Online Cryptography Course Dan Boneh

Public Key Encryption
from trapdoor permutations

Public key encryption:
definitions and security

Public key encryption

Bob: generates (PK,SK) and gives PK to Alice

Alice Bob
m E C C D
0 0

Session setup

Applications

Alice pk

Generate (pk, sk)

X

Non-interactive applications: (e.g. Email)

Bob sends email to Alice encrypted using pk
Note: Bob needs pk

alice

(for now, only eavesdropping security)

Bob

choose random x

(e.g. 48 bytes)

alice

(public key management)

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)
 G(): randomized alg. outputs a key pair (pk, sk)
 E(pk, m): randomized alg. that takes m& M and outputs c €C

 D(sk,c): det. alg. that takes cEC and outputs mEM or L

Consistency: V (pk, sk) output by G:

VYmeM: D(sk, E(pk, m))=m

Security: eavesdropping
For b=0,1 define experiments EXP(0) and EXP(1) as:

pk
b
) my, M EM: |my| =|m,|
c < E(pk, my) €1{0,1}

EXP(b)

Def: E =(G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient A:

Adve [AE] = | PriEXP(0)=1] - PrlEXP(1)=1] | < negligible

Dan Boneh

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:
 One-time security and many-time security (CPA)
« We showed that one-time security # many-time security

For public key encryption:
 One-time security = many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

* Public key encryption must be randomized

Security against active attacks

What if attacker can tamper with ciphertext?

to: caroline@gmail body

3¢ >
N attacker: 1
pkserver to: attacker@gmail body

>

Attacker is given decryption of msgs
that start with “to: attacker”

mail server

(e.g. Gma

\

sk

server

il)

g

=~

attacker

Dan Boneh

(pub-key) Chosen Ciphertext Security: definition

E =(G,E,D) public-key enc. over (M,C). For b=0,1 define EXP(b):

Chal.
(pk,sk)<—=G()

pk

CCAphasel: c&C

»

m, <— D(k, ¢,

challenge: m,, m, EM: |my|=|m,]

C < E(pk, m,)

CCAphase2: cEC: -

.
>

m, <— D(k, ¢,

.
>

Adv. A

Chosen ciphertext security: definition

Def: E is CCA secure (a.k.a IND-CCA) if for all efficient A:
Advees IANE] = | PrEXP(0)=1] = PrIEXP(1)=1] | is negligible.

Example: Suppose (to: alice, body) — (to: david, body)
pk

b Chal. R Adv. A

(pk,sk)<=G()| chal.: (to:alice, 0) , (to:alice, 1)

C

¢ < E(pk, my) (to: david, b)
CCAphase 2: ¢’ = JICHCEVCANS B #C

m’ <— D(sk, c¢’) " L

Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides authenticated encryption
[chosen plaintext security & ciphertext integrity]

* Roughly speaking: attacker cannot create new ciphertexts

* Implies security against chosen ciphertext attacks

In public-key settings:
e Attacker can create new ciphertexts using pk !l
* Soinstead: we directly require chosen ciphertext security

This and next module:

constructing CCA secure pub-key systems

End of Segment

Online Cryptography Course Dan Boneh

Public Key Encryption
from trapdoor permutations

Constructions

Goal: construct chosen-ciphertext secure public-key encryption

Trapdoor functions (TDF)

Def: atrapdoor func. X—Y is a triple of efficient algs. (G, F, F1)
 G(): randomized alg. outputs a key pair (pk, sk)
* F(pk,-): det. alg. that defines a function X —Y

* F(sk,-): definesafunction Y— X thatinverts F(pk,)

More precisely: ¥V (pk, sk) output by G
VxeX: F(sk, F(pk,x))=x

Secure Trapdoor Functions (TDFs)

(G, F, F1)is secure if F(pk, -) is a “one-way” function:

can be evaluated, but cannot be inverted without sk

Chal. Adv. A
(pk,sk)<=G()
x <& X pk, y < F(pk, x) . X’

Def: (G, F, F!) is a secure TDF if for all efficient A:

Advy,, [AF] = Prl x=x"] < negligible

Public-key encryption from TDFs

e (G,F F1): secureTDF X—Y
* (E,, D,): symmetric auth. encryption defined over (K,M,C)

e H: X — K ahash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

e (G,F F1): secureTDF X—Y
* (E,, D,): symmetric auth. encryption defined over (K,M,C)

e H: X — K ahash function

E(pk, m) : D(sk, (y,c)) :
X £ X, y «— F(pk, x) x «— F1(sk, vy),
k «<— H(x), c<«—E[(k, m) k «<— H(x), m «— Dk, c)
output (y, c) output m

In pictures: F(pk, X) E.(H(x), m)

| ' J\ ')
header body

Security Theorem:

If (G, F, F) isasecure TDF, (E,, D) provides auth. enc.

and H:X— K isa “random oracle”
then (G,E,D) is CCA™ secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

E(pk, m) :
output ¢ <« F(pk, m)

D(sk, c):

output F1(sk, c)

Problems:

Deterministic: cannot be semantically secure !!

