

Public key encryption from Diffie-Hellman

The ElGamal Public-key System

Recap: public key encryption: (Gen, E, D)

Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

- Secure Email: Bob has Alice's pub-key and sends her an email
- Encrypted File Systems

Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

- Secure Email: Bob has Alice's pub-key and sends her an email
- Encrypted File Systems

Constructions

This week: two families of public-key encryption schemes

- Previous lecture: based on trapdoor functions (such as RSA)
 - Schemes: ISO standard, OAEP+, ...
- This lecture: based on the Diffie-Hellman protocol
 - Schemes: ElGamal encryption and variants (e.g. used in GPG)

Security goals: chosen ciphertext security

Review: the Diffie-Hellman protocol (1977)

```
Fix a finite cyclic group G (e.g G = (Z_p)^*) of order n
Fix a generator g in G (i.e. G = \{1, g, g^2, g^3, ..., g^{n-1}\})
```

Alice

Bob

choose random **a** in {1,...,n}

choose random **b** in {1,...,n}

$$A = g^{a}$$

$$B = g^{b}$$

$$B^a = (g^b)^a =$$

$$k_{AB} = g^{ab}$$
 = $(g^a)^b$ = A^b

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

choose random **a** in {1,...,n}

 $A = g^a$

Treat as a public key

<u>Bob</u>

ndom **b** in {1,...,n}

compute
$$g^{ab} = A^b$$
,
derive symmetric key k,
encrypt message m with k

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

choose random **a** in {1,...,n}

$$A = g^a$$

Treat as a public key

compute $g^{ab} = A^b$.

<u>Bob</u>

ndom **b** in {1,...,n}

To decrypt: $ct = \begin{bmatrix} B = g^b \end{bmatrix}$, derive symmetric key k, encrypt message m with k derive k, and decrypt

Dan Boneh

The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- H: $G^2 \rightarrow K$ a hash function

We construct a pub-key enc. system (Gen, E, D):

- Key generation Gen:
 - choose random generator g in G and random a in Z_n
 - output sk = a, $pk = (g, h=g^a)$

The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $G^2 \rightarrow K$ a hash function

E(pk=(g,h), m): $b \stackrel{\mathbb{R}}{\leftarrow} Z_n$, $u \leftarrow g^b$, $v \leftarrow h^b$ $k \leftarrow H(u,v)$, $c \leftarrow E_s(k, m)$ output (u, c)

$$\frac{D(sk=a, (u,c))}{v \leftarrow u^{a}}:$$

$$k \leftarrow H(u,v), \quad m \leftarrow D_{s}(k,c)$$
output m

ElGamal performance

```
E( pk=(g,h), m):

b \leftarrow Z_n, u \leftarrow g^b, v \leftarrow h^b
```

```
<u>D( sk=a, (u,c) )</u>:
v ← u<sup>a</sup></u>
```

Encryption: 2 exp. (fixed basis)

- Can pre-compute $[g^{(2^{i})}, h^{(2^{i})}]$ for $i=1,...,log_{2}$ n
- 3x speed-up (or more)

Decryption: 1 exp. (variable basis)

Next step: why is this system chosen ciphertext secure? under what assumptions?

End of Segment

Public key encryption from Diffie-Hellman

ElGamal Security

Computational Diffie-Hellman Assumption

G: finite cyclic group of order n

Comp. DH (CDH) assumption holds in G if: $g, g^a, g^b \not\Longrightarrow g^{ab}$

for all efficient algs. A:

$$Pr[A(g, g^a, g^b) = g^{ab}] < negligible$$

where $g \leftarrow \{\text{generators of G}\}\$, $a, b \leftarrow Z_n$

Hash Diffie-Hellman Assumption

G: finite cyclic group of order n , H: $G^2 \rightarrow K$ a hash function

<u>Def</u>: Hash-DH (HDH) assumption holds for (G, H) if:

$$\left(g,\ g^a,\ g^b\ ,\ H(g^b,g^{ab})\ \right) \quad \approx_p \quad \left(g,\ g^a,\ g^b\ ,\ R\ \right)$$
 where $g \leftarrow \{\text{generators of G}\}$, $a,b \leftarrow Z_n$, $R \leftarrow K$

H acts as an extractor: strange distribution on $G^2 \implies$ uniform on K

Suppose $K = \{0,1\}^{128}$ and

H: $G^2 \rightarrow K$ only outputs strings in K that begin with 0 (i.e. for all x,y: msb(H(x,y))=0)

Can Hash-DH hold for (G, H)?

