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Digital Signatures

What is a digital
signature?




Physical signatures

Goal: bind document to author
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Problem in the digital world:

anyone can copy Bob’s signature from one doc to another



Digital sighatures

Solution: make signature depend on document

Signer
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A more realistic example

Software vendor clients

software update | Sig untrusted

hosting

secret signing site

key (sk) . .
q‘l signing verify sig,
algorithm install if valid
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Digital sighatures: syntax

Def: asignature scheme (Gen,S,V) is a triple of algorithms:
— Gen(): randomized alg. outputs a key pair (pk, sk)
— S(sk, mEM) outputs sig. o

— V(pk, m, o) outputs ‘accept’ or ‘reject’

Consistency: for all (pk, sk) output by Gen :

VmeM: V(pk, m, S(sk, m)) = ‘accept’



Digital sighatures: security

Attacker’s power: chosen message attack

. for m;,m,,...m, attacker is given o, <— S(sk, m,)

q

Attacker’s goal: existential forgery
. produce some new valid message/sig pair (m, o).

me {my,..,mg}

= attacker cannot produce a valid sig. for a new message



Secure signatures

For a sig. scheme (Gen,S,V) and adv. A define a game as:

pk

m, eM m,

) °°°

v

0, < S(sk,m;) O,

) 0, O

v

(m,o)

Adv. wins if V(pk,m,c) ="accept’ and m ¢ {m, ..., mq} l

Def: SS=(Gen,S,V) is secure if for all “efficient” A:

Advgc[A,SS] = Pr[ A wins]

is “negligible”



Let (Gen,S,V) be a signature scheme.
Suppose an attacker is able to find my# m, such that
V(pk, mg, o) = V(pk, m;,c) forall o and keys (pk, sk) <— Gen

Can this signature be secure?

O Yes, the attacker cannot forge a signature for either my or m,

O No, signatures can be forged using a chosen msg attack

O It depends on the details of the scheme



Alice generates a (pk,sk) and gives pk to her bank.

Later Bob shows the bank a message m=“pay Bob 1005”
properly signed by Alice, i.e. V(pk,m,sig) = ‘yes’

Alice says she never signed m. Is Alice lying?

Alice is lying: existential unforgeability means Alice signed m
and therefore the Bank should give Bob 100S from Alice’s account

Bob could have stolen Alice’s signing key and therefore
the bank should not honor the statement

O O

What a mess: the bank will need to refer the issue to the courts



End of Segment
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Applications

Code signing:
» Software vendor signs code

e C(Clients have vendor’s pk. Install software if signature verifies.

many clients
>

software vendor initial software install (pk)

[ software udate #1 , sig |

[ software udate #2 , sig |
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More generally:

One-time authenticated channel (non-private, one-directional)
— many-time authenticated channel

Initial software install is authenticated, but not private

e Recipients
(pk, sk) < Gen one-time authenticated channel pk )f([ \\

pk
> eavesdrop, but not modify &

g, S(sk, m)
gy Slsk, m,)
[

>

\ /)
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Important application: Certificates

Problem: browser needs server’s public-key to setup a session key
Solution: server asks trusted 3 party (CA) to sign its public-key pk

Certificate

Gmail.com

choose pk and
(pk, sk) proof “I am Gmail”

browser

verification key

Sign Cert using sk, :

% pk is key

for Gmail

% pk is key 3
“for Gmail
(@:ﬂ>
sig

Server uses Cert for an extended period (e.g. one year)

D signing key
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Certificates: example

Important fields:

Serial Number

Version

Signature Algorithm

Parameters

5814744488373890497
3

D ——

SHA-1 with RSA Encryption ( 1.2.840.113549.1.1.5)
none

Not Valid Before

Not Valid After

Wednesday, July 31, 2013 4:59:24 AM Pacific
Daylight Time

Thursday, July 31, 2014 4:59:24 AM Pacific Daylight
Time

Algorithm
Parameters
Public Key
Key Size
Key Usage

Signature

Elliptic Curve Public Key ( 1.2.840.10045.2.1)
Elliptic Curve secp256rl ( 1.2.840.10045.3.1.7)

