [A,G] =    0 
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Suppose  G:K ⟶{0,1}n  satisfies   msb(G(k)) = 1    for 2/3 of keys in K 

Define stat. test  A(x)  as: 

 if  [  msb(x)=1  +  output “1” else output “0” 

Then 

 AdvPRG [A,G]  =  | Pr[ A(G(k))=1]  -  Pr[ A(r)=1 ] |  =  

     | 2/3 – 1/2 | =   1/6 
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Secure PRGs:    crypto definition 

Def:   We say that   G:K ⟶{0,1}
n
   is a secure PRG if   

Are there provably secure PRGs? 

 but we have heuristic candidates.  
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Easy fact:     a secure PRG is unpredictable 

We show:     PRG predictable   ⇒   PRG is insecure 

 

 

Suppose  A  is an efficient algorithm s.t. 

 

 

  

  for non-negligible  ε    (e.g.   ε = 1/1000) 
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Easy fact:     a secure PRG is unpredictable 

Define statistical test  B  as: 
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Thm (Yao’82):     an unpredictable PRG is secure 

Let  G:K ⟶{0,1}n  be  PRG 

 

“Thm”:     if   ∀ i ∈ ,0, … , n-1}  PRG  G  is unpredictable at pos.  i 

      then    G  is a secure PRG. 

 

 

If  next-bit predictors cannot distinguish G from random 
 then no statistical test can !! 

 

 



Let  G:K ⟶{0,1}n   be a PRG such that  

 from the last n/2 bits of G(k)  

 it is easy to compute the first n/2 bits. 

 

Is  G  predictable for some i ∈ ,0, … , n-1}  ? 

Yes 

No 
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More Generally 
Let   P1   and   P2   be two distributions over  {0,1}n 

 

Def:    We say that P1 and P2 are  

   computationally indistinguishable  (denoted                   ) 

 

 

 

Example:   a PRG is secure if   { k ⟵K :  G(k) }  ≈p  uniform({0,1}n) R 
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End of Segment 
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Goal:   secure PRG ⇒  “secure” stream cipher 
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What is a secure cipher? 
Attacker’s abilities:    obtains one ciphertext    (for now) 

Possible security requirements:    

    attempt #1:  attacker cannot recover secret key 

    attempt #2:  attacker cannot recover all of plaintext 

    Recall Shannon’s idea:   
  CT should reveal no “info” about PT   
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Recall Shannon’s perfect secrecy 

Let (E,D) be a cipher over (K,M,C)  

(E,D) has perfect secrecy if      ∀ m0, m1 ∈ M    (  |m0| = |m1| ) 

         { E(k,m0) }     =    { E(k,m1) }       where   k⟵K 

(E,D) has perfect secrecy if      ∀ m0, m1 ∈ M    (  |m0| = |m1| ) 

         { E(k,m0) }   ≈p   { E(k,m1) }       where   k⟵K 

… but also need adversary to exhibit  m0, m1 ∈ M explicitly 
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Semantic Security (one-time key) 

For   b=0,1   define experiments EXP(0) and EXP(1) as: 

 

 

 

 

 for b=0,1:   Wb := [ event that EXP(b)=1  ] 

 AdvSS[A,E] := | Pr[ W0 + −  Pr[ W1 ] |     ∈ [0,1] 

Chal. 

b 

Adv. A 

kK 
m0 , m1   M :    |m0| = |m1| 

c  E(k, mb) 

b’  {0,1} 
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Semantic Security (one-time key) 

Def:   E is semantically secure if for all efficient  A 

         AdvSS[A,E]    is negligible. 

 

⇒   for all explicit m0 , m1   M :     { E(k,m0) }   ≈p   { E(k,m1) }  
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Adv. B  (us) 

Examples 
Suppose efficient A can always deduce LSB of PT from CT.      

⇒     E = (E,D) is not semantically secure.   

Chal. 

b{0,1} 

Adv.  A 
(given) 

kK 
C E(k, mb) 

m0, LSB(m0)=0  

m1, LSB(m1)=1  

C 

LSB(mb)=b 

Then  AdvSS[B, E] = | Pr[ EXP(0)=1 + −  Pr[ EXP(1)=1 ] |= |0 – 1| = 1  
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identical distributions 

OTP is semantically secure 

For all A:    AdvSS[A,OTP] = | Pr[ A(k⊕m0)=1 + −  Pr[ A(k⊕m1)=1 ] |= 0 

Chal. Adv. A 

kK 

m0 , m1   M :    |m0| = |m1| 

c  k⊕m0 b’  {0,1} 

EXP(0): 

Chal. Adv. A 

kK 

m0 , m1   M :    |m0| = |m1| 

c  k⊕m1 b’  {0,1} 
EXP(1): 
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End of Segment 
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Goal:   secure PRG ⇒  semantically secure stream cipher 
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Stream ciphers are semantically secure 

Thm:   G:K ⟶{0,1}n  is a secure PRG    ⇒     

   stream cipher E derived from G is sem. sec. 

 

 

 ∀ sem. sec. adversary A ,   ∃a PRG adversary B   s.t. 

   AdvSS*A,E+  ≤  2 ∙ AdvPRG[B,G]    
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Proof:   intuition 

chal. adv. A 

kK 

m0 , m1 

c  m0 ⊕ G(k)  

b’≟1 

chal. adv. A 

kK 

m0 , m1 

c  m1 ⊕ G(k)  

b’≟1 

≈p 

≈p 

≈p 

chal. adv. A 

r{0,1}n 

m0 , m1 

c  m0 ⊕ r  

b’≟1 

chal. adv. A 

r{0,1}n 

m0 , m1 

c  m1 ⊕ r  

b’≟1 
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Proof:    Let A be a sem. sec. adversary. 

 

 

 

 

 

 

For b=0,1:   Wb :=  * event that b’=1 +.  

    AdvSS[A,E] = | Pr[ W0 + −  Pr[ W1 ] |   

 

Chal. 

b 
Adv. A 

kK 
m0 , m1   M :    |m0| = |m1| 

c  mb ⊕ G(k)  

b’  {0,1} 

r{0,1}n 
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Proof:    Let A be a sem. sec. adversary. 

 

 

 

 

 

 

For b=0,1:   Wb :=  * event that b’=1 +.  

    AdvSS[A,E] = | Pr[ W0 + −  Pr[ W1 ] | 

For b=0,1:   Rb :=  * event that b’=1 ]   

 

Chal. 

b 
Adv. A 

kK 
m0 , m1   M :    |m0| = |m1| 

c  mb ⊕ r  

b’  {0,1} 

r{0,1}n 
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Proof:    Let A be a sem. sec. adversary. 

 

Claim 1:    |Pr[R0] – Pr[R1]| = 

Claim 2:    ∃B:  |Pr[Wb] – Pr[Rb]| = 

 

 

 

 

 

⇒   AdvSS[A,E] = |Pr[W0] – Pr[W1]| ≤  2 ∙ AdvPRG[B,G]    

 

0 1 Pr[W0] Pr[W1] Pr[Rb] 
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Proof of claim 2:       ∃B:  |Pr[W0] – Pr[R0]| =  AdvPRG[B,G]  

 

Algorithm B: 

 

 

 

 

 

 

AdvPRG[B,G] =  

PRG adv. B  (us) 

Adv.  A 
(given) c  m0⊕y  

y ∈ {0,1}n 

m0, m1 

b’ ∈ {0,1} 
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End of Segment 


