Dan Boneh

Stream ciphers

The One Time Pad

Symmetric Ciphers: definition

<u>Def</u>: a **cipher** defined over $(\mathcal{X}, \mathcal{M}, \mathcal{C})$

is a pair of "efficient" algs (E, D) where $E: \mathcal{X} \times \mathcal{M} \rightarrow \mathcal{C}$, $D: \mathcal{X} \times \mathcal{C} \rightarrow \mathcal{M}$ S.E. $\forall m \in \mathcal{M}, \kappa \in \mathcal{X}: D(\ell, E(\ell, m)) = \mathcal{M}$

• E is often randomized. D is always deterministic.

The One Time Pad

(Vernam 1917)

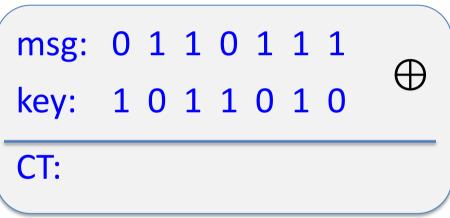
First example of a "secure" cipher

 $\mathcal{M} = \mathcal{G} = \{o_i\}^n$, $\mathcal{J}_k = \{o_i\}^n$

key = (random bit string as long the message)

The One Time Pad (Vernam 1917)

 $C := E(K,m) = K \bigoplus m$ $D(K,c) = K \bigoplus C$



Indeed: D(K, E(K,M)) = D(K, K@M) = K@(K@M) = (K@K) @M = O@M = M You are given a message (m) and its OTP encryption (c).

Can you compute the OTP key from *m* and *c*?

No, I cannot compute the key.

Yes, the key is $k = m \oplus c$.

I can only compute half the bits of the key.

Yes, the key is $k = m \oplus m$.

The One Time Pad

(Vernam 1917)

Very fast enc/dec !!

... but long keys (as long as plaintext)

Is the OTP secure? What is a secure cipher?

What is a secure cipher?

Attacker's abilities: **CT only attack** (for now)

Possible security requirements:

attempt #1: attacker cannot recover secret key $E(\kappa,m) = m$ would be secure

attempt #2: attacker cannot recover all of plaintext $E(r, m_o|n_i) = n_o || KOM_i, vould be serve$

Shannon's idea:

CT should reveal no "info" about PT

Information Theoretic Security (Shannon 1949)

<u>Def</u>: A cipher (E, D) over ($\mathcal{K}, \mathcal{M}, \mathcal{C}$) has <u>perfect secrecy</u> if Vmo, m, e.M. (leu(mo)=leu(m,1) and VceC $P_r[E(k,m_0)=c] = P_r[E(k,m_0)=c]$ where it is uniform in Id (KE-IK)

Information Theoretic Security

<u>**Def</u>**: A cipher (E,D) over (K,M,C) has perfect secrecy if</u>

 $\forall m_0, m_1 \in M$ ($|m_0| = |m_1|$) and $\forall c \in C$

$$Pr[E(k,m_0)=c] = Pr[E(k,m_1)=c] \quad \text{where } k \leftarrow k$$

<u>Lemma</u>: OTP has perfect secrecy.

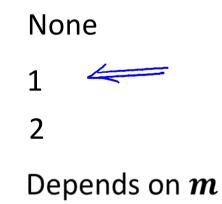
Proof:

$$m, C: \Pr\left[E(K,m)=C\right] = \frac{\# \operatorname{Keys} \operatorname{K} \in \operatorname{GL} S.(.E(K,m)=C)}{\left|\operatorname{GL}\right|}$$

Set if
$$\forall m, c: \#\{k \in \mathcal{K} : E(K, m) = c\} = const.$$

$$\implies cipher has perfect secrecy$$

Let $m \in \mathcal{M}$ and $c \in \mathcal{C}$. How many OTP keys map m to c?



Lemma: OTP has perfect secrecy. Proof: For otp: $\forall m, c:$ if E(K, m) = c $\implies K \oplus m = c \implies K = m \oplus c$ $\implies \#\{\kappa \in \mathcal{K}: E(\kappa, m) = c\} = 1$

=) otp has perfect secrecy 2

The bad news ...

<u>Thm</u>: perfect secrecy \Rightarrow $|\mathcal{K}| \ge |\mathcal{M}|$

perfect secrecy => Key-len = msg-len il.

- hard to use in practice !!

