Online Cryptography Course Dan Boneh

Digital Signatures

What is a digital
signature?

Physical signatures

Goal: bind document to author

— —
1
o_

————

Bob agrees to pay Alice 15 i N
=

——

 — —
[1
[1 ||| |p—

————

Bob agrees to pay Alice 100§ o
=

——

Problem in the digital world:

anyone can copy Bob’s signature from one doc to another

Digital sighatures

Solution: make signature depend on document

Signer

| —

—

|

——3

Bob agrees to pay Alice 15 i N

secret signing
key (sk)

l

signature

signing

(/== s

gorithm

J

Verifier
‘accept’
e B G —> OF
‘reject’
e=={p
public verification
key (pk)

A more realistic example

Software vendor clients

software update | Sig untrusted

hosting

secret signing site

key (sk) . .
q‘l signing verify sig,
algorithm install if valid

Dan Boneh

Digital sighatures: syntax

Def: asignature scheme (Gen,S,V) is a triple of algorithms:
— Gen(): randomized alg. outputs a key pair (pk, sk)
— S(sk, mEM) outputs sig. o

— V(pk, m, o) outputs ‘accept’ or ‘reject’

Consistency: for all (pk, sk) output by Gen :

VmeM: V(pk, m, S(sk, m)) = ‘accept’

Digital sighatures: security

Attacker’s power: chosen message attack

. for m;,m,,...m, attacker is given o, <— S(sk, m,)

q

Attacker’s goal: existential forgery
. produce some new valid message/sig pair (m, o).

me {my,..,mg}

= attacker cannot produce a valid sig. for a new message

Secure signatures

For a sig. scheme (Gen,S,V) and adv. A define a game as:

pk

m, eM m,

) °°°

v

0, < S(sk,m;) O,

) 0, O

v

(m,o)

Adv. wins if V(pk,m,c) ="accept’ and m ¢ {m, ..., mq} l

Def: SS=(Gen,S,V) is secure if for all “efficient” A:

Advgc[A,SS] = Pr[A wins]

is “negligible”

Let (Gen,S,V) be a signature scheme.
Suppose an attacker is able to find my# m, such that
V(pk, mg, o) = V(pk, m;,c) forall o and keys (pk, sk) <— Gen

Can this signature be secure?

O Yes, the attacker cannot forge a signature for either my or m,

O No, signatures can be forged using a chosen msg attack

O It depends on the details of the scheme

Alice generates a (pk,sk) and gives pk to her bank.

Later Bob shows the bank a message m=“pay Bob 1005”
properly signed by Alice, i.e. V(pk,m,sig) = ‘yes’

Alice says she never signed m. Is Alice lying?

Alice is lying: existential unforgeability means Alice signed m
and therefore the Bank should give Bob 100S from Alice’s account

Bob could have stolen Alice’s signing key and therefore
the bank should not honor the statement

O O

What a mess: the bank will need to refer the issue to the courts

End of Segment

Online Cryptography Course Dan Boneh

Digital Signatures

Applications

Applications

Code signing:
» Software vendor signs code

e C(Clients have vendor’s pk. Install software if signature verifies.

many clients
>

software vendor initial software install (pk)

[software udate #1 , sig |

[software udate #2 , sig |

Dan Boneh

More generally:

One-time authenticated channel (non-private, one-directional)
— many-time authenticated channel

Initial software install is authenticated, but not private

e Recipients
(pk, sk) < Gen one-time authenticated channel pk)f([\\

pk
> eavesdrop, but not modify &

g, S(sk, m)
gy Slsk, m,)
[

>

\ /)

Dan Boneh

Important application: Certificates

Problem: browser needs server’s public-key to setup a session key
Solution: server asks trusted 3 party (CA) to sign its public-key pk

Certificate

Gmail.com

choose pk and
(pk, sk) proof “I am Gmail”

browser

verification key

Sign Cert using sk, :

% pk is key

for Gmail

% pk is key 3
“for Gmail
(@:ﬂ>
sig

Server uses Cert for an extended period (e.g. one year)

D signing key

Dan Boneh

Certificates: example

Important fields:

Serial Number

Version

Signature Algorithm

Parameters

5814744488373890497
3

D ——

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
none

Not Valid Before

Not Valid After

Wednesday, July 31, 2013 4:59:24 AM Pacific
Daylight Time

Thursday, July 31, 2014 4:59:24 AM Pacific Daylight
Time

Algorithm
Parameters
Public Key
Key Size
Key Usage

Signature

Elliptic Curve Public Key (1.2.840.10045.2.1)
Elliptic Curve secp256rl (1.2.840.10045.3.1.7)

