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Public key encryption
from Diffie-Hellman

The ElIGamal
Public-key System




Recap: public key encryption: (Gen, E, D)
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Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)
Encryption in non-interactive settings:
e Secure Email: Bob has Alice’s pub-key and sends her an email

* Encrypted File Systems
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Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

e Secure Email: Bob has Alice’s pub-key and sends her an email
* Encrypted File Systems

» Key escrow: data recovery without Bob’s key Escrow
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Constructions

This week: two families of public-key encryption schemes

* Previous lecture: based on trapdoor functions (such as RSA)
— Schemes: ISO standard, OAEP+,

* This lecture: based on the Diffie-Hellman protocol

— Schemes: ElGamal encryption and variants (e.g. used in GPG)

Security goals:  chosen ciphertext security



Review: the Diffie-Hellman protocol 97

Fix a finite cyclic group G (e.g G=(Z,)") oforder n
Fix a generatorg in G (i.e. G={1,g,g%¢g3 ..,g"'} )

Alice Bob

choose random ain{1,...,n}

A=g°

choose random b in {1,...,n}
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ElGamal: converting to pub-key enc. (1984

Fix a finite cyclic group G (e.g G=(Z,)") oforder n
Fix a generatorg in G (i.e. G={1,g,8%¢g3 ..,g"} )

Alice Treat as a Bob

choose random ain {1,...,n} publickey rdombin{1,..n}
A=g°

compute g3 =AP
derive symmetric key k ,
ct = [ B = gb , _encrypt message m with k



ElGamal: converting to pub-key enc. (1984

Fix a finite cyclic group G (e.g G=(Z,)") oforder n
Fix a generatorg in G (i.e. G={1,g,8%¢g3 ..,g"} )

Alice Treat as a Bob

choose random ain {1,...,n} publickey rdombin{1,..n}
A=g°

compute g3 =AP

derive symmetric key k ,

To decrypt: ) ct= [ B=gP, encrypt message m with k
compute g2 =B7,

derive k, and decrypt




The ElIGamal system (a modern view)

 @G: finite cyclic group of order n
* (E,, D,): symmetric auth. encryption defined over (K,M,C)

e H: G2— K ahash function

We construct a pub-key enc. system (Gen, E, D):
* Key generation Gen:
— choose random generator ginG and random ainZ,

— output sk=a , pk=(g, h=g?)



The EIGamal system (a modern view)

 @G: finite cyclic group of order n

* (E,, D,): symmetric auth. encryption defined over (K,M,C)

e H: G2— K ahash function

E( pk=(g,h), m) :
b&7

k «<— H(u,v), c < E/[(k, m)

u<—gb, v« hP

n’

output (u, c)

D( sk=a, (u,c) ) :

vV «— u®
k <= H(u,v), m«—D(k, c)
output m




ElGamal performance

E( pk=(g,h), m): D( sk=a, (u,c)):

b<—Zn, u<—gb,V<—hb V(_ua

Encryption: 2exp. (fixed basis)

— Can pre-compute [ g?"), h2") for i=1,..,log, n ]

— 3x speed-up (or more)

Decryption: 1exp. (variable basis)




Next step: why is this system chosen ciphertext secure?
under what assumptions?

End of Segment
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Computational Diffie-Hellman Assumption

G: finite cyclic group of order n

Comp. DH (CDH) assumption holds in Gif: g, g?, gP

for all efficient algs. A:

Pr[ A(g, g°, gb ) = gab ] < negligible

where g« {generatorsof G}, a,b«—2Z,

=

g

ab



Hash Diffie-Hellman Assumption

G: finite cyclic group of ordern , H: G?> — K a hash function

Def: Hash-DH (HDH) assumption holds for (G, H) if:

(s, &% g°, Hig”g®) ) = (g &% g°, R)

where g« {generatorsof G}, a,b«—Z , R«K

H acts as an extractor: strange distribution on G> = uniform on K
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Suppose K={0,1}}?% and

H: G2 — K only outputs strings in K that begin with O
( i.e. forall x,y: msb(H(x,y))=0 )

Can Hash-DH hold for (G, H) ?
O  Yes, for some groups G

——> O  No, Hash-DH is easy to break in this case
O  Yes, Hash-DH is always true for such H



ElGamal is sem. secure under Hash-DH

KeyGen: g« {generatorsofG} , a«Z

n

output pk=(g, h=g?) , sk=a

E( pk=(g,h), m): b«—2Z, D( sk=a, (u,c)):
k < H(gPhP), c«—E |k, m) k < H(u,u?), m <Dk, c)

output (g?, c) output m
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ElGamal is sem. secure under Hash-DH

pk = (g,8°)

chal. » | adv. A
pk,sk | e
g°, E,(H(), le>
(g°, &) e
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— d
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pk,sk | To T
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ElGamal chosen ciphertext security?

To prove chosen ciphertext security need stronger assumption

Interactive Diffie-Hellman (IDH) in group G:

Chal.

g<—igen}
a,be—7_

o h=gd y=gP

(u,vy)

{

1 if (u)=v,
O otherwise

Adv. A

\Y
—

wins if v=

IDH holds in G if: WV efficient A: Pr[ A outputs g?°] < negligible

gab



ElGamal chosen ciphertext security?

Security Theorem:

If IDH holds in the group G, (E,, D,) provides auth. enc.
and H:G2— K isa “random oracle”

then ElGamal is CCA™ secure.