End of Segment

Dan Boneh

Stream ciphers

Pseudorandom Generators

Review

Cipher over (K,M,C): a pair of "efficient" algs (*E*, *D*) s.t. $\forall m \in M, k \in K: D(k, E(k, m)) = m$ Weak ciphers: subs. cipher, Vigener, ... A good cipher: **OTP** $M=C=K=\{0,1\}^n$ $E(k, m) = k \bigoplus m$, $D(k, c) = k \bigoplus c$ Lemma: OTP has perfect secrecy (i.e. no CT only attacks) Bad news: perfect-secrecy \Rightarrow key-len \ge msg-len

Stream Ciphers: making OTP practical

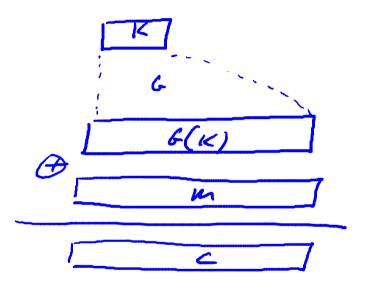
idea: replace "random" key by "pseudorandom" key

(cft. computable by a deterministic algorithm)

Stream Ciphers: making OTP practical

 $C := E(K,m) = M \mathcal{D} G(K)$

 $\mathcal{O}(\mathbf{K},\mathbf{C})=\mathbf{C}\mathcal{D}\mathcal{G}(\mathbf{K})$



Can a stream cipher have perfect secrecy?

- Yes, if the PRG is really "secure"
- No, there are no ciphers with perfect secrecy
- Yes, every cipher has perfect secrecy
- No, since the key is shorter than the message

Stream Ciphers: making OTP practical

Stream ciphers cannot have perfect secrecy !!

• Need a different definition of security

• Security will depend on specific PRG

PRG must be unpredictable

Suppose PRG is predictable: $\exists i: G(\kappa) | \xrightarrow{alg} G(\kappa) | \xrightarrow{(i+1,...,n)}$

Theh; (~(K):

even G(K) -> G(K)/ is a problem!

PRG must be unpredictable

We say that $G: K \longrightarrow \{0,1\}^n$ is **predictable** if:

$$\exists eff'' alg. A and \exists 0 \le i \le h-1 \quad s.t.$$

$$\begin{cases} Pr \left[A(G(u)) \right] = G(k) \\ i_{k \in \mathcal{G}_{k}} \end{bmatrix} = \frac{1}{2} \neq E \\ for non-negligible \in (e.g. \in \mathbb{Z} = \frac{1}{2}) \end{cases}$$

<u>Def</u>: PRG is **unpredictable** if it is not predictable

 \Rightarrow \forall i: no "eff" adv. can predict bit (i+1) for "non-neg" ϵ

Suppose $G: K \longrightarrow \{0,1\}^n$ is such that for all k: XOR(G(k)) = 1

Is G predictable ??

Yes, given the first bit I can predict the second No, G is unpredictable Yes, given the first (n-1) bits I can predict the n'th bit *composed to the the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit (n-1) bits I can predict the n'th bits (n-1) b

Weak PRGS (do not use for crypto)
Lin. Cong. generator with parameters
$$a, b, p$$
:
 $r[i] \leftarrow a \cdot r[i-i] + b \mod p$
 $output$ bits of $r[i]$
 $i + i$

glibc random(): $r[i] \leftarrow (r[i-3] + r[i-31]) \% 2^{32}$ output r[i] >> 1

never use random () For crypto !! (e.g. Kerberos V4)

End of Segment

Dan Boneh

Stream ciphers

Negligible vs. non-negligible

Negligible and non-negligible

- <u>In practice</u>: ε is a scalar and
 - ε non-neg: $\varepsilon \ge 1/2^{30}$ (likely to happen over 1GB of data)
 - ε negligible: $\varepsilon \le 1/2^{80}$ (won't happen over life of key)

- <u>In theory</u>: $\boldsymbol{\epsilon}$ is a function $\boldsymbol{\epsilon}: \mathbf{Z}^{\geq 0} \longrightarrow \mathbf{R}^{\geq 0}$ and
 - ε non-neg: $\exists d: ε(λ) ≥ 1/λ^d$ inf. often (ε ≥ 1/poly, for many λ)
 - $\varepsilon \text{ negligible: } \forall d, \lambda \ge \lambda_d: \varepsilon(\lambda) \le 1/\lambda^d \qquad (\varepsilon \le 1/\text{poly, for large } \lambda)$

Few Examples

ε(λ) = 1/2^λ : negligible

 $ε(λ) = 1/λ^{1000}$: non-negligible

 $ε(λ) = \begin{bmatrix} 1/2^{λ} & \text{for odd } λ \\ 1/λ^{1000} & \text{for even } λ \end{bmatrix}$

Negligible Non-negligible

PRGs: the rigorous theory view

PRGs are "parameterized" by a security parameter λ

• **PRG** becomes "more secure" as λ increases

Seed lengths and output lengths grow with λ

For every $\lambda = 1, 2, 3, ...$ there is a different PRG G_{λ} :

 $G_{\lambda} : K_{\lambda} \rightarrow \{0,1\}^{n(\lambda)}$

(in the lectures we will always ignore λ)