65 bytes : 04 71 6CDDEOOACI 76 ... €
256 bits

Encrypt, Verify, Derive

256 bytes : BA 38 FEDG6 F5 E7 F6 59 ... o

[=] Equifax Secure Certificate Authority
L [Z] GeoTrust Global CA
b [] Google Internet Authority G2
= mail.google.com

C/r'/'///'w///*

E—

Time

mail.google.com

Issued by: Google Internet Authority G2
Expires: Thursday, July 31, 2014 4:59:24 AM Pacific Daylight

@ This certificate is valid

v Details

Country
State/Province
Locality
Organization

Common Name

Country
Organization

Common Name

us

California
Mountain View
Google Inc
mail.google.com

—

us
Google Inc
Google Internet Authority G2

Dan Boneh

What entity generates the CA’s secret key sk¢, ?

the browser

Gmail
the CA

the NSA

O O O O

Applications with few verifiers

EMV payments:

transaction details Member Bank
(nonce, PIN)

(greatly simplified)

- signature
p transaction details T (card cert)

and signature

o ,
Point of Sale
terminal

Signed email: sender signs email it sends to recipients

* Every recipient has sender’s public-key (and cert).
A recipient accepts incoming email if signature verifies.

Dan Boneh

Slgnlng email: DKIM (domain key identified mail)

Problem: bad email claiming to be from someuser@gmail.com
but in reality, mail is coming from domain baguy.com
= Incorrectly makes gmail.com look like a bad source of email

Solution: gmail.com (and other sites) sign every outgoing mail

From: bob@gmail.com

email - c>\\>e(\l <
body] o A\ ©
.. g)
signing key > | Recipients o
Q= J
_ J verify sig. >
Gmail.com

badguy.com ??

Dan Boneh

example DKIM header from gmail.com

X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=1e100.net; s$=20130820; (lookup 20130820. domainkey.1e100.net in DNS for public key)

h=x-gm-message-state:mime-version:in-reply-to:references:from:date:
message-id:subject:to:content-type;

bh=MDr/xwte+/JQSgCG+T2R2Uy+SuTK4/gxqdxMc273hPQ=; (hash of message body)

b=dOTpUVOaCrWS6AzmcPMreo09G9viS+sn1z6g+GpC/ArkfMEmcffOJ1s9u5Xa5KC+6K
XRzwZhAWYqFr2a0ywCjbGECBPIE5ccOi9DwMjnvJRYEWNK7/sMzFfx+0L3nTggTydOED
EGWdN3upzSXwBrXo82wVcRRCnQ1lyUITddnHgEoEFg5WV37DRP/eq/hOB6zFNTRBwWkvVFS
0tC/DNdRwftspO+UboRU2eiWaqJWPjxL/abS7xA/q1VGz0Zol0y3/SCkxdg4H80c61DU
jdVYhCUd+dSV5fISouLQT/q5DYEjINQbi+EcbL00liu40623SDEeyx2isUgcvi2VXTWQ
m80Q==

Gmail’s signature on headers, including DKIM header (2048 bits)

Dan Boneh

Suppose recipients could retrieve new data from DNS for every
email received, could Gmail implement DKIM without signatures?

(ignoring, for now, the increased load on the DNS system)

O Yes, Gmail would write to DNS a collision-resistant hash
of every outgoing email. The recipient retrieves the hash
from DNS and compares to the hash of the incoming message.

O No, the proposal above is insecure.

= Signatures reduce the frequency that recipients need to query DNS

Applications: summary

 Code signing
* Certificates
* Signed email (e.g. DKIM)

* Credit-card payments: EMV

and many more.

When to use sighatures

Generally speaking:
* If one party signs and one party verifies: use a MAC
— Often requires interaction to generate a shared key

— Recipient can modify the data and re-sign it before
passing the data to a 3" party

* If one party signs and many parties verify: use a signature

— Recipients cannot modify received data before
passing data to a 3" party (non-repudiation)

Review: three approaches to data integrity

1. Collision resistant hashing: need a read-only public space

Software
Vendor

2. Digital signatures: vendor must manage a long-term secret key

* Vendor’s signature on software is shipped with software

~Bob~
P

e Software can be downloaded from an untrusted distribution site

3. MACs: vendor must compute a new MAC of software for every client

* and must manage a long-term secret key (to generate a per-client MAC key)

