
Dan Boneh

Digital Signatures

What is a digital 
signature?

Online Cryptography Course Dan Boneh



Dan Boneh

Physical signatures
Goal: bind document to author

Bob agrees to pay Alice 1$

Bob agrees to pay Alice 100$

Problem in the digital world:   

anyone can copy Bob’s signature from one doc to another



Dan Boneh

Digital signatures
Solution:  make signature depend on document

Bob agrees to pay Alice 1$

secret signing 
key  (sk)

signing
algorithm

signature

Signer

verifier

Verifier

public verification
key (pk)

‘accept’
or

‘reject’



Dan Boneh

A more realistic example

software update

Software vendor clients

secret signing 
key  (sk)

sig

signing
algorithm

verify sig,
install if valid

pk

pk

untrusted
hosting

site



Dan Boneh

Digital signatures:   syntax
Def:    a signature scheme  (Gen,S,V) is a triple of algorithms:

– Gen():  randomized alg. outputs a key pair    (pk, sk)

– S(sk, m∈M)  outputs sig.  σ

– V(pk, m, σ)  outputs ‘accept� or  ‘reject’

Consistency:    for all (pk,  sk) output by Gen :    

∀m∈M:     V(pk,  m,  S(sk, m) ) = ‘accept’



Dan Boneh

Digital signatures:  security
Attacker’s power:    chosen message attack
• for m1,m2,…,mq attacker is given   σi ¬ S(sk, mi)

Attacker’s goal:   existential forgery
• produce some new valid message/sig pair  (m, σ).

m Ï { m1 , … , mq }

⇒ attacker cannot produce a valid sig. for a new message



Dan Boneh

Secure signatures
For a sig. scheme  (Gen,S,V) and adv. A  define a game as:

Def:  SS=(Gen,S,V)  is secure if for all �efficient� A:

AdvSIG[A,SS] =  Pr[ A wins] is   �negligible�

Chal. Adv.

(pk,sk)¬Gen
m1 Î M

σ1 ¬ S(sk,m1)

Adv. wins if  V(pk,m,σ) = `accept� and  m Ï {m1, … , mq}

(m,σ)

m2 , …, mq

σ2 , …, σq

pk



Let  (Gen,S,V) be a signature scheme.

Suppose an attacker is able to find  m0 ≠ m1 such that

V(pk, m0, σ) = V(pk, m1, σ)    for all σ and keys (pk, sk) ¬ Gen 

Can this signature be secure?

Yes, the attacker cannot forge a signature for either m0 or m1

No, signatures can be forged using a chosen msg attack
It depends on the details of the scheme



Alice generates a (pk,sk) and gives  pk to her bank.

Later Bob shows the bank a message    m=“pay Bob 100$” 
properly signed by Alice,  i.e.   V(pk,m,sig) = ‘yes’

Alice says she never signed  m.       Is Alice lying?  

Alice is lying:  existential unforgeability means Alice signed  m
and therefore the Bank should give Bob 100$ from Alice’s account 

Bob could have stolen Alice’s signing key and therefore
the bank should not honor the statement

What a mess:   the bank will need to refer the issue to the courts



Dan Boneh

End of Segment



Dan Boneh

Digital Signatures

Applications

Online Cryptography Course Dan Boneh



Dan Boneh

Applications
Code signing:
• Software vendor signs code
• Clients have vendor’s pk.    Install software if signature verifies.

software vendor many clients

pk
initial software install  (pk)

[ software udate #1   ,  sig ]

[ software udate #2   ,  sig  ]

sk



Dan Boneh

More generally:
One-time authenticated channel (non-private, one-directional) 

⟹ many-time authenticated channel

Initial software install is authenticated, but not private

Sender Recipients

one-time authenticated channel(pk, sk) ¬ Gen 
pk

pk

m1 sig1

m2 sig2

⋮
sig1¬ S(sk, m1)

sig2¬ S(sk, m2)

eavesdrop, but not modify



Dan Boneh

Important application:  Certificates

Problem:   browser needs server’s public-key to setup a session key

Solution:   server asks trusted 3rd party (CA) to sign its public-key pk

Certificate

Authority (CA)
pk and

proof “I am Gmail”

browser

skCA

check

proof
Sign Cert using  skCA :

pk is key 
for Gmailpk is key 

for Gmail

choose

(pk, sk) 