An example asymptotic definition

We say that $G_{\lambda} : K_{\lambda} \rightarrow \{0,1\}^{n(\lambda)}$ is <u>predictable</u> at position i if:

there exists a <u>polynomial</u> time (in λ) algorithm A s.t.

$$\Pr_{k \leftarrow K_{\lambda}} \left[\left| A\left(\lambda, G_{\lambda}(k) \right|_{1,...,i} \right) = \left| G_{\lambda}(k) \right|_{i+1} \right] > 1/2 + \varepsilon(\lambda)$$

for some <u>non-negligible</u> function $\epsilon(\lambda)$

End of Segment

Dan Boneh

Stream ciphers

Attacks on OTP and stream ciphers

Review

OTP: $E(k,m) = m \bigoplus k$, $D(k,c) = c \bigoplus k$

Making OTP practical using a PRG: G: $K \rightarrow \{0,1\}^n$

Stream cipher: $E(k,m) = m \bigoplus G(k)$, $D(k,c) = c \bigoplus G(k)$

Security: PRG must be unpredictable (better def in two segments)

Attack 1: two time pad is insecure !!

Never use stream cipher key more than once !!

$$C_1 \leftarrow m_1 \oplus PRG(k)$$
$$C_2 \leftarrow m_2 \oplus PRG(k)$$

Eavesdropper does:

$$C_1 \oplus C_2 \rightarrow$$

Enough redundancy in English and ASCII encoding that: $m_1 \oplus m_2 \rightarrow m_1, m_2$

Real world examples

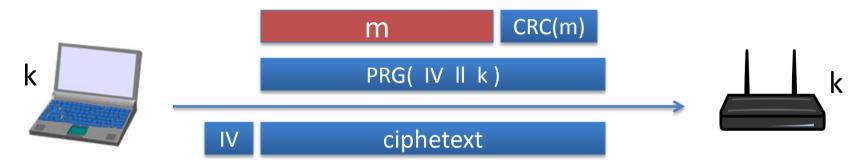
• Project Venona

• MS-PPTP (windows NT):

Need different keys for $C \rightarrow S$ and $S \rightarrow C$

Real world examples

802.11b WEP:

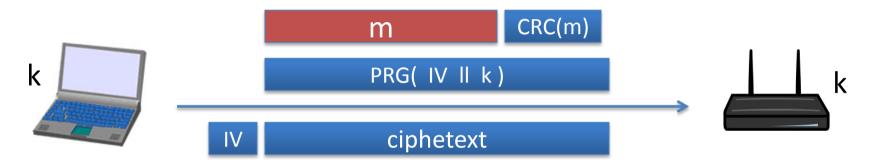


Length of IV: 24 bits

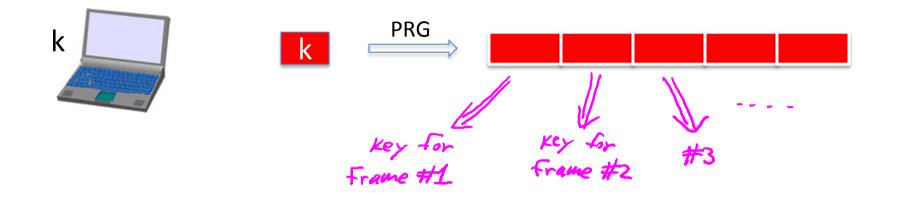
- Repeated IV after 2²⁴ ≈ 16M frames
- On some 802.11 cards: IV resets to 0 after power cycle

Avoid related keys

802.11b WEP:



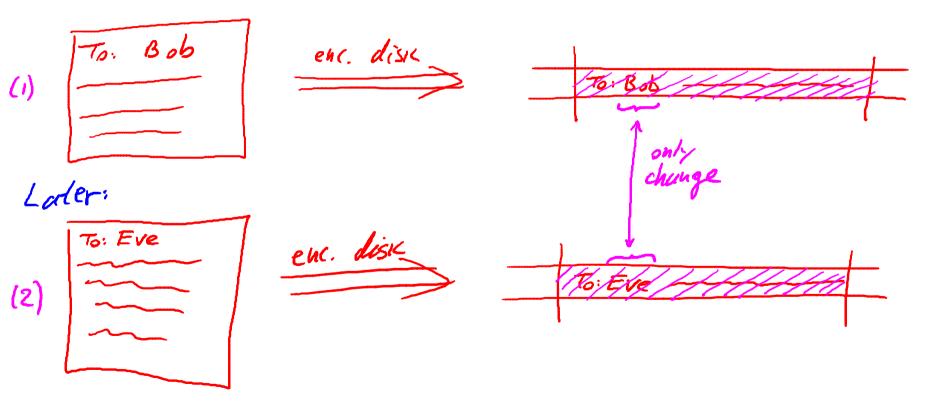
A better construction



 \Rightarrow now each frame has a pseudorandom key

better solution: use stronger encryption method (as in WPA2)