- Yes, for some groups G
- No, Hash-DH is easy to break in this case
 - Yes, Hash-DH is always true for such H

ElGamal is sem. secure under Hash-DH

KeyGen:
$$g \leftarrow \{generators of G\}$$
, $a \leftarrow Z_n$
output $pk = (g, h=g^a)$, $sk = a$

E(pk=(g,h), m): b ←
$$Z_n$$

 $k \leftarrow H(g^b,h^b)$, $c \leftarrow E_s(k,m)$
output (g^b , c)

$$\frac{D(sk=a, (u,c))}{k \leftarrow H(u,u^a), m \leftarrow D_s(k, c)}$$
output m

ElGamal is sem. secure under Hash-DH

ElGamal chosen ciphertext security?

To prove chosen ciphertext security need stronger assumption

Interactive Diffie-Hellman (IDH) in group G:

IDH holds in G if: \forall efficient A: Pr[A outputs g^{ab}] < negligible

ElGamal chosen ciphertext security?

Security Theorem:

If IDH holds in the group G, (E_s, D_s) provides auth. enc.

and **H**: $G^2 \rightarrow K$ is a "random oracle"

then **ElGamal** is CCA^{ro} secure.

Questions: (1) can we prove CCA security based on CDH?

(2) can we prove CCA security without random oracles?

End of Segment

Public key encryption from Diffie-Hellman

ElGamal Variants
With Better Security

Review: ElGamal encryption

KeyGen:
$$g \leftarrow \{generators of G\}$$
, $a \leftarrow Z_n$
output $pk = (g, h=g^a)$, $sk = a$

E(pk=(g,h), m):
$$b \leftarrow Z_n$$

 $k \leftarrow H(g^b,h^b)$, $c \leftarrow E_s(k,m)$
output (g^b,c)

$$\frac{D(sk=a, (u,c))}{k \leftarrow H(u,u^a), m \leftarrow D_s(k,c)}$$
output m

ElGamal chosen ciphertext security

Security Theorem:

```
If IDH holds in the group G, (E_s, D_s) provides auth. enc. and H: G^2 \longrightarrow K is a "random oracle" then ElGamal is CCA<sup>ro</sup> secure.
```

Can we prove CCA security based on CDH $(g, g^a, g^b \not\rightarrow g^{ab})$?

- Option 1: use group G where CDH = IDH (a.k.a bilinear group)
- Option 2: change the ElGamal system

Variants: twin ElGamal [CKS'08]

KeyGen: $g \leftarrow \{\text{generators of G}\}$, $a1, a2 \leftarrow Z_n$ output $pk = (g, h_1 = g^{a1}, h_2 = g^{a2})$, sk = (a1, a2)

```
E( pk=(g,h<sub>1</sub>,h<sub>2</sub>), m): b \leftarrow Z<sub>n</sub>
       k \leftarrow H(g^b, h_1^b, h_2^b)
      c \leftarrow E_s(k, m)
      output (g<sup>b</sup>, c)
```

```
D( sk=(a1,a2), (u,c) ):
     k \leftarrow H(u, u^{a1}, u^{a2})
     m \leftarrow D_s(k, c)
     output m
```

Chosen ciphertext security

Security Theorem:

If CDH holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^3 \longrightarrow K$ is a "random oracle" then **twin ElGamal** is CCA^{ro} secure.

Cost: one more exponentiation during enc/dec

— Is it worth it? No one knows …

ElGamal security w/o random oracles?