Dan Boneh

End of Segment

Online Cryptography Course Dan Boneh

Digital Signatures

Constructions
overview

Review: digital signatures

Def: asignature scheme (Gen,S,V) is a triple of algorithms:
— Gen(): randomized alg. outputs a key pair (pk, sk)
— S(sk, mEM) outputs sig. o

— V(pk, m, o) outputs ‘yes’ or ‘no’

Security:

* Attacker’s power: chosen message attack

» Attacker’s goal: existential forgery

Extending the domain with CRHF

Let Sig=(Gen, S, V) be a sig scheme for short messages, say M = {0,1}>°°
Let H: MP® —> M be a hash function (s.g. SHA-256)

Def: SigP® = (Gen, S"&, V&) for messagesin MPie as:

Shig(sk, m) = S(sk,H(m)) ; V*&(pk, m, o) = V(pk,H(m),o)

Thm: |If Sig is a secure sig scheme for M and H is collision resistant
then SigP® is a secure sig scheme for MY

—> suffices to construct signatures for short 256-bit messages

Dan Boneh

Suppose an attacker finds two distinct messages mg, m,

such that H(m,) =H(m,;). Can she use this to break SigP’ ?

No, SigP®8 is secure because the underlying scheme Sig is

O

It depends on what underlying scheme Sig is used

O

Yes, she would ask for a signature on m, and obtain an
existential forgery for m,

O

Primitives that imply signatures: OWF

Recall: f: X —Y is a one-way function (OWF) if:
e easy: forall xeX compute f(x)

* inverting fis hard:
Example: f(x) = AES(x, 0)

L— key

Signatures from OWF: Lamport-Merkle (see next module), Rompel
e Signatures are long: |stateless = > 40KB
stateful = > 4KB

Primitives that imply signatures: TDP

Recall: f: X —X is a trapdoor permutation (TDP) if:
e easy: forall xeX compute f(x)

* inverting fis hard, unless one has a trapdoor
Example: RSA

Signatures from TDP: very simple and practical (next segment)

* Commonly used for signing certificates

Primitives that imply signatures: DLOG

G ={1,8,8%...,8%1}: finite cyclic group with generator g , |G| =q
X

discrete-log in G is hard if f(x) =g" is a one-way function

 note: f(x+y) =f(x) - f(y)
Examples: Z; = (multiplication mod p) for a large prime p

E, »(F,) = (group of points on an elliptic curve mod p)

Signatures from DLOG: ElGamal, Schnorr, DSA, EC-DSA, ...
* Will construct these signatures in week 3

End of Segment

Online Cryptography Course Dan Boneh

Digital Signatures

Sighatures From
Trapdoor Permutations

Review: Trapdoor permutation (G, F F)

Key Gen
G
/ \L
pk sk
! !
X—, F _L> _L> F'1 L,

f(x) = F(pk, x) is one-to-one (X — X) and is a one-way function.

nnnnnnn

Full Domain Hash Signatures: pictures

S(sk, msg): V(pk, msg, sig):
msg msg
H H
, accept
— = or
lF'l(sk,.) reject
sig TF(pk,-)

Sig

nnnnnnn

Full Domain Hash (FDH) Signatures

(Gipps F, F'): Trapdoor permutation on domain X
H: M — X hash function (FDH)

(Gen, S, V) signature scheme:
* Gen: run G,y and output pk, sk
o S(sk, mEM): output o «— F*(sk, H(m))

* V(pk, m, o): output [‘accept’ if F(pk, o) =H(m)
‘reject’” otherwise

Security

Thm [BR]: (G,,,, F, F'l) secure TDP = (Gen, S, V) secure signature

II)

when H: M — X is modeled as an “ideal” hash function

Difficulty in proving security:
pk, F(pk, x)

How can use use forger?

adversary

us

Signature
Forger

),

Solution: “we” will know sig. on all-but-one of m where adv. queries H().
Hope adversary gives forgery for that single message.

Dan Boneh

Why hash the message?

Suppose we define NoHash-FDH as:
* S'(sk, me€X): output o« F'l(sk, m)
 V’'(pk, m, c): output ‘accept’ if F(pk, 6)=m

Is this scheme secure?

O Yes, it is not much different than FDH
O No, forany 6€EX, o is a signature forgery for the msg m=F(pk, o)

O Yes, the security proof for FDH applies here too

O It depends on the underlying TDP being used

RSA-FDH

Gen: generate an RSA modulus N=p-g and e-d=1 mod ¢(N)
construct CRHF H: M — Z

output pk=(N,e,H) , sk=(N,d,H)
« S(sk, mEM): output o <—H(m)4 mod N

* V(pk, m, 0): output ‘accept’ if H(m) = ¢®* mod N

Problem: having H depend on N is slightly inconvenient

PKCS1 v1.5 signatures

RSA trapdoor permutation: pk=(N,e) , sk=(N,d)

* S(sk, meM):
256 bits

16 bits _ -

EM = 01 OxFF OxFF OxFF ... OxFF OxFF 00 H(m)
N _

RSA modulus size (e.g. 2048 bits)

output: cr(—(EM)‘J| mod N

* V(pk, mEM, o): verify that ¢® mod N has the correct format

Security: no security analysis, not even with ideal hash functions

Dan Boneh

RSA signatures in practice often use e=65537 (and alarge d).
As a result, sig verification is =20x faster than sig generation.

e=3 gives even faster signature verification.

Suppose an attacker finds an m*e€M such that
EM is a perfect cube (e.g. 8=23, 27=33, 64=43),

Can she use this m* to break PKCS1?

O Yes, the cube root of EM (over the integers) is a sig. forgery for m*

No, this has no impact on PKCS1 signatures

O
O Yes, but the attack only works for a few 2048-bit moduli N
O

It depends on what hash function is begin used

End of Segment

Online Cryptography Course Dan Boneh

Digital Signatures

Security Proofs
(optional)

Proving security of RSA-FDH

(G, F, F1): secure TDP with domain X
Recall FDH sigs: S(sk, m) = F1(sk, Hm)) where H: M — X

We will show: TDP is secure = FDH is secure, when H is a random function

adversar

pk, y=F(pk, x)

Signature

Forger

)

Proving security

Thm [BR]: (G, F, F') secure TDP = (G;pps S, V) secure signature
when H: M — X is modeled as a random oracle.

VA 3B: Advge[AFDH] < q, - Adv;pp[B,F]

Proof:

pk, y=F(pk, x) .
choose i* «—{1,...,q,}

Signature
Forger

ifi=i*: x <X, H(m) =F(pk, x;)
else: H(m;) =y

<€

m=m. = 0=F‘1(sk,yi)=x

Pr[m=m.] = 1/q,

Proving security

Thm [BR]: (G, F, F') secure TDP = (G;pps S, V) secure signature
when H: M — X is modeled as a random oracle.

VA 3B: Advge[AFDH] < q, - Adv;pp[B,F]

Proof: ﬂ

So: AdvipelB,Fl = (1/qy) - Advg[A,FDH]

L Y J Y Y

Prob. B Prim=m..] Prob. forger A
outputs x outputs valid forgery

Alg. B has table:

How B answers a signature query m; :

H(m,) = F(pk, x;)
H(m,) = F(pk, x,)

H(m.) =y

H(my) = F(pk, x,)

Dan Boneh

Partial domain hash:
Suppose (G, F, F') is defined over domain X = {0,...,B-1}
but H: M — {0,...,B/2} .

Can we prove FDH secure with such an H?

O No, FDH is only secure with a full domain hash

O Yes, but we would need to adjust how B defines H(m,)
in the proof

O It depends on what TDP is used

PSS: Tighter security proof

Some variants of FDH:

tight reduction from forger to inverting the TDP (no q, factor).
Still assuming hash function H is “ideal.”

Examples:

PSS [BrR96]: part of the PKCS1 v2.1 standard

.« KW03: S((skk), m)= [be—PRF(k,m)€{0,1} , Fi(sk, H(bllm))]

* many others

End of Segment

Online Cryptography Course Dan Boneh

Digital Signatures

Secure Signatures
Without Random Oracles

A new tool: pairings

Secure signature without “ideal” hash function (a.k.a. random oracles):
* can be built from RSA, but

* most efficient constructions use pairings
G, G;: finite cyclic groups G={1,g,...,g°}

Def: A pairing e: GxG— G; isa map:
— bilinear: e(g®, h°) = e(g,h)® Vabez gheG

— efficiently computable and non-degenerate:
g generatesG = e(g,g) generates G;

BLS: a simple signature from pairings

e: GxXG — G; a pairing where |G|=p, g€Ggenerator, H:M — G

Gen: sk=(random o in Z)) , pk=g%€eG

S(sk, m): output o=H(mM)* € G

V(pk, m, o): accept if e(g, o) = e(pk H(m))

Thm: secure assuming CDH in G is hard, when H is a random oracle

Dan Boneh

Security without random oracles seos

Gen: sk=(rand. a,B<«—727)) , pk=(g, y=g%eG , 2=gP G)

S(sk, meZ,): reZ o = gt/leFB+m) - 5 Gutput (r0)

p’

?