Yet another example: disk encryption



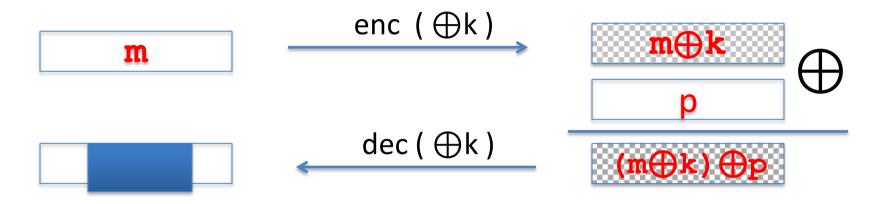
Two time pad: summary

Never use stream cipher key more than once !!

• Network traffic: negotiate new key for every session (e.g. TLS)

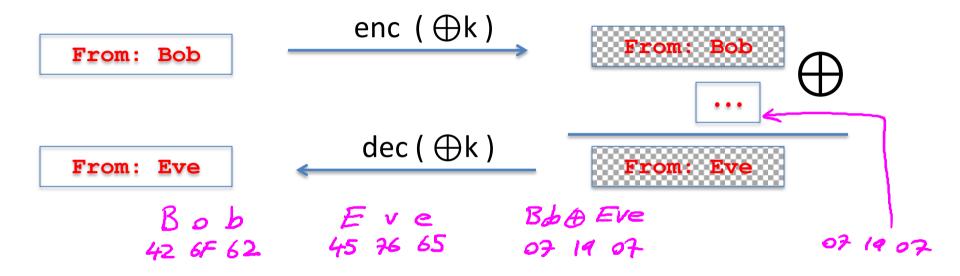
• Disk encryption: typically do not use a stream cipher

Attack 2: no integrity (OTP is malleable)



Modifications to ciphertext are undetected and have **predictable** impact on plaintext

Attack 2: no integrity (OTP is malleable)



Modifications to ciphertext are undetected and have predictable impact on plaintext

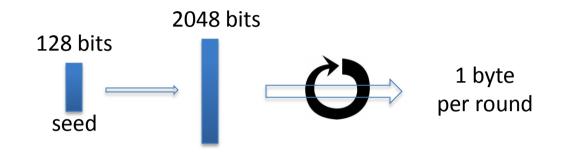
End of Segment

Dan Boneh

Stream ciphers

Real-world Stream Ciphers

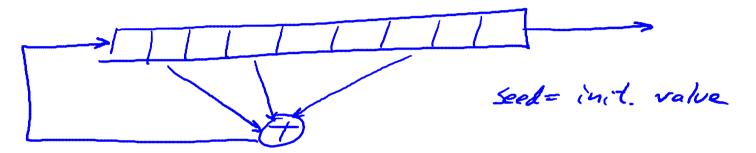
Old example (software): RC4 (1987)



- Used in HTTPS and WEP
- Weaknesses:
 - 1. Bias in initial output: $Pr[2^{nd} byte = 0] = 2/256$
 - 2. Prob. of (0,0) is $1/256^2 + 1/256^3$
 - 3. Related key attacks

Old example (hardware): CSS (badly broken)

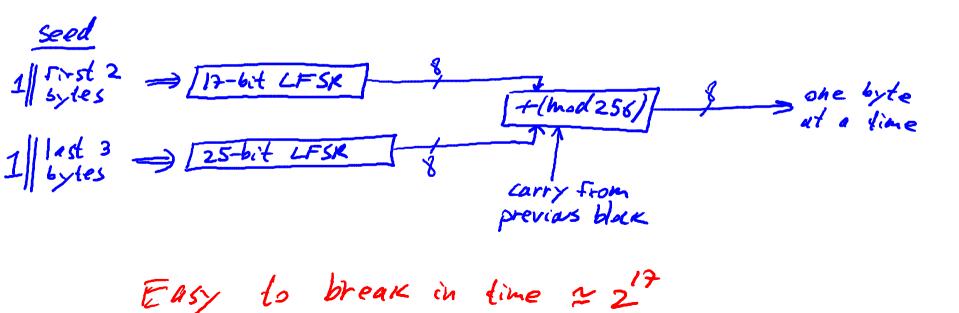
Linear feedback shift register (LFSR):



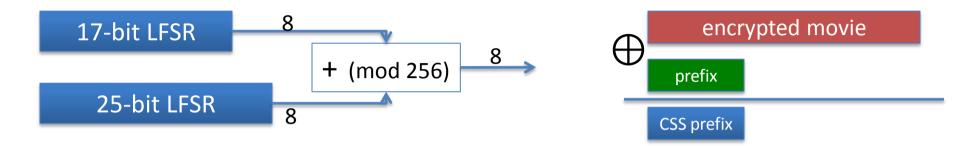
DVD encryption (CSS): 2 LFSRs GSM encryption (A5/1,2): 3 LFSRs Bluetooth (E0): 4 LFSRs

Old example (hardware): CSS (badly broken)

CSS: seed = 5 bytes = 40 bits



Cryptanalysis of CSS (217 time attack)



For all possible initial settings of 17-bit LFSR do:

- Run 17-bit LFSR to get 20 bytes of output
- Subtract from CSS prefix \Rightarrow candidate 20 bytes output of 25-bit LFSR
- If consistent with 25-bit LFSR, found correct initial settings of both !!