Questions: (1) can we prove CCA security based on CDH?

(2) can we prove CCA security without random oracles?
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Review: ElGamal encryption

KeyGen: g« {generatorsofG} , a«Z

n

output pk=(g, h=g?) , sk=a

E( pk=(g,h), m): b«—2Z, D( sk=a, (u,c)):

k — H(g°h?), c—E[(k m) k «<— H(u,u®), m« Dk, c)

output (g?, c) output m
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ElGamal chosen ciphertext security

Security Theorem:

If IDH holds in the group G, (E,, D,) provides auth. enc.
and H: G2 —> K isa “random oracle”

then ElGamal is CCA™ secure.

Can we prove CCA security based on CDH (g, g2, g° = g20)?

e Option 1: use group G where CDH =IDH (a.k.a bilinear group)

 Option 2: change the ElIGamal system



Variants:

twin EIGamaI [CKS’08]

KeyGen: g« {generatorsofG} , al,a2«Z,

output pk=(g, h,=g%, h,=g?%) , sk=(al,a2)

E( pk=(g,h,,h,), m) :
k — H(gbr hlb) hzb)
c < E(k, m)

output (g?, c)

b7

n

D( sk=(a1,a2), (u,c) ) :
k «— H(u, u?l, u??)
m «— D.(k, c)

output m




Chosen ciphertext security

Security Theorem:

If CDH holds in the group G, (E,, D,) provides auth. enc.
and H:G3— K isa “random oracle”

then twin ElIGamal is CCA™ secure.

Cost: one more exponentiation during enc/dec

— |Is it worth it? No one knows ...



ElGamal security w/o random oracles?

Can we prove CCA security without random oracles?

e Option 1: use Hash-DH assumption in “bilinear groups”

— Special elliptic curve with more structure [CHK'04 + BB’04]

* Option 2: use Decision-DH assumption in any group [CS’98]



Further Reading

The Decision Diffie-Hellman problem. D. Boneh, ANTS 3, 1998

Universal hash proofs and a paradigm for chosen ciphertext secure public
key encryption. R. Cramer and V. Shoup, Eurocrypt 2002

Chosen-ciphertext security from ldentity-Based Encryption.
D. Boneh, R. Canetti, S. Halevi, and J. Katz, SICOMP 2007

The Twin Diffie-Hellman problem and applications.
D. Cash, E. Kiltz, V. Shoup, Eurocrypt 2008

Efficient chosen-ciphertext security via extractable hash proofs.
H. Wee, Crypto 2010
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One-way functions (informal)

A function f: X —Y is one-way if
 There is an efficient algorithm to evaluate f(-), but

* Inverting f is hard:
for all efficient A and x <X :

Pr[¥(A(f(x)))=-Y(X)] < negligible

Functions that are not one-way: f(x)=x, f(x)=0



Ex. 1: generic one-way functions

Let f:X—Y beasecure PRG (where |Y| > |X])

(e.g. f built using det. counter mode)

Lemma: fasecure PRG = fisone-way

Proof sketch: 0 of ;(A/y))v’

Ainvertsf = B(y)= is a distinguisher
1 o-lherm‘ge.

Generic: no special properties. Difficult to use for key exchange.

Dan Boneh



Ex 2: The DLOG one-way function

Fix a finite cyclic group G (e.g G=(Z,)") of order n
g: arandom generatorin G (i.e. G={1,g g2 &5, ..,8""} )

Define: f:Z — G as [f(x) =gt € G}

Lemma: DloghardinG = fisone-way

Properties: f(x), fly) = f(x+y) = f(x) - f(y)

= key-exchange and public-key encryption



Ex. 3: The RSA one-way function

 choose random primes p,q=1024 bits. Set N=pq.
* chooseintegers e,d s.t. erd=1 (mod @(N))

Define: f: Zi’]‘v — Z?\f as [ f(x)= x® in ZN}

Lemma: fisone-way under the RSA assumption

Properties: f(x-y)=1f(x) - fly) and f has atrapdoor



Summary

Public key encryption:

made possible by one-way functions
with special properties

homomorphic properties and trapdoors



End of Segment
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Quick Review: primitives

CTR

GGM

Trapdoor
Functions

>

CMAC, HMAC
PMAC

PRF, PRP

Collision

resistance
key

exchange

public key Diffie-Hellman
encryption groups
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Quick Review: primitives

To protect non-secret data: (data integrity)

— using small read-only storage: use collision resistant hash
— no read-only space: use MAC ... requires secret key
To protect sensitive data: only use authenticated encryption

(eavesdropping security by itself is insufficient)

Session setup:

* Interactive settings: use authenticated key-exchange protocol
* When no-interaction allowed: use public-key encryption



Remaining Core Topics (part Il)

Digital signatures and certificates
Authenticated key exchange
User authentication:
passwords, one-time passwords, challenge-response

Privacy mechanisms
Zero-knowledge protocols



Many more topics to cover ...

Elliptic Curve Crypto
Quantum computing
New key management paradigms:
identity based encryption and functional encryption
Anonymous digital cash
Private voting and auction systems
Computing on ciphertexts: fully homomorphic encryption
Lattice-based crypto
Two party and multi-party computation



Final Words

Be careful when using crypto:
 Atremendous tool, but if incorrectly implemented:
system will work, but may be easily attacked

Make sure to have others review your designs and code

Don’t invent your own ciphers or modes



End of part |