Gmail.com

pkCA

verify

cert

Server uses Cert for an extended period  (e.g. one year)

pkCA

signing key

verification key

CA

sigCA

sig



Dan Boneh

Certificates: example
Important fields:



What entity generates the CA’s secret key  skCA ? 

the browser

the NSA

Gmail
the CA



Dan Boneh

Applications with few verifiers
EMV payments:

(greatly simplified)

Signed email:    sender signs email it sends to recipients
• Every recipient has sender’s public-key (and cert).  

A recipient accepts incoming email if signature verifies.

sktransaction details
(nonce, PIN)

signature
(card cert)

Point of Sale
terminal

transaction details
and signature



Dan Boneh

Signing email:   DKIM   (domain key identified mail)

Problem:   bad email claiming to be from   someuser@gmail.com
but in reality, mail is coming from domain  baguy.com
⇒ Incorrectly makes gmail.com look like a bad source of email

Solution:   gmail.com (and other sites) sign every outgoing mail 

Gmail
user

Gmail.com

signing key

email

Recipients

DNS
query

Gmail  pk
sig

From: bob@gmail.com

body
body

verify sig

badguy.com ??



Dan Boneh

example DKIM header from gmail.com

X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;

d=1e100.net;    s=20130820;

h=x-gm-message-state:mime-version:in-reply-to:references:from:date:
message-id:subject:to:content-type;

bh=MDr/xwte+/JQSgCG+T2R2Uy+SuTK4/gxqdxMc273hPQ=;

b=dOTpUVOaCrWS6AzmcPMreo09G9viS+sn1z6g+GpC/ArkfMEmcffOJ1s9u5Xa5KC+6K
XRzwZhAWYqFr2a0ywCjbGECBPIE5ccOi9DwMjnvJRYEwNk7/sMzFfx+0L3nTqgTyd0ED
EGWdN3upzSXwBrXo82wVcRRCnQ1yUlTddnHgEoEFg5WV37DRP/eq/hOB6zFNTRBwkvfS
0tC/DNdRwftspO+UboRU2eiWaqJWPjxL/abS7xA/q1VGz0ZoI0y3/SCkxdg4H80c61DU
jdVYhCUd+dSV5fISouLQT/q5DYEjlNQbi+EcbL00liu4o623SDEeyx2isUgcvi2VxTWQ
m80Q==

(lookup  20130820. _domainkey.1e100.net  in DNS for public key)

Gmail’s signature on headers, including DKIM header   (2048 bits)

(hash of message body)



Suppose recipients could retrieve new data from DNS for every 
email received, could Gmail implement DKIM without signatures?

(ignoring, for now, the increased load on the DNS system)

Yes, Gmail would write to DNS a collision-resistant hash 
of every outgoing email.  The recipient retrieves the hash
from DNS and compares to the hash of the incoming message.

No, the proposal above is insecure.

⇒ Signatures reduce the frequency that recipients need to query DNS



Dan Boneh

Applications:  summary
• Code signing

• Certificates

• Signed email   (e.g. DKIM)

• Credit-card payments:  EMV

and many more.



Dan Boneh

When to use signatures
Generally speaking:
• If one party signs and one party verifies:    use a MAC
– Often requires interaction to generate a shared key
– Recipient can modify the data and re-sign it before 

passing the data to a 3rd party

• If one party signs and many parties verify:   use a signature
– Recipients cannot modify received data before 

passing data to a 3rd party (non-repudiation)



Dan Boneh

Review: three approaches to data integrity

Small read-only
public space

1. Collision resistant hashing:  need a read-only public space

Alice

Bob

Software
Vendor

3. MACs: vendor must compute a new MAC of software for every client
• and must manage a long-term secret key (to generate a per-client MAC key)

2. Digital signatures:  vendor must manage a long-term secret key
• Vendor’s signature on software is shipped with software
• Software can be downloaded from an untrusted distribution site