Using key, generate entire CSS output

Modern stream ciphers: eStream

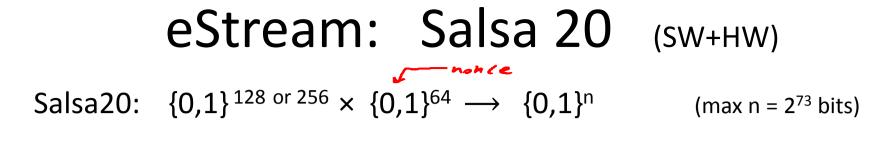
PRG:
$$\{0,1\}^{s} \times R \longrightarrow \{0,1\}^{n}$$

seed honce

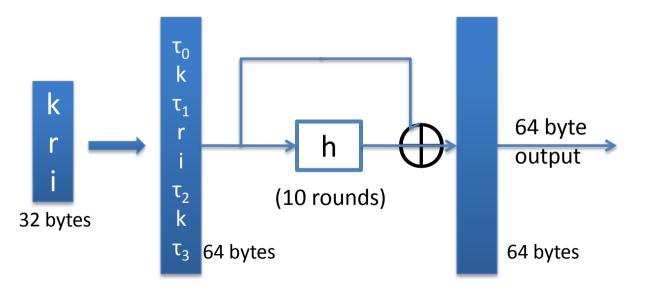
Nonce: a non-repeating value for a given key.

$$E(k, m; r) = m \bigoplus PRG(k; r)$$

The pair (k,r) is never used more than once.



Salsa20(k;r) := H(k, (r, 0)) || H(k, (r, 1)) || ...



h: invertible function. designed to be fast on x86 (SSE2)

Is Salsa20 secure (unpredictable)?

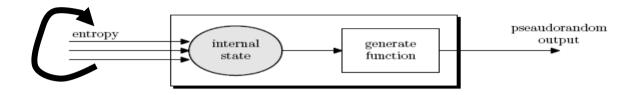
• Unknown: no known **provably** secure PRGs

• In reality: no known attacks better than exhaustive search

Performance:

AMD Opteron, 2.2 GHz (Linux)

Generating Randomness (e.g. keys, IV)



Pseudo random generators in practice: (e.g. /dev/random)

- Continuously add entropy to internal state
- Entropy sources:
 - Hardware RNG: Intel RdRand inst. (Ivy Bridge). 3Gb/sec.
 - Timing: hardware interrupts (keyboard, mouse)

NIST SP 800-90: NIST approved generators

End of Segment

Dan Boneh

Stream ciphers

PRG Security Defs

Let $G: K \longrightarrow \{0,1\}^n$ be a PRG

<u>Goal</u>: define what it means that

JKE & alpt 6(K)

is "indistinguishable" from

Ire Ears atatr?

Statistical Tests

hot random audom **Statistical test** on $\{0,1\}^n$: an alg. A s.t. A(x) outputs "0" or "1" **Examples:** (i) A(x) = 1 iff $| \# o(x) - \# 1(x) | \le 10.5 \text{ m}$ (2) A(X)=1 iff (#00(X)-2) ≤ 10. m

Statistical Tests

More examples:

(3)
$$A(x)=1$$
 iff max-run-of- $O(x) < 10.\log_2(h)$

Advantage

Let G:K \rightarrow {0,1}ⁿ be a PRG and A a stat. test on {0,1}ⁿ

Define:

$$Adv_{pkc}[A, 6] = \int_{k \in \mathcal{B}} R \left[A(6(k|)=1) - Pr \left[A(r)=1 \right] \in [a, 1]$$

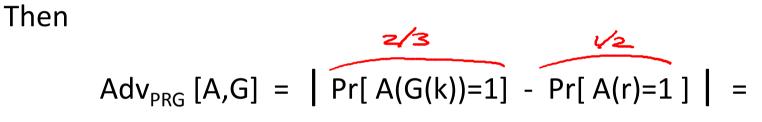
 $r \in Sais^{n}$
 Adv close to $1 \implies A$ can dist. G from random
 Adv close to $0 \implies A$ cannot

A silly example: $A(x) = 0 \implies Adv_{PRG} [A,G] =$

Suppose $G:K \longrightarrow \{0,1\}^n$ satisfies msb(G(k)) = 1 for 2/3 of keys in K

Define stat. test A(x) as:

if [msb(x)=1] output "1" else output "0"



Secure PRGs: crypto definition

Def: We say that $G:K \rightarrow \{0,1\}^n$ is a <u>secure PRG</u> if $\forall "eff" stat. tests A:$ $Adv_{PRG}[A,G]$ is "negligible"

Are there provably secure PRGs?

but we have heuristic candidates.