65 bytes : 04 71 6CDDEOOACI 76 ... €
256 bits

Encrypt, Verify, Derive

256 bytes : BA 38 FEDG6 F5 E7 F6 59 ... o

[ =] Equifax Secure Certificate Authority
L [Z] GeoTrust Global CA
b [] Google Internet Authority G2
= mail.google.com

C/r'/'///'w///*

E—

Time

mail.google.com

Issued by: Google Internet Authority G2
Expires: Thursday, July 31, 2014 4:59:24 AM Pacific Daylight

@ This certificate is valid

v Details

Country
State/Province
Locality
Organization

Common Name

Country
Organization

Common Name

us

California
Mountain View
Google Inc
mail.google.com

—

us
Google Inc
Google Internet Authority G2
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What entity generates the CA’s secret key sk¢, ?

the browser

Gmail
the CA

the NSA

O O O O



Applications with few verifiers

EMV payments:

transaction details Member Bank
(nonce, PIN)

(greatly simplified)

- signature
p transaction details T (card cert)

and signature

o ,
Point of Sale
terminal

Signed email: sender signs email it sends to recipients

* Every recipient has sender’s public-key (and cert).
A recipient accepts incoming email if signature verifies.
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Slgnlng email: DKIM (domain key identified mail)

Problem: bad email claiming to be from someuser@gmail.com
but in reality, mail is coming from domain baguy.com
= Incorrectly makes gmail.com look like a bad source of email

Solution: gmail.com (and other sites) sign every outgoing mail

From: bob@gmail.com

email - c>\\>e(\l <
body ] o A\ ©
.. g )
signing key > | Recipients o
Q= J
_ J verify sig. >
Gmail.com

badguy.com ??
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example DKIM header from gmail.com

X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=1e100.net; s$=20130820; (lookup 20130820. domainkey.1e100.net in DNS for public key)

h=x-gm-message-state:mime-version:in-reply-to:references:from:date:
message-id:subject:to:content-type;

bh=MDr/xwte+/JQSgCG+T2R2Uy+SuTK4/gxqdxMc273hPQ=; (hash of message body)

b=dOTpUVOaCrWS6AzmcPMreo09G9viS+sn1z6g+GpC/ArkfMEmcffOJ1s9u5Xa5KC+6K
XRzwZhAWYqFr2a0ywCjbGECBPIE5ccOi9DwMjnvJRYEWNK7/sMzFfx+0L3nTggTydOED
EGWdN3upzSXwBrXo82wVcRRCnQ1lyUITddnHgEoEFg5WV37DRP/eq/hOB6zFNTRBwWkvVFS
0tC/DNdRwftspO+UboRU2eiWaqJWPjxL/abS7xA/q1VGz0Zol0y3/SCkxdg4H80c61DU
jdVYhCUd+dSV5fISouLQT/q5DYEjINQbi+EcbL00liu40623SDEeyx2isUgcvi2VXTWQ
m80Q==

Gmail’s signature on headers, including DKIM header (2048 bits)
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Suppose recipients could retrieve new data from DNS for every
email received, could Gmail implement DKIM without signatures?

(ignoring, for now, the increased load on the DNS system)

O Yes, Gmail would write to DNS a collision-resistant hash
of every outgoing email. The recipient retrieves the hash
from DNS and compares to the hash of the incoming message.

O No, the proposal above is insecure.

= Signatures reduce the frequency that recipients need to query DNS



Applications: summary

 Code signing
* Certificates
* Signed email (e.g. DKIM)

* Credit-card payments: EMV

and many more.



When to use sighatures

Generally speaking:
* If one party signs and one party verifies: use a MAC
— Often requires interaction to generate a shared key

— Recipient can modify the data and re-sign it before
passing the data to a 3" party

* If one party signs and many parties verify: use a signature

— Recipients cannot modify received data before
passing data to a 3" party (non-repudiation)



Review: three approaches to data integrity

1. Collision resistant hashing: need a read-only public space

Software
Vendor

2. Digital signatures: vendor must manage a long-term secret key

* Vendor’s signature on software is shipped with software

~Bob~
P

e Software can be downloaded from an untrusted distribution site

3. MACs: vendor must compute a new MAC of software for every client

* and must manage a long-term secret key (to generate a per-client MAC key)
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Review: digital signatures

Def: asignature scheme (Gen,S,V) is a triple of algorithms:
— Gen(): randomized alg. outputs a key pair (pk, sk)
— S(sk, mEM) outputs sig. o