Dan Boneh

End of Segment



Dan Boneh

Digital Signatures

Constructions 
overview

Online Cryptography Course Dan Boneh



Dan Boneh

Review:  digital signatures
Def:    a signature scheme  (Gen,S,V) is a triple of algorithms:

– Gen():  randomized alg. outputs a key pair    (pk, sk)

– S(sk, m∈M)  outputs sig.  σ

– V(pk, m, σ)  outputs ‘yes� or ‘no�

Security:   

• Attacker’s power:   chosen message attack

• Attacker’s goal:  existential forgery



Dan Boneh

Extending the domain with CRHF

Let Sig=(Gen, S, V)  be a sig scheme for short messages,  say  M = {0,1}256

Let  H: Mbig ® M be a hash function   (s.g.  SHA-256)

Def:    Sigbig = (Gen, Sbig , Vbig )    for messages in  Mbig as:

Sbig(sk, m) = S(sk,H(m))   ;     Vbig(pk, m, σ) = V(pk,H(m),σ)

Thm:   If Sig is a secure sig scheme for M and  H  is collision resistant 

then     Sigbig is a secure sig scheme for Mbig

⟹ suffices to construct signatures for short 256-bit messages



Suppose an attacker finds two distinct messages m0, m1

such that   H(m0) = H(m1) .     Can she use this to break Sigbig ?

No, Sigbig is secure because the underlying scheme Sig is
It depends on what underlying scheme Sig is used
Yes, she would ask for a signature on m0 and obtain an
existential forgery for m1



Dan Boneh

Primitives that imply signatures:  OWF
Recall:    f: X ⟶Y  is a one-way function (OWF) if:
• easy:   for all  x∈X compute f(x) 
• inverting f is hard:   
Example:     f(x) = AES(x, 0)

Signatures from OWF:   Lamport-Merkle (see next module),   Rompel
• Signatures are long: stateless ⇒ > 40KB

stateful ⇒ > 4KB

key



Dan Boneh

Primitives that imply signatures:  TDP
Recall:    f: X ⟶X  is a trapdoor permutation (TDP) if:
• easy:   for all  x∈X compute f(x) 
• inverting f is hard, unless one has a trapdoor 
Example:     RSA

Signatures from TDP:    very simple and practical  (next segment)
• Commonly used for signing certificates



Dan Boneh

Primitives that imply signatures:  DLOG
G = {1,g,g2,…,gq-1}:  finite cyclic group with generator  g  ,   |G| = q 

discrete-log in G is hard if   f(x) = gx is a one-way function

• note:     f(x+y) = f(x) ⋅ f(y)

Examples:     = (multiplication mod p)  for a large prime p

= (group of points on an elliptic curve mod p)

Signatures from DLOG:    ElGamal, Schnorr, DSA, EC-DSA, …
• Will construct these signatures in week 3

Z⇤
p

Ea,b(Fp)



Dan Boneh

End of Segment



Dan Boneh

Digital Signatures

Signatures From 
Trapdoor Permutations

Online Cryptography Course Dan Boneh



Dan Boneh

Review: Trapdoor permutation   (G, F, F-1)

pk sk

Fx y F-1y x

G

Key Gen

f(x) = F(pk, x)  is one-to-one  (X ⟶ X)  and is a one-way function. 



Dan Boneh

F(pk,⋅) 

Full Domain Hash Signatures: pictures

msg

H

F-1(sk,⋅) 
sig

S(sk, msg):

sig

V(pk, msg, sig):

msg

H

≟ ⇒
accept

or
reject



Dan Boneh

Full Domain Hash (FDH) Signatures
(GTDP, F, F-1 ):     Trapdoor permutation on domain  X
H: M ⟶ X   hash function   (FDH)

(Gen, S, V)  signature scheme:

• Gen:   run GTDP and output   pk,  sk

• S(sk, m∈M):    output   σ ⟵ F-1(sk, H(m))
• V(pk, m, σ):    output ‘accept’  if    F(pk, σ) = H(m)

‘reject’   otherwise 



Dan Boneh

Security
Thm [BR]:    (GTDP, F, F-1) secure TDP   ⇒ (Gen, S, V) secure signature

when  H: M ⟶ X is modeled as an “ideal” hash function

Difficulty in proving security:

Signature
Forger

adversaryus
pk,  F(pk, x)

x

pk

mi

σi
⟲
(m,σ)

How can use use forger?