Easy fact: a secure PRG is unpredictable

We show: PRG predictable \Rightarrow PRG is insecure

Suppose A is an efficient algorithm s.t.

$$\Pr\left[A(G(\mathcal{U})|_{V-i}) = G(\mathcal{U})|_{i+i}\right] > \pm + \varepsilon$$

for non-negligible ϵ (e.g. $\epsilon = 1/1000$)

Easy fact: a secure PRG is unpredictable

Define statistical test B as:

$$B(x) = \begin{bmatrix} iF & A(x|_{1,...,i}) = X_{i+1} & output 1 \\ else & output 0 \end{bmatrix}$$

$$\begin{aligned} & \left[e_{i} \right]_{i}^{n} : P_{r} \left[B(r) = i \right] = \frac{1}{2} \\ & r \leq g_{k} : P_{r} \left[B(c(k)) = i \right] > \frac{1}{2} + \varepsilon \\ & \Longrightarrow Adv_{pre} \left[B, c \right] = \left| P_{r} \left[B(r) = i \right] - P_{r} \left[B(c(k)) = i \right] \right| > \varepsilon \end{aligned}$$

Thm (Yao'82): an unpredictable PRG is secure

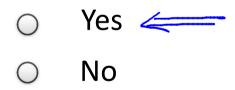
Let $G: K \longrightarrow \{0,1\}^n$ be PRG

"Thm": if $\forall i \in \{0, ..., n-1\}$ PRG G is unpredictable at pos. i then G is a secure PRG.

If next-bit predictors cannot distinguish G from random then no statistical test can !!

Let G:K $\rightarrow \{0,1\}^n$ be a PRG such that from the last n/2 bits of G(k) it is easy to compute the first n/2 bits.

Is G predictable for some $i \in \{0, ..., n-1\}$?



More Generally

Let P_1 and P_2 be two distributions over $\{0,1\}^n$

Def: We say that P_1 and P_2 are **computationally indistinguishable** (denoted $P_1 \approx_p P_2$) if $\forall "eff"$ stat. tests A Pr[A(x)=1] - Pr[A(x)=1] < Negligible $x \sim P_2$

Example: a PRG is secure if $\{k \leftarrow R \in G(k)\} \approx_p uniform(\{0,1\}^n)$

End of Segment

Dan Boneh

Stream ciphers

Semantic security

Goal: secure PRG \Rightarrow "secure" stream cipher

What is a secure cipher?

Attacker's abilities: **obtains one ciphertext** (for now)

Possible security requirements:

attempt #1: attacker cannot recover secret key $E(\kappa, m) = m$

attempt #2: attacker cannot recover all of plaintext $E(\kappa, m_0 | m_1) = m_0 | m_1 \Theta \kappa$

Recall Shannon's idea:

CT should reveal no "info" about PT

Recall Shannon's perfect secrecy

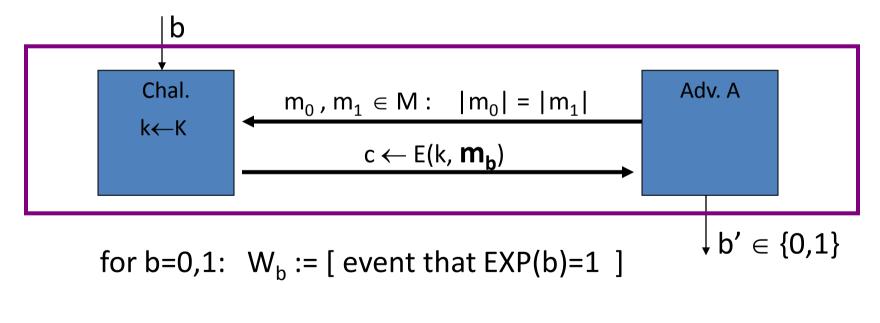
Let (E,D) be a cipher over (K,M,C)

(E,D) has perfect secrecy if $\forall m_0, m_1 \in M$ ($|m_0| = |m_1|$) { E(k,m_0) } = { E(k,m_1) } where k \leftarrow K (E,D) has perfect secrecy if $\forall m_0, m_1 \in M$ ($|m_0| = |m_1|$) { E(k,m_0) } \approx_p { E(k,m_1) } where k \leftarrow K