Many attacks exist (next segment)

Next step: construct a TDF

End of Segment

Online Cryptography Course Dan Boneh

Public Key Encryption
from trapdoor permutations

The RSA trapdoor
permutation

Review: trapdoor permutations

Three algorithms: (G, F, F%)
 G: outputs pk, sk. pk defines a function F(pk, *): X —= X
* F(pk, x): evaluates the function at x

e F(sk,y): inverts the function at y using sk

Secure trapdoor permutation:

The function F(pk,) is one-way without the trapdoor sk

Review: arithmetic mod composites

Let N=p-qg where p,g areprime

Zy=10,1,2,.,N-1} ; (Z,)° = {invertible elements in Z}

Facts: x€&Z, isinvertible < ged(x,N) =1

— Number of elementsin (Z,)" is @(N)=(p-1)(g-1) = N-p-g+1

Euler’s thm: [V xe (Z,) : xPN =g]

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:
— SSL/TLS: certificates and key-exchange
— Secure e-mail and file systems

... many others

The RSA trapdoor permutation

G(): choose random primes p,q=1024 bits. Set N=pq.
choose integers e,d s.t. ed=1 (mod @(N))
output pk=(N,e) , sk=(N,d)

F(pk,x): Z'y — Z'y ; RSA(x) =x° (in Z\)

k
Fi(sk,y)=ye; ¢ = RSAp)® = x*¢ = XM = (xY) . x -
X

nnnnnnnn

The RSA assumption

RSA assumption: RSAis one-way permutation

For all efficient algs. A:
1/e . .
Pr[A(N,e,y) =y] < negligible

R

where p,q <* n-bit primes, N<-pq, y<&z)

Review: RSA pub-key encryption (so st

(E,, D,): symmetric enc. scheme providing auth. encryption.
H: Z, — K where Kis key space of (E,,D,)

e G(): generate RSA params: pk=(N,e), sk=(N,d)

* E(pk, m): (1) choose random x in Z,
(2) y <= RSA(x) =x® , k< H(x)
(3) output (y, E(k,m))

* D(sk, (y,c)): output D H(RSA(y)), c)

Textbook RSA is insecure

Textbook RSA encryption:
— public key: (N,e) Encrypt: c«—m°® (in Z,)
— secret key: (N,d) Decrypt: ¢ — m

Insecure cryptosystem !!

— |Is not semantically secure and many attacks exist

= The RSA trapdoor permutation is not an encryption scheme !

Dan Boneh

A simple attack on textbook RSA

CLIENT HELLO -
random >
session—key k SERVER HELLO (e, N)

c=RSA (k) R

Suppose k is 64 bits: k €{0,...,254}. Evesees: c=k" in Z,

If k=k;k, where ki, k,<23* (prob.~20%) then c/k;"=k," in Z,

Step 1: build table: c¢/1¢, ¢/2¢, ¢/3¢, ..., c/23%¢ . time: 234

Step 2: for k,=0,..., 234 testif k,° isin table. time: 23

Output matching (k,, k,). Total attack time: =290 << 264

End of Segment

Online Cryptography Course Dan Boneh

Public Key Encryption
from trapdoor permutations

PKCS 1

RSA encryption in practice

Never use textbook RSA.

RSA in practice (since ISO standard is not often used) :

Preprocessing I RSA I
key >

Main questions:
— How should the preprocessing be done?
— Can we argue about security of resulting system?

Dan Boneh

PKCS1 v1.5

PKCS1 mode 2: (encryption)

16 bits

02 random pad FF

\

——
RSA modulus size (e.g. 2048 bits)

* Resulting value is RSA encrypted

 Widely deployed, e.g. in HTTPS

AttaCk on PKCS]. V1.5 (Bleichenbacher 1998)

PKCS1 used in HTTPS:

= [ciphertext]

) C
Oo yes: continue ‘

oy I no: error
=> attacker can test if 16 MSBs of plaintext =02’

Chosen-ciphertext attack: to decrypt a given ciphertext C do:

e
— Choose r&2Z,. Compute ¢’ «— re-c = (r-PKCS1(m))
— Send ¢’ to web server and use response

Baby Bleichenbacher

compute x¢«—c? in Z,

= [ciphertext]

C
yes: continue R
no: error

Suppose Nis N=2" (aninvalid RSA modulus). Then:

e Sending c reveals msb(x)

* Sending 2°-c=(2x)¢ in Z,
* Sending 4°-c=(4x)¢ in Z,
e ...and so on to reveal all of x

reveals msb(2x mod N) = msb,(x)
reveals msb(4x mod N) = msb;(x)

HTTPS Defense rcsug

Attacks discovered by Bleichenbacher and Klima et al. ... can be
avoided by treating incorrectly formatted message blocks ... in a

manner indistinguishable from correctly formatted RSA blocks.
In other words:

1. Generate a string R of 46 random bytes

2. Decrypt the message to recover the plaintext M

3. If the PKCS#1 padding is not correct

pre_master_secret = R

PKCS1 v2.0: OAEP

New preprocessing function: OAEP [Bro4]

MSE

01 _00.0

check pad
on decryption.
reject CT if invalid.

olaintext to encrypt | with RSA €{0,1)™

Thm [ropso1] : RSA is a trap-door permutation =
RSA-OAEP is CCA secure when H,G are random oracles

in practice: use SHA-256 for Hand G

Dan Boneh

OAEP Improvements
OAEP+: [Shoup’01]

Y trap-door permutation F
F-OAEP+ is CCA secure when |

H,G,W are random oracles. | n—>2
During decryption validate W(m,r) field.