Solution:   “we” will know sig. on all-but-one of m where adv. queries H().
Hope adversary gives forgery for that single message.



Why hash the message?
Suppose we define NoHash-FDH as:

• S’(sk, m∈X):    output     σ ⟵ F-1(sk, m)
• V’(pk, m, σ):    output      ‘accept’  if    F(pk, σ) = m
Is this scheme secure?

Yes, it is not much different than FDH

No, for any σ∈X,    σ is a signature forgery for the msg m=F(pk, σ)

Yes, the security proof for FDH applies here too 

It depends on the underlying TDP being used



Dan Boneh

RSA-FDH
Gen:   generate an RSA modulus  N = p⋅q and    e⋅d = 1 mod φ(N)

construct CRHF     H: M ⟶ ZN

output  pk = (N,e,H)    ,    sk = (N,d,H)

• S(sk, m∈M):    output     σ ⟵ H(m)d mod N

• V(pk, m, σ):    output ‘accept’  if   H(m)  =  σe mod N

Problem:    having H depend on N is slightly inconvenient



Dan Boneh

PKCS1 v1.5 signatures
RSA trapdoor permutation:     pk = (N,e)    ,    sk = (N,d)
• S(sk, m∈M):

output: σ ⟵ (EM)d mod N

• V(pk, m∈M, σ ):    verify that   σe mod N  has the correct format

Security:    no security analysis, not even with ideal hash functions

01 0xFF  0xFF  0xFF  …  0xFF  0xFF 00 H(m)

RSA modulus size  (e.g. 2048 bits)

16 bits
EM =

256 bits



RSA signatures in practice often use  e=65537   (and a large d).
As a result, sig verification is ≈20x faster than sig generation.  

e=3 gives even faster signature verification.   
Suppose an attacker finds an m*∈M  such that  

EM is a perfect cube  (e.g. 8=23, 27=33, 64=43).
Can she use this m* to break PKCS1?

Yes, the cube root of EM (over the integers) is a sig. forgery for m*

No, this has no impact on PKCS1 signatures

Yes, but the attack only works for a few 2048-bit moduli N

It depends on what hash function is begin used



Dan Boneh

End of Segment



Digital Signatures

Security Proofs
(optional)

Online Cryptography Course Dan Boneh



Dan Boneh

Proving security of RSA-FDH
(G, F, F-1):   secure TDP with domain X 

Recall FDH sigs:    S(sk, m) = F-1(sk, H(m)) where   H: M ⟶ X

We will show:   TDP is secure ⇒ FDH is secure,   when H is a random function

Signature
Forger

adversaryus
pk,  y=F(pk, x)

x

pk
mi

σi
⟲

(m,σ)

mi

H(mi)
⟲



Dan Boneh

Proving security
Thm [BR]:    (GTDP, F, F-1) secure TDP   ⇒ (GTDP, S, V) secure signature

when  H: M ⟶ X  is modeled as a random oracle.

∀A ∃B: AdvSIG[A,FDH]  ≤  qH ⋅ AdvTDP[B,F] 

Proof:

Signature

Forger

AB
pk,  y=F(pk, x) pk

mi

σi
⟲

(m,σ)

mi

H(mi)
⟲choose  i* ⟵ {1,…,qH}

if i ≠ i*:   xi ⟵ X,   H(mi) = F(pk, xi)

else:                        H(mi) = y

m = mi* ⇒ σ = F-1(sk, y) = x 

Pr[m=mi*] = 1/qH

(RO)



Dan Boneh

Proving security
Thm [BR]:    (GTDP, F, F-1) secure TDP   ⇒ (GTDP, S, V) secure signature

when  H: M ⟶ X  is modeled as a random oracle.
∀A ∃B: AdvSIG[A,FDH]  ≤  qH ⋅ AdvTDP[B,F] 