... but also need adversary to exhibit $m_0, m_1 \in M$ explicitly

Semantic Security (one-time key)

For b=0,1 define experiments EXP(0) and EXP(1) as:



$$Adv_{ss}[A,E] := Pr[W_0] - Pr[W_1] \in [0,1]$$

Semantic Security (one-time key)

Def: \mathbb{E} is **semantically secure** if for all efficient A

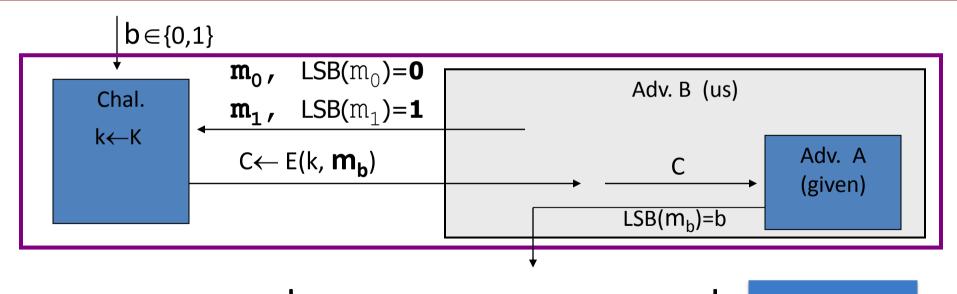
 $Adv_{ss}[A,E]$ is negligible.

$\Rightarrow \text{ for all explicit } m_0, m_1 \in M: \left\{ E(k,m_0) \right\} \approx_p \left\{ E(k,m_1) \right\}$

Examples

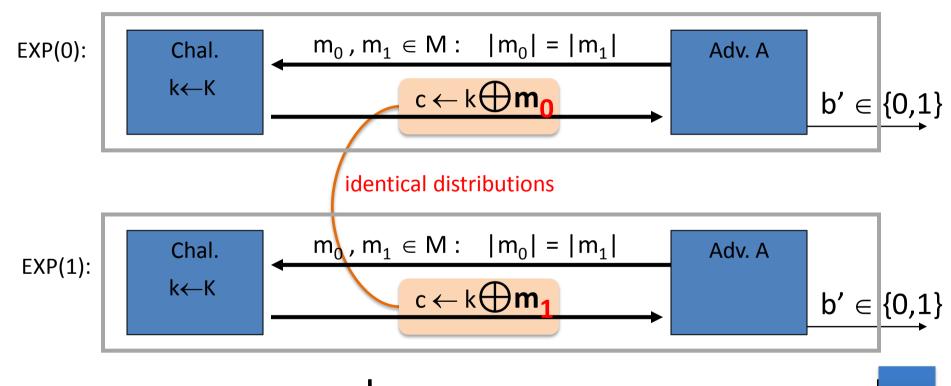
Suppose efficient A can always deduce LSB of PT from CT.

 \Rightarrow $\mathbb{E} = (E,D)$ is not semantically secure.



Then $Adv_{SS}[B, E] = |Pr[EXP(0)=1] - Pr[EXP(1)=1]| =$

OTP is semantically secure



For <u>all</u> A: $Adv_{ss}[A,OTP] = \int Pr[A(k \oplus m_0)=1] - Pr[A(k \oplus m_1)=1]$

End of Segment

Dan Boneh

Stream ciphers

Stream ciphers are semantically secure

Goal: secure PRG \Rightarrow semantically secure stream cipher

Stream ciphers are semantically secure

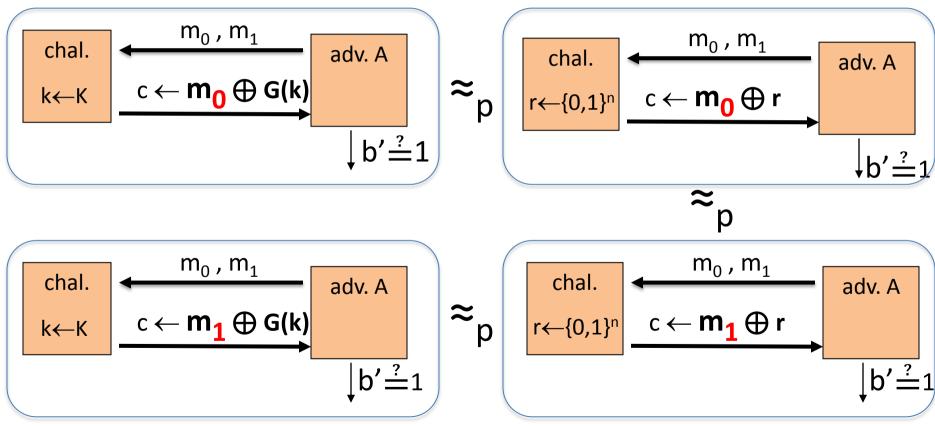
Thm: $G: K \longrightarrow \{0,1\}^n$ is a secure PRG \Rightarrow

stream cipher E derived from G is sem. sec.