Can we prove CCA security without random oracles?

- Option 1: use Hash-DH assumption in "bilinear groups"
 - Special elliptic curve with more structure [CHK'04 + BB'04]

Option 2: use Decision-DH assumption in any group [CS'98]

Further Reading

- The Decision Diffie-Hellman problem.
 D. Boneh, ANTS 3, 1998
- Universal hash proofs and a paradigm for chosen ciphertext secure public key encryption. R. Cramer and V. Shoup, Eurocrypt 2002
- Chosen-ciphertext security from Identity-Based Encryption.
 D. Boneh, R. Canetti, S. Halevi, and J. Katz, SICOMP 2007
- The Twin Diffie-Hellman problem and applications.
 D. Cash, E. Kiltz, V. Shoup, Eurocrypt 2008
- Efficient chosen-ciphertext security via extractable hash proofs.
 H. Wee, Crypto 2010

Public key encryption from Diffie-Hellman

A Unifying Theme

One-way functions (informal)

A function $f: X \longrightarrow Y$ is one-way if

- There is an efficient algorithm to evaluate f(·), but
- Inverting f is hard:
 for all efficient A and x ← X :
 Pr[f(A(f(x))) = f(x)] < negligible

Functions that are not one-way: f(x) = x, f(x) = 0

Ex. 1: generic one-way functions

Let f: X \rightarrow Y be a secure PRG (where $|Y| \gg |X|$)

(e.g. f built using det. counter mode)

Lemma: f a secure PRG \Rightarrow f is one-way

Proof sketch:

f sketch:

A inverts
$$f \Rightarrow B(y) = \begin{cases} 0 & \text{if } f(A(y)) = y \\ 1 & \text{otherwise} \end{cases}$$
 is a distinguisher

Generic: no special properties. Difficult to use for key exchange.

Ex 2: The DLOG one-way function

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n g: a random generator in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Define: f:
$$Z_n \rightarrow G$$
 as $f(x) = g^x \in G$

Lemma: Dlog hard in $G \Rightarrow f$ is one-way

Properties:
$$f(x)$$
, $f(y) \Rightarrow f(x+y) = f(x) \cdot f(y)$
 \Rightarrow key-exchange and public-key encryption

Ex. 3: The RSA one-way function

- choose random primes p,q ≈1024 bits. Set N=pq.
- choose integers e, d s.t. $e \cdot d = 1 \pmod{\varphi(N)}$

Define:
$$f: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
 as $f(x) = x^e$ in \mathbb{Z}_N

Lemma: f is one-way under the RSA assumption

Properties: $f(x \cdot y) = f(x) \cdot f(y)$ and **f has a trapdoor**

Summary

Public key encryption:

made possible by one-way functions with special properties

homomorphic properties and trapdoors

End of Segment

Farewell (for now)

Quick Review: primitives

Quick Review: primitives

To protect non-secret data: (data integrity)

- using small read-only storage: use collision resistant hash
- no read-only space: use MAC ... requires secret key

To protect sensitive data: only use authenticated encryption (eavesdropping security by itself is insufficient)

Session setup:

- Interactive settings: use authenticated key-exchange protocol
- When no-interaction allowed: use public-key encryption

Remaining Core Topics (part II)

- Digital signatures and certificates
- Authenticated key exchange
- User authentication:
 passwords, one-time passwords, challenge-response

- Privacy mechanisms
- Zero-knowledge protocols

Many more topics to cover ...

- Elliptic Curve Crypto
- Quantum computing
- New key management paradigms: identity based encryption and functional encryption
- Anonymous digital cash
- Private voting and auction systems
- Computing on ciphertexts: fully homomorphic encryption
- Lattice-based crypto
- Two party and multi-party computation

Final Words

Be careful when using crypto:

A tremendous tool, but if incorrectly implemented:
 system will work, but may be easily attacked

Make sure to have others review your designs and code

Don't invent your own ciphers or modes-

End of part I