Proof:

(RO)

So:        AdvTDP[B,F] ≥    (1/qH)  ⋅ AdvSIG[A,FDH] 

Prob. forger A 
outputs valid forgery

Pr[m=mi*]Prob. B
outputs x



Dan Boneh

Alg. B has table: m1,   x1 :    H(m1) = F(pk, x1)

m2,   x2 :    H(m2) = F(pk, x2)

mi*,             H(mi*) = y

mq,   xq :    H(mq) = F(pk, xq)

⋮
⋮

How B answers a signature query  mi :



Partial domain hash: 
Suppose  (GTDP, F, F-1) is defined over domain X = {0,…,B-1}
but   H: M ⟶ {0,…,B/2}  .

Can we prove FDH secure with such an H?

No, FDH is only secure with a full domain hash

Yes, but we would need to adjust how B defines  H(mi)  
in the proof

It depends on what TDP is used



Dan Boneh

PSS:  Tighter security proof
Some variants of FDH:

tight reduction from forger to inverting the TDP  (no qH factor).
Still assuming hash function H is “ideal.”

Examples:

• PSS [BR’96]:   part of the PKCS1 v2.1 standard

• KW’03:       S( (sk,k), m) = [ b⟵PRF(k,m)∈{0,1}  ,   F-1(sk, H(bllm)) ]
• many others



Dan Boneh

End of Segment



Dan Boneh

Digital Signatures

Secure Signatures 
Without Random Oracles

Online Cryptography Course Dan Boneh



Dan Boneh

G GT

ga

hb

e(g,h)ab

A new tool:  pairings

Secure signature without “ideal” hash function (a.k.a. random oracles):

• can be built from RSA, but

• most efficient constructions use pairings

G , GT :    finite cyclic groups    G={1,g,…,gp-1}

Def:   A pairing e: G´G® GT   is a map:

– bilinear:    e(ga, hb) = e(g,h)ab "a,bÎZ, g,hÎG

– efficiently computable and non-degenerate:

g generates G Þ e(g,g)  generates GT



Dan Boneh

BLS:   a simple signature from pairings
e: G´G® GT    a pairing where |G|=p ,   g∈G generator,    H: M ⟶ G

Gen:    sk = (random  α   in  Zp)    ,    pk = gα Î G

S(sk, m):   output σ = H(m)α Î G

V(pk, m, σ):    accept if         e( g,    σ ) ≟ e( pk, H(m))

Thm:  secure assuming CDH in G is hard, when H is a random oracle



Dan Boneh

Security without random oracles [BB’04]

Gen:    sk = (rand.  α, β ⟵ Zp)    ,    pk = ( g ,  y=g
αÎG  ,  z=gβ ÎG )

S(sk, mÎZp):    r⟵Zp,   σ = g
1/(α+rβ+m) Î G  ,    output  (r,σ)

V(pk, m, (r,σ)):    accept if     e( σ,   y⋅zr⋅gm
)   ≟ e(g,g)

Thm:  secure assuming qS-BDH in G is hard

∀A ∃B :       AdvSIG[A,BBsig]  ≤  AdvqS-BDH[B,G]   +   (qS/p)



Dan Boneh

Proof strategy

Signature
Forger

adversaryus
q-BDH challenge

solution

pk

mi

σi
⟲
(m,σ)

We choose pk so that:

m0 m1 m2 m2256m

⋯ ⋯
σ



Dan Boneh

End of Segment



Dan Boneh

Digital Signatures

Reducing signature size

Online Cryptography Course Dan Boneh



Dan Boneh

Signature lengths
Goal:  best existential forgery attack time  ≥  2128

signature
algorithm size      _

RSA 2048-3072 bits
EC-DSA 512 bits
Schnorr 384 bits
BLS 256 bits

Open problem:    practical 128-bit signatures



Dan Boneh

Signatures with Message Recovery
Suppose Alice needs to sign a short message,  say  m ∈ {0,1}512