 \forall sem. sec. adversary A , \exists a PRG adversary B s.t.

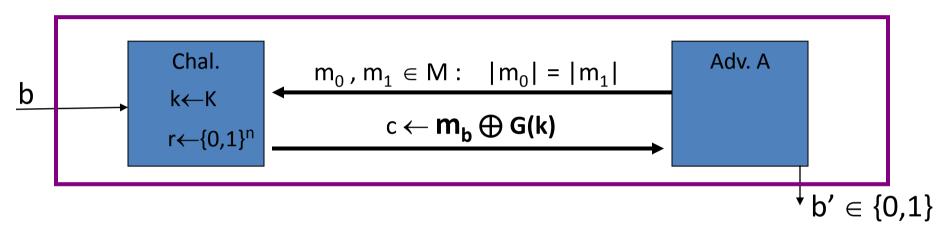
 $Adv_{SS}[A,E] \leq 2 \cdot Adv_{PRG}[B,G]$

Proof: intuition



Dan Boneh

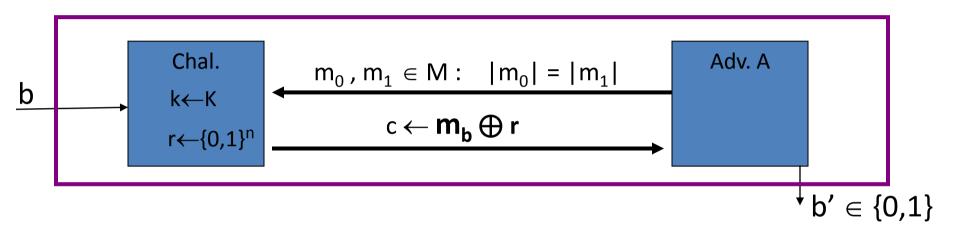
Proof: Let A be a sem. sec. adversary.



For b=0,1:
$$W_b := [\text{ event that } b'=1].$$

Adv_{SS}[A,E] = | Pr[W₀] - Pr[W₁]

Proof: Let A be a sem. sec. adversary.



For b=0,1:
$$W_b := [event that b'=1].$$

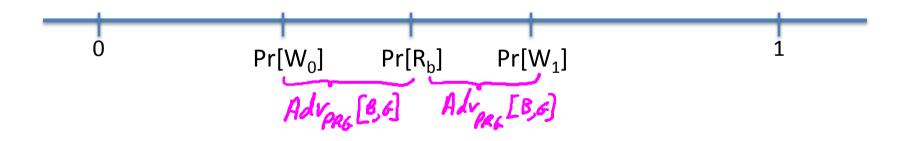
Adv_{SS}[A,E] = $\int Pr[W_0] - Pr[W_1]$

For b=0,1: $R_b := [event that b'=1]$

Proof: Let A be a sem. sec. adversary.

Claim 1:
$$|\Pr[R_0] - \Pr[R_1]| = A dv_{ss} [A, OTP] = 0$$

Claim 2: $\exists B: |\Pr[W_b] - \Pr[R_b]| = A dv_{pre} [B, e]$ for $b=g$

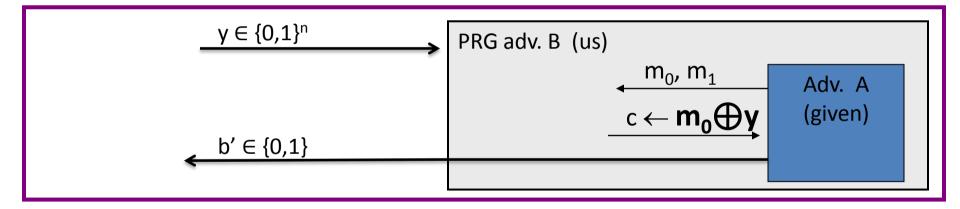


$$\Rightarrow Adv_{SS}[A,E] = |Pr[W_0] - Pr[W_1]| \le 2 \cdot Adv_{PRG}[B,G]$$

Dan Boneh

Proof of claim 2:
$$\exists B: |Pr[W_0] - Pr[R_0]| = Adv_{PRG}[B,G]$$

Algorithm B:



$$Adv_{PRG}[B,G] = \begin{cases} P_{r} \\ r \in \{g_i\}^n \end{cases} \begin{bmatrix} B(r) = i \end{bmatrix} - P_{r} \begin{bmatrix} B(f(k)) = i \end{bmatrix} = P_{r}[R_{o}] - P_{r}[N_{o}] \\ \kappa \in \mathcal{H} \end{cases}$$

End of Segment