SAEP+: [B'01]

RSA (e=3) is a trap-door perm =
RSA-SAEP+ is CCA secure when
H,W are random oracle.

Dan Boneh

How would you decrypt
an SAEP ciphertext ct?

RSA

= (O (x,r) <—RSAY(sk,ct) , (m,w)<— x@H(r) , output m if w=W(m,r)
O (x,r) «<—RSAY(sk,ct) , (m,w)«— r@H(x) , output m if w=W(m,r)
O (x,r) «—RSA(sk,ct) , (m,w)<«— xPH(r) , output mif r=W(m,x)

Subtleties in implementing OAEP (m-00)

OAEP-decrypt(ct):
error = 0;

if (RSA”(ct)>2"")
{ error =1; goto exit; }

if (pad(OAEP'1(RSA'1(ct))) I=“01000”")
{ error = 1; goto exit; }

Problem: timing information leaks type of error
=> Attacker can decrypt any ciphertext

Lesson: Don’t implement RSA-OAEP yourself !

End of Segment

Online Cryptography Course Dan Boneh

Public Key Encryption
from trapdoor permutations

s RSA a one-way
function?

|s RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

x from c=x% (mod N).

How hard is computing e’th roots modulo N ??

Best known algorithm:
— Step 1: factor N (hard)
— Step 2: compute e’th roots modulo p and q (easy)

Shortcuts?

Must one factor N in order to compute e’th roots?

To prove no shortcut exists show a reduction:
— Efficient algorithm for e’th roots mod N
=> efficient algorithm for factoring N.

— Oldest problem in public key cryptography.

Some evidence no reduction exists: (BV’98)

— “Algebraic” reduction = factoring is easy.

How not to improve RSA’s performance

To speed up RSA decryption use small private key d (d=21%8)

d=m (mod N)

Wiener’'87: if d <NO%2> then RSA is insecure.

BD’98: if d<NO9292 then RSA isinsecure (open: d <N°°)

Insecure: priv. key d can be found from (N,e)

Wiener’s attack

Recall: ed=1 (mod cp(N)) = dk&z: ed=ko(N)+1

J?(N)) iw <@

‘% Contlnued fractlon expansion of e7N glves k/d
e:d=1(mod k) = gcd(d,k)J=1 = can find d from k/d

Dan Boneh

End of Segment

Online Cryptography Course Dan Boneh

Public Key Encryption
from trapdoor permutations

RSA In practice

RSA With Low public exponent

To speed up RSA encryption use a small e: c =me(mod N)

* Minimum value: e=3 (gcd(e, (N)) =1)
e Recommended value: e=65537=216+1

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

— ElGamal (next module): approx. same time for both.

Key lengths

Security of public key system should be comparable to security
of symmetric cipher:

RSA
Cipher key-size Modulus size
80 bits 1024 bits
128 bits 3072 bits

256 bits (AES) 15360 bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB'04]
The time it takes to compute ¢’ (mod N) can expose d

Power attack: [Kocher et al. 1999)

The power consumption of a smartcard while
it is computing ¢’ (mod N) can expose d.

Faults attack: [BDL'97]
A computer error during ¢’ (mod N) can expose d.

A common defense: check output. 10% slowdown.

An Example Fault Attack on RSA (crT)

d

A common implementation of RSA decryption: x=c" in Z,

decrypt mod p: x,=c? in Z,

d

combine to get x=c" in Z,

decryptmod q: x,=c? in Zq

Suppose error occurs when computing x,, but no error in x,
Then: outputis X’ where x' =cdin Z, but x #cdin Zq

= (xX)®=cinZ, but (x)®#cinz, = ged((x)®-c,N) =p

RSA Key General'IOn TrOUble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

prng.seed(seed)

p = prng.generate_random_prime()
prng.add_randomness(bits)

g = prng.generate_random_prime()

N = p*q

Suppose poor entropy at startup:

 Same p will be generated by multiple devices, but different g

N,, N, :

RSA keys from different devices = gcd(N,,N,) =p

RSA Key Generathn TrOUble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys !!

Lesson:

— Make sure random number generator is properly
seeded when generating keys

Further reading

Why chosen ciphertext security matters, V. Shoup, 1998

Twenty years of attacks on the RSA cryptosystem,
D. Boneh, Notices of the AMS, 1999

OAEP reconsidered, V. Shoup, Crypto 2001

Key lengths, A. Lenstra, 2004

End of Segment