Can we do better?     Yes:   signatures with message recovery

Security:    existential unforgeability under a chosen message attack

skm m sig  σ

512 bits 2048 bits

verifier
V(pk, m, σ) = 

accept
reject

skm sig  σ

2048 bits
V(pk, σ) = accept,  m

reject



Dan Boneh

Sigs with Message Recovery:  Example

(GTDP, F, F-1 ):    TDP on domain  (X
0

× X
1
)

Hash functions:   

H: X1 ⟶ X0

G: X0⟶ X1

X
0

X
1

{0,1}
256

{0,1}
2048-256=1792

m ⊕ G(h)EM = h

256 bits

∈ X
0

× X
1

output: σ ⟵ F-1(sk, EM)

Signing:     S(sk, m∈X
1
):     h ⟵ H(m)  ∈ X

0

⟶
⟶

msg space



Dan Boneh

Sigs with Message Recovery:  Example
S(sk, m∈X1):     choose random  h ⟵ H(m)  ∈ X0

m ⊕ G(h)EM = h
256 bits

∈ X0 × X1

output: σ ⟵ F-1(sk, EM)

V(pk, σ): (x0, x1) ⟵ F(pk, σ) ,    m ⟵ x1⊕ G(x0)  
if  x0=H(m)  output  “accept,  m” else   “reject”

Thm:  (GTDP, F, F-1) secure TDP   ⇒ (GTDP, S, V) secure MR signature
when  H, G are modeled as random oracles



Standard for sigs with message-recovery:   RSA-PSS-R    (PKCS1)

Consider the following MR signature: S(sk, m) = F-1(sk, [m ll H(m)] )
V(pk, σ): (m,h) ⟵ F(pk, σ) 

if h=H(m) outputs “accept, m”
Unfortunately, we can’t prove security.
Should we use this scheme with RSA and with H as SHA-256?

Yes, unless someone discovers an attack

No, only use schemes that have a clear security analysis

It depends on the size of the RSA modulus

(ISO/IEC 9796-2 sigs.  and  EMV sigs.)   

[Practical cryptanalysis of ISO/IEC 9796-2 and EMV signatures, in Proc. of Crypto 2009]



Dan Boneh

Aggregate Signatures  [BGLS’03]

Certificate chain:

subj-id:

www.xyz.com

pub-key:   ….

signature

subj-id:

Equifax CA

pub-key:   ….

self-signed

subj-id:

Internal CA

pub-key:   ….

signature

Aggregate sigs:   lets anyone compress  n  signatures into one

subj-id:

GeoTrust CA

pub-key:   ….

signature

pk
1

,  m
1

⟶ σ
1

pk
n

,  m
n

⟶ σ
n

⋮ aggregate ⟶ σ

*

V
agg

( pk , m , σ

*

) = “accept”

means for i=1,…,n:

user i signed msg m
i



Dan Boneh

Aggregate Signatures  [BGLS’03]

Certificate chain with aggregates sigs:

subj-id:

www.xyz.com

pub-key:   ….

aggregate-sig

subj-id:

Equifax CA

pub-key:   ….

subj-id:

Internal CA

pub-key:   ….

Aggregate sigs:   let us compress  n  signatures into one

subj-id:

GeoTrust CA

pub-key:   ….

pk
1

,  m
1

⟶ σ
1

pk
n

,  m
n

⟶ σ
n

⋮ aggregate ⟶ σ

*

V
agg

( pk , m , σ

*

) = “accept”

means for i=1,…,n:

user i signed msg m
i



Dan Boneh

Further Reading
• PSS.  The exact security of digital signatures: how to sign with RSA 

and Rabin,  M. Bellare, P. Rogaway, 1996.

• On the exact security of full domain hash, J-S Coron, 2000.

• Short signatures without random oracles,
D. Boneh and X. Boyen, 2004.

• Secure hash-and-sign signatures without the random oracle,
R. Gennaro, S. Halevi, T. Rabin, 1999.

• A survey of two signature aggregation techniques,
D. Boneh, C. Gentry, B. Lynn, and H. Shacham, 2003.



Dan Boneh

End of Segment