— V(pk, m, o) outputs ‘yes’ or ‘no’

Security:

* Attacker’s power: chosen message attack

» Attacker’s goal: existential forgery



Extending the domain with CRHF

Let Sig=(Gen, S, V) be a sig scheme for short messages, say M = {0,1}>°°
Let H: MP® —> M be a hash function (s.g. SHA-256)

Def: SigP® = (Gen, S"&, V&) for messagesin MPie as:

Shig(sk, m) = S(sk,H(m)) ; V*&(pk, m, o) = V(pk,H(m),o)

Thm: |If Sig is a secure sig scheme for M and H is collision resistant
then SigP® is a secure sig scheme for MY

—> suffices to construct signatures for short 256-bit messages
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Suppose an attacker finds two distinct messages mg, m,

such that H(m,) =H(m,;). Can she use this to break SigP’ ?

No, SigP®8 is secure because the underlying scheme Sig is

O

It depends on what underlying scheme Sig is used

O

Yes, she would ask for a signature on m, and obtain an
existential forgery for m,

O



Primitives that imply signatures: OWF

Recall: f: X —Y is a one-way function (OWF) if:
e easy: forall xeX compute f(x)

* inverting fis hard:
Example: f(x) = AES(x, 0)

L— key

Signatures from OWF: Lamport-Merkle (see next module), Rompel
e Signatures are long: |stateless = > 40KB
stateful = > 4KB



Primitives that imply signatures: TDP

Recall: f: X —X is a trapdoor permutation (TDP) if:
e easy: forall xeX compute f(x)

* inverting fis hard, unless one has a trapdoor
Example: RSA

Signatures from TDP: very simple and practical (next segment)

* Commonly used for signing certificates



Primitives that imply signatures: DLOG

G ={1,8,8%...,8%1}: finite cyclic group with generator g , |G| =q
X

discrete-log in G is hard if f(x) =g" is a one-way function

 note: f(x+y) =f(x) - f(y)
Examples: Z; = (multiplication mod p) for a large prime p

E, »(F,) = (group of points on an elliptic curve mod p)

Signatures from DLOG: ElGamal, Schnorr, DSA, EC-DSA, ...
* Will construct these signatures in week 3



End of Segment
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Review: Trapdoor permutation (G, F F)

Key Gen
G
/ \L
pk sk
! !
X—, F _L> _L> F'1 L,

f(x) = F(pk, x) is one-to-one (X — X) and is a one-way function.

nnnnnnn



Full Domain Hash Signatures: pictures

S(sk, msg): V(pk, msg, sig):
msg msg
H H
, accept
— = or
lF'l(sk,.) reject
sig TF(pk,-)

Sig

nnnnnnn



Full Domain Hash (FDH) Signatures

(Gipps F, F'): Trapdoor permutation on domain X
H: M — X hash function (FDH)

(Gen, S, V) signature scheme:
* Gen: run G,y and output pk, sk
o S(sk, mEM): output o «— F*(sk, H(m))

* V(pk, m, o): output [‘accept’ if F(pk, o) =H(m)
‘reject’” otherwise



Security

Thm [BR]: (G,,,, F, F'l) secure TDP = (Gen, S, V) secure signature

II)

when H: M — X is modeled as an “ideal” hash function

Difficulty in proving security:
pk, F(pk, x)

How can use use forger?

adversary

us

Signature
Forger

),

Solution: “we” will know sig. on all-but-one of m where adv. queries H().
Hope adversary gives forgery for that single message.
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Why hash the message?

Suppose we define NoHash-FDH as:
* S'(sk, me€X): output o« F'l(sk, m)
 V’'(pk, m, c): output ‘accept’ if F(pk, 6)=m

Is this scheme secure?