V(pk, m, (r,0)): acceptif e(o, yz-g™) Z e(gg)

Thm: secure assuming q.-BDH in G is hard
VA3IB: Advgg[ABBsig] < Adv, 5u[B,G] + (gs/p)

Proof strategy

us

g-BDH challenge

adversary

Signature

Forger

solution <

We choose pk so that: ,
m, m, m, m

M 256

End of Segment

Online Cryptography Course Dan Boneh

Digital Signatures

Reducing signature size

B

). Sender
56 Everywhere Biv
r— = Jonnsontown 5 45678
FREE (Xup\ nclipart
- Favored Recipient
125 Somewtire Place
Worchestershireville, ST
321933555
®
- -

Signature lengths

Goal: best existential forgery attack time > 2128

signature
algorithm size
RSA 2048-3072 bits
EC-DSA 512 bits
Schnorr 384 bits
BLS 256 bits

Open problem: practical 128-bit signatures

Signatures with Message Recovery

SUppose Alice needs to sign a short message, say m € {0,1}512
- verifier
m ~ [accept
— —> V(pk,m, 0) = reject

512 bits 2048 bits

Can we do better? Yes: signatures with message recovery

accept, M
~ : =g V(pk' G)) re'ecF:
2048 bits)

Security: existential unforgeability under a chosen message attack

Dan Boneh

Sigs with Message Recovery: Example

- X X
(Grors P, £z TDP on domain (X, xX,) - o s)

Hash functions:

MSg space
Hix, — X, DI — [

G:X,— X, I —

/Signing: S(sk, meX;): h«—H(m) €X, N

256 bits

— —~

EM = h m @ G(h) € Xo X X4

output: o «— F1(sk, EM
_ p ()

Sigs with Message Recovery: Example

S(sk, m€X,): choose random h «— H(m) € X,

256 bits

— —~

EM = h m @ G(h) € Xox X

output: o «— F1(sk, EM)

V(pkl 0): (XOI Xl) — F(pkl 0) ’ m <— Xl@ G(XO)
if x,=H(m) output “accept, m” else “reject”

Thm: (G, F, F') secure TDP = (G;pp, S, V) secure MR signature
when H, G are modeled as random oracles

Standard for sigs with message-recovery: RSA-PSS-R (PKCS1)

Consider the following MR signature: S(sk, m) = F1(sk, [m llH(m)])
V(pk, o): (m,h) < F(pk, o)
if h=H(m) outputs “accept, m”
Unfortunately, we can’t prove security.
Should we use this scheme with RSA and with H as SHA-2567

(ISO/IEC 9796-2 sigs. and EMV sigs.)

O Yes, unless someone discovers an attack
O No, only use schemes that have a clear security analysis
O It depends on the size of the RSA modulus

[Practical cryptanalysis of ISO/IEC 9796-2 and EMV signatures, in Proc. of Crypto 2009]

Aggregate Signatures seisos

Certificate chain:

subj-id:
Equifax CA

subj-id: subj-id:
GeoTrust CA Internal CA

subj-id:
WWW.XyZ.com

pub-key: ... pub-key: ... pub-key: ...

self-signed

signature signature signature

Aggregate sigs: lets anyone compress n signatures into one

k, , miy = o wy “« ”
Pke» T . V e Pk, M, 0") = “accept

aggregate | — O

means for i=1,...,n:
pk. , m — o user i signed msg m,

Dan Boneh

Aggregate Signatures seisos

Certificate chain with aggregates sigs:

subj-id: subj-id:
Equifax CA GeoTrust CA

subj-id:
Internal CA

subj-id:
WWW.XyZ.com

pub-key: ... pub-key: ... pub-key: ... pub-key: ...

aggregate-sig

Aggregate sigs: let us compress n signatures into one

k, , miy = o wy “« ”
Pke» T . V e Pk, M, 0") = “accept

aggregate | — O

means for i=1,...,n:
pk. , m — o user i signed msg m,

Dan Boneh

Further Reading

PSS. The exact security of digital signatures: how to sign with RSA
and Rabin, M. Bellare, P. Rogaway, 1996.

On the exact security of full domain hash, J-S Coron, 2000.

Short signatures without random oracles,
D. Boneh and X. Boyen, 2004.

Secure hash-and-sign signatures without the random oracle,
R. Gennaro, S. Halevi, T. Rabin, 1999.

A survey of two signature aggregation techniques,
D. Boneh, C. Gentry, B. Lynn, and H. Shacham, 2003.

End of Segment