O Yes, it is not much different than FDH
O No, forany 6€EX, o is a signature forgery for the msg m=F(pk, o)

O Yes, the security proof for FDH applies here too

O It depends on the underlying TDP being used



RSA-FDH

Gen: generate an RSA modulus N=p-g and e-d=1 mod ¢(N)
construct CRHF  H: M — Z

output pk=(N,e,H) , sk=(N,d,H)
« S(sk, mEM): output o <—H(m)4 mod N

* V(pk, m, 0): output ‘accept’ if H(m) = ¢®* mod N

Problem: having H depend on N is slightly inconvenient



PKCS1 v1.5 signatures

RSA trapdoor permutation: pk=(N,e) , sk=(N,d)

* S(sk, meM):
256 bits

16 bits _ -

EM = 01 OxFF OxFF OxFF ... OxFF OxFF 00 H(m)
N _

RSA modulus size (e.g. 2048 bits)

output: cr(—(EM)‘J| mod N

* V(pk, mEM, o ): verify that ¢® mod N has the correct format

Security: no security analysis, not even with ideal hash functions
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RSA signatures in practice often use e=65537 (and alarge d).
As a result, sig verification is =20x faster than sig generation.

e=3 gives even faster signature verification.

Suppose an attacker finds an m*e€M such that
EM is a perfect cube (e.g. 8=23, 27=33, 64=43),

Can she use this m* to break PKCS1?

O Yes, the cube root of EM (over the integers) is a sig. forgery for m*

No, this has no impact on PKCS1 signatures

O
O  Yes, but the attack only works for a few 2048-bit moduli N
O

It depends on what hash function is begin used




End of Segment
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Proving security of RSA-FDH

(G, F, F1): secure TDP with domain X
Recall FDH sigs: S(sk, m) = F1(sk, Hm)) where H: M — X

We will show: TDP is secure = FDH is secure, when H is a random function

adversar

pk, y=F(pk, x)

Signature

Forger

)




Proving security

Thm [BR]: (G, F, F') secure TDP = (G;pps S, V) secure signature
when H: M — X is modeled as a random oracle.

VA 3B: Advge[AFDH] < q, - Adv;pp[B,F]

Proof:

pk, y=F(pk, x) .
choose i* «—{1,...,q,}

Signature
Forger

ifi=i*: x <X, H(m) =F(pk, x;)
else: H(m;) =y

<€

m=m. = 0=F‘1(sk,yi)=x

Pr[m=m.] = 1/q,



Proving security

Thm [BR]: (G, F, F') secure TDP = (G;pps S, V) secure signature
when H: M — X is modeled as a random oracle.

VA 3B: Advge[AFDH] < q, - Adv;pp[B,F]

Proof: ﬂ

So:  AdvipelB,Fl = (1/qy) - Advg[A,FDH]

L Y J Y Y

Prob. B Prim=m..] Prob. forger A
outputs x outputs valid forgery




Alg. B has table:

How B answers a signature query m; :

H(m,) = F(pk, x;)
H(m,) = F(pk, x,)

H(m.) =y

H(my) = F(pk, x,)
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Partial domain hash:
Suppose (G, F, F') is defined over domain X = {0,...,B-1}
but H: M — {0,...,B/2} .

Can we prove FDH secure with such an H?

O No, FDH is only secure with a full domain hash

O Yes, but we would need to adjust how B defines H(m,)
in the proof

O It depends on what TDP is used



PSS: Tighter security proof

Some variants of FDH:

tight reduction from forger to inverting the TDP (no q, factor).
Still assuming hash function H is “ideal.”

Examples:

PSS [BrR96]: part of the PKCS1 v2.1 standard

.« KW03:  S((skk), m)= [ be—PRF(k,m)€{0,1} , Fi(sk, H(bllm)) ]

* many others



End of Segment
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A new tool: pairings

Secure signature without “ideal” hash function (a.k.a. random oracles):
* can be built from RSA, but

* most efficient constructions use pairings
G, G;: finite cyclic groups G={1,g,...,g°}

Def: A pairing e: GxG— G; isa map:
— bilinear: e(g®, h°) = e(g,h)® Vabez gheG

— efficiently computable and non-degenerate:
g generatesG = e(g,g) generates G;




BLS: a simple signature from pairings

e: GxXG — G; a pairing where |G|=p, g€Ggenerator, H:M — G

Gen: sk=(random o in Z)) , pk=g%€eG

S(sk, m): output o=H(mM)* € G

V(pk, m, o): accept if e(g, o) = e(pk H(m))

Thm: secure assuming CDH in G is hard, when H is a random oracle
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Security without random oracles seos

Gen: sk=(rand. a,B<«—727)) , pk=(g, y=g%eG , 2=gP G )

S(sk, meZ,): reZ o = gt/leFB+m) - 5 Gutput (r0)

p’

?

V(pk, m, (r,0)): acceptif e(o, yz-g™) Z e(gg)

Thm: secure assuming q.-BDH in G is hard
VA3IB:  Advgg[ABBsig] < Adv, 5u[B,G] + (gs/p)



Proof strategy

us

g-BDH challenge

adversary

Signature

Forger

solution <

We choose pk so that: ,
m, m, m, m

M 256



End of Segment
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Signature lengths

Goal: best existential forgery attack time > 2128

signature
algorithm size
RSA 2048-3072 bits
EC-DSA 512 bits
Schnorr 384 bits
BLS 256 bits

Open problem: practical 128-bit signatures



Signatures with Message Recovery

SUppose Alice needs to sign a short message, say m € {0,1}512
- verifier
m ~ [accept
— —> V(pk,m, 0) = reject

512 bits 2048 bits

Can we do better? Yes: signatures with message recovery

accept, M
~ : =g V(pk' G) ) re'ecF:
2048 bits )

Security: existential unforgeability under a chosen message attack
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Sigs with Message Recovery: Example

- X X
(Grors P, £z TDP on domain (X, xX,) - o s )

Hash functions:

MSg space
Hix, — X, DI — [

G:X,— X, I —

/Signing: S(sk, meX;): h«—H(m) €X, N

256 bits

— —~

EM = h m @ G(h) € Xo X X4

output: o «— F1(sk, EM
_ p ( )




Sigs with Message Recovery: Example

S(sk, m€X,): choose random h «— H(m) € X,

256 bits

— —~

EM = h m @ G(h) € Xox X

output: o «— F1(sk, EM)

V(pkl 0): (XOI Xl) — F(pkl 0) ’ m <— Xl@ G(XO)
if x,=H(m) output “accept, m” else “reject”

Thm: (G, F, F') secure TDP = (G;pp, S, V) secure MR signature
when H, G are modeled as random oracles



Standard for sigs with message-recovery: RSA-PSS-R (PKCS1)

Consider the following MR signature: S(sk, m) = F1(sk, [m llH(m)])
V(pk, o): (m,h) < F(pk, o)
if h=H(m) outputs “accept, m”
Unfortunately, we can’t prove security.
Should we use this scheme with RSA and with H as SHA-2567

(ISO/IEC 9796-2 sigs. and EMV sigs.)

O Yes, unless someone discovers an attack
O No, only use schemes that have a clear security analysis
O It depends on the size of the RSA modulus

[Practical cryptanalysis of ISO/IEC 9796-2 and EMV signatures, in Proc. of Crypto 2009]



Aggregate Signatures  seisos

Certificate chain:

subj-id:
Equifax CA

subj-id: subj-id:
GeoTrust CA Internal CA

subj-id:
WWW.XyZ.com

pub-key: ... pub-key: ... pub-key: ...

self-signed

signature signature signature

Aggregate sigs: lets anyone compress n signatures into one

k, , miy = o wy “« ”
Pke» T . V e Pk, M, 0" ) = “accept

aggregate | — O

means for i=1,...,n:
pk. , m — o user i signed msg m,
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Aggregate Signatures  seisos

Certificate chain with aggregates sigs:

subj-id: subj-id:
Equifax CA GeoTrust CA

subj-id:
Internal CA

subj-id:
WWW.XyZ.com

pub-key: ... pub-key: ... pub-key: ... pub-key: ...

aggregate-sig

Aggregate sigs: let us compress n signatures into one

k, , miy = o wy “« ”
Pke» T . V e Pk, M, 0" ) = “accept

aggregate | — O

means for i=1,...,n:
pk. , m — o user i signed msg m,
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Further Reading

PSS. The exact security of digital signatures: how to sign with RSA
and Rabin, M. Bellare, P. Rogaway, 1996.

On the exact security of full domain hash, J-S Coron, 2000.

Short signatures without random oracles,
D. Boneh and X. Boyen, 2004.

Secure hash-and-sign signatures without the random oracle,
R. Gennaro, S. Halevi, T. Rabin, 1999.

A survey of two signature aggregation techniques,
D. Boneh, C. Gentry, B. Lynn, and H. Shacham, 2003.